linux/arch/ia64/kernel/time.c
<<
>>
Prefs
   1/*
   2 * linux/arch/ia64/kernel/time.c
   3 *
   4 * Copyright (C) 1998-2003 Hewlett-Packard Co
   5 *      Stephane Eranian <eranian@hpl.hp.com>
   6 *      David Mosberger <davidm@hpl.hp.com>
   7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
   8 * Copyright (C) 1999-2000 VA Linux Systems
   9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
  10 */
  11
  12#include <linux/cpu.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/profile.h>
  17#include <linux/sched.h>
  18#include <linux/time.h>
  19#include <linux/interrupt.h>
  20#include <linux/efi.h>
  21#include <linux/timex.h>
  22#include <linux/clocksource.h>
  23#include <linux/platform_device.h>
  24
  25#include <asm/machvec.h>
  26#include <asm/delay.h>
  27#include <asm/hw_irq.h>
  28#include <asm/paravirt.h>
  29#include <asm/ptrace.h>
  30#include <asm/sal.h>
  31#include <asm/sections.h>
  32#include <asm/system.h>
  33
  34#include "fsyscall_gtod_data.h"
  35
  36static cycle_t itc_get_cycles(struct clocksource *cs);
  37
  38struct fsyscall_gtod_data_t fsyscall_gtod_data = {
  39        .lock = SEQLOCK_UNLOCKED,
  40};
  41
  42struct itc_jitter_data_t itc_jitter_data;
  43
  44volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
  45
  46#ifdef CONFIG_IA64_DEBUG_IRQ
  47
  48unsigned long last_cli_ip;
  49EXPORT_SYMBOL(last_cli_ip);
  50
  51#endif
  52
  53#ifdef CONFIG_PARAVIRT
  54/* We need to define a real function for sched_clock, to override the
  55   weak default version */
  56unsigned long long sched_clock(void)
  57{
  58        return paravirt_sched_clock();
  59}
  60#endif
  61
  62#ifdef CONFIG_PARAVIRT
  63static void
  64paravirt_clocksource_resume(void)
  65{
  66        if (pv_time_ops.clocksource_resume)
  67                pv_time_ops.clocksource_resume();
  68}
  69#endif
  70
  71static struct clocksource clocksource_itc = {
  72        .name           = "itc",
  73        .rating         = 350,
  74        .read           = itc_get_cycles,
  75        .mask           = CLOCKSOURCE_MASK(64),
  76        .mult           = 0, /*to be calculated*/
  77        .shift          = 16,
  78        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
  79#ifdef CONFIG_PARAVIRT
  80        .resume         = paravirt_clocksource_resume,
  81#endif
  82};
  83static struct clocksource *itc_clocksource;
  84
  85#ifdef CONFIG_VIRT_CPU_ACCOUNTING
  86
  87#include <linux/kernel_stat.h>
  88
  89extern cputime_t cycle_to_cputime(u64 cyc);
  90
  91/*
  92 * Called from the context switch with interrupts disabled, to charge all
  93 * accumulated times to the current process, and to prepare accounting on
  94 * the next process.
  95 */
  96void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
  97{
  98        struct thread_info *pi = task_thread_info(prev);
  99        struct thread_info *ni = task_thread_info(next);
 100        cputime_t delta_stime, delta_utime;
 101        __u64 now;
 102
 103        now = ia64_get_itc();
 104
 105        delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
 106        if (idle_task(smp_processor_id()) != prev)
 107                account_system_time(prev, 0, delta_stime, delta_stime);
 108        else
 109                account_idle_time(delta_stime);
 110
 111        if (pi->ac_utime) {
 112                delta_utime = cycle_to_cputime(pi->ac_utime);
 113                account_user_time(prev, delta_utime, delta_utime);
 114        }
 115
 116        pi->ac_stamp = ni->ac_stamp = now;
 117        ni->ac_stime = ni->ac_utime = 0;
 118}
 119
 120/*
 121 * Account time for a transition between system, hard irq or soft irq state.
 122 * Note that this function is called with interrupts enabled.
