linux/arch/ia64/kernel/topology.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * This file contains NUMA specific variables and functions which can
   7 * be split away from DISCONTIGMEM and are used on NUMA machines with
   8 * contiguous memory.
   9 *              2002/08/07 Erich Focht <efocht@ess.nec.de>
  10 * Populate cpu entries in sysfs for non-numa systems as well
  11 *      Intel Corporation - Ashok Raj
  12 * 02/27/2006 Zhang, Yanmin
  13 *      Populate cpu cache entries in sysfs for cpu cache info
  14 */
  15
  16#include <linux/cpu.h>
  17#include <linux/kernel.h>
  18#include <linux/mm.h>
  19#include