 123 */
 124void account_system_vtime(struct task_struct *tsk)
 125{
 126        struct thread_info *ti = task_thread_info(tsk);
 127        unsigned long flags;
 128        cputime_t delta_stime;
 129        __u64 now;
 130
 131        local_irq_save(flags);
 132
 133        now = ia64_get_itc();
 134
 135        delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
 136        if (irq_count() || idle_task(smp_processor_id()) != tsk)
 137                account_system_time(tsk, 0, delta_stime, delta_stime);
 138        else
 139                account_idle_time(delta_stime);
 140        ti->ac_stime = 0;
 141
 142        ti->ac_stamp = now;
 143
 144        local_irq_restore(flags);
 145}
 146EXPORT_SYMBOL_GPL(account_system_vtime);
 147
 148/*
 149 * Called from the timer interrupt handler to charge accumulated user time
 150 * to the current process.  Must be called with interrupts disabled.
 151 */
 152void account_process_tick(struct task_struct *p, int user_tick)
 153{
 154        struct thread_info *ti = task_thread_info(p);
 155        cputime_t delta_utime;
 156
 157        if (ti->ac_utime) {
 158                delta_utime = cycle_to_cputime(ti->ac_utime);
 159                account_user_time(p, delta_utime, delta_utime);
 160                ti->ac_utime = 0;
 161        }
 162}
 163
 164#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
 165
 166static irqreturn_t
 167timer_interrupt (int irq, void *dev_id)
 168{
 169        unsigned long new_itm;
 170
 171        if (unlikely(cpu_is_offline(smp_processor_id()))) {
 172                return IRQ_HANDLED;
 173        }
 174
 175        platform_timer_interrupt(irq, dev_id);
 176
 177        new_itm = local_cpu_data->itm_next;
 178
 179        if (!time_after(ia64_get_itc(), new_itm))
 180                printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
 181                       ia64_get_itc(), new_itm);
 182
 183        profile_tick(CPU_PROFILING);
 184
 185        if (paravirt_do_steal_accounting(&new_itm))
 186                goto skip_process_time_accounting;
 187
 188        while (1) {
 189                update_process_times(user_mode(get_irq_regs()));
 190
 191                new_itm += local_cpu_data->itm_delta;
 192
 193                if (smp_processor_id() == time_keeper_id) {
 194                        /*
 195                         * Here we are in the timer irq handler. We have irqs locally
 196                         * disabled, but we don't know if the timer_bh is running on
 197                         * another CPU. We need to avoid to SMP race by acquiring the
 198                         * xtime_lock.
 199                         */
 200                        write_seqlock(&xtime_lock);
 201                        do_timer(1);
 202                        local_cpu_data->itm_next = new_itm;
 203                        write_sequnlock(&xtime_lock);
 204                } else
 205                        local_cpu_data->itm_next = new_itm;
 206
 207                if (time_after(new_itm, ia64_get_itc()))
 208                        break;
 209
 210                /*
 211                 * Allow IPIs to interrupt the timer loop.
 212                 */
 213                local_irq_enable();
 214                local_irq_disable();
 215        }
 216
 217skip_process_time_accounting:
 218
 219        do {
 220                /*
 221                 * If we're too close to the next clock tick for
 222                 * comfort, we increase the safety margin by
 223                 * intentionally dropping the next tick(s).  We do NOT
 224                 * update itm.next because that would force us to call
 225                 * do_timer() which in turn would let our clock run
 226                 * too fast (with the potentially devastating effect
 227                 * of losing monotony of time).
 228                 */
 229                while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
 230                        new_itm += local_cpu_data->itm_delta;
 231                ia64_set_itm(new_itm);
 232                /* double check, in case we got hit by a (slow) PMI: */
 233        } while (time_after_eq(ia64_get_itc(), new_itm));
 234        return IRQ_HANDLED;
 235}
 236
 237/*
 238 * Encapsulate access to the itm structure for SMP.
 239 */
 240void
 241ia64_cpu_local_tick (void)
 242{
 243        int cpu = smp_processor_id();
 244        unsigned long shift = 0, delta;
 245
 246        /* arrange for the cycle counter to generate a timer interrupt: */
 247        ia64_set_itv(IA64_TIMER_VECTOR);
 248
 249        delta = local_cpu_data->itm_delta;
 250        /*
 251         * Stagger the timer tick for each CPU so they don't occur all at (almost) the
 252         * same time:
 253         */
 254        if (cpu) {
 255                unsigned long hi = 1UL << ia64_fls(cpu);
 256                shift = (2*(cpu - hi) + 1) * delta/hi/2;
 257        }
 258        local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
 259        ia64_set_itm(local_cpu_data->itm_next);
 260}
 261
 262static int nojitter;
 263
 264static int __init nojitter_setup(char *str)
 265{
 266        nojitter = 1;
 267        printk("Jitter checking for ITC timers disabled\n");
 268        return 1;
 269}
 270
 271__setup("nojitter", nojitter_setup);
 272
 273
 274void __devinit
 275ia64_init_itm (void)
 276{
 277        unsigned long platform_base_freq, itc_freq;
 278        struct pal_freq_ratio itc_ratio, proc_ratio;
 279        long status, platform_base_drift, itc_drift;
 280
 281        /*
 282         * According to SAL v2.6, we need to use a SAL call to determine the platform base
 283         * frequency and then a PAL call to determine the frequency ratio between the ITC
 284         * and the base frequency.
 285         */
 286        status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
 287                                    &platform_base_freq, &platform_base_drift);
 288        if (status != 0) {
 289                printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
 290        } else {
 291                status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
 292                if (status != 0)
 293                        printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
 294        }
 295        if (status != 0) {
 296                /* invent "random" values */
 297                printk(KERN_ERR
 298                       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
 299                platform_base_freq = 100000000;
 300                platform_base_drift = -1;       /* no drift info */
 301                itc_ratio.num = 3;
 302                itc_ratio.den = 1;
 303        }
 304        if (platform_base_freq < 40000000) {
 305                printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
 306                       platform_base_freq);
 307                platform_base_freq = 75000000;
 308                platform_base_drift = -1;
 309        }
 310        if (!proc_ratio.den)
 311                proc_ratio.den = 1;     /* avoid division by zero */
 312        if (!itc_ratio.den)
 313                itc_ratio.den = 1;      /* avoid division by zero */
 314
 315        itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
 316
 317        local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
 318        printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
 319               "ITC freq=%lu.%03luMHz", smp_processor_id(),
 320               platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
 321               itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
 322
 323        if (platform_base_drift != -1) {
 324                itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
 325                printk("+/-%ldppm\n", itc_drift);
 326        } else {
 327                itc_drift = -1;
 328                printk("\n");
 329        }
 330
 331        local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
 332        local_cpu_data->itc_freq = itc_freq;
 333        local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
 334        local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
 335                                        + itc_freq/2)/itc_freq;
 336
 337        if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
 338#ifdef CONFIG_SMP
 339                /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
 340                 * Jitter compensation requires a cmpxchg which may limit
 341                 * the scalability of the syscalls for retrieving time.
 342                 * The ITC synchronization is usually successful to within a few
 343                 * ITC ticks but this is not a sure thing. If you need to improve
 344                 * timer performance in SMP situations then boot the kernel with the
 345                 * "nojitter" option. However, doing so may result in time fluctuating (maybe
 346                 * even going backward) if the ITC offsets between the individual CPUs
 347                 * are too large.
 348                 */
 349                if (!nojitter)
 350                        itc_jitter_data.itc_jitter = 1;
 351#endif
 352        } else
 353                /*
 354                 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
 355                 * ITC values may fluctuate significantly between processors.
 356                 * Clock should not be used for hrtimers. Mark itc as only
 357                 * useful for boot and testing.
 358                 *
 359                 * Note that jitter compensation is off! There is no point of
 360                 * synchronizing ITCs since they may be large differentials
 361                 * that change over time.
 362                 *
 363                 * The only way to fix this would be to repeatedly sync the
 364                 * ITCs. Until that time we have to avoid ITC.
 365                 */
 366                clocksource_itc.rating = 50;
 367
 368        paravirt_init_missing_ticks_accounting(smp_processor_id());
 369
 370        /* avoid softlock up message when cpu is unplug and plugged again. */
 371        touch_softlockup_watchdog();
 372
 373        /* Setup the CPU local timer tick */
 374        ia64_cpu_local_tick();
 375
 376        if (!itc_clocksource) {
 377                /* Sort out mult/shift values: */
 378                clocksource_itc.mult =
 379                        clocksource_hz2mult(local_cpu_data->itc_freq,
 380                                                clocksource_itc.shift);
 381                clocksource_register(&clocksource_itc);
 382                itc_clocksource = &clocksource_itc;
 383        }
 384}
 385
 386static cycle_t itc_get_cycles(struct clocksource *cs)
 387{
 388        unsigned long lcycle, now, ret;
 389
 390        if (!itc_jitter_data.itc_jitter)
 391                return get_cycles();
 392
 393        lcycle = itc_jitter_data.itc_lastcycle;
 394        now = get_cycles();
 395        if (lcycle && time_after(lcycle, now))
 396                return lcycle;
 397
 398        /*
 399         * Keep track of the last timer value returned.
 400         * In an SMP environment, you could lose out in contention of
 401         * cmpxchg. If so, your cmpxchg returns new value which the
 402         * winner of contention updated to. Use the new value instead.
 403         */
 404        ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
 405        if (unlikely(ret != lcycle))
 406                return ret;
 407
 408        return now;
 409}
 410
 411
 412static struct irqaction timer_irqaction = {
 413        .handler =      timer_interrupt,
 414        .flags =        IRQF_DISABLED | IRQF_IRQPOLL,
 415        .name =         "timer"
 416};
 417
 418static struct platform_device rtc_efi_dev = {
 419        .name = "rtc-efi",
 420        .id = -1,
 421};
 422
 423static int __init rtc_init(void)
 424{
 425        if (platform_device_register(&rtc_efi_dev) < 0)
 426                printk(KERN_ERR "unable to register rtc device...\n");
 427
 428        /* not necessarily an error */
 429        return 0;
 430}
 431module_init(rtc_init);
 432
 433void __init
 434time_init (void)
 435{
 436        register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
 437        efi_gettimeofday(&xtime);
 438        ia64_init_itm();
 439
 440        /*
 441         * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
 442         * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
 443         */
 444        set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
 445}
 446
 447/*
 448 * Generic udelay assumes that if preemption is allowed and the thread
 449 * migrates to another CPU, that the ITC values are synchronized across
 450 * all CPUs.
 451 */
 452static void
 453ia64_itc_udelay (unsigned long usecs)
 454{
 455        unsigned long start = ia64_get_itc();
 456        unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
 457
 458        while (time_before(ia64_get_itc(), end))
 459                cpu_relax();
 460}
 461
 462void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
 463
 464void
 465udelay (unsigned long usecs)
 466{
 467        (*ia64_udelay)(usecs);
 468}
 469EXPORT_SYMBOL(udelay);
 470
 471/* IA64 doesn't cache the timezone */
 472void update_vsyscall_tz(void)
 473{
 474}
 475
 476void update_vsyscall(struct timespec *wall, struct clocksource *c)
 477{
 478        unsigned long flags;
 479
 480        write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
 481
 482        /* copy fsyscall clock data */
 483        fsyscall_gtod_data.clk_mask = c->mask;
 484        fsyscall_gtod_data.clk_mult = c->mult;
 485        fsyscall_gtod_data.clk_shift = c->shift;
 486        fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
 487        fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
 488
 489        /* copy kernel time structures */
 490        fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
 491        fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
 492        fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
 493                                                        + wall->tv_sec;
 494        fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
 495                                                        + wall->tv_nsec;
 496
 497        /* normalize */
 498        while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
 499                fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
 500                fsyscall_gtod_data.monotonic_time.tv_sec++;
 501        }
 502
 503        write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
 504}
 505
 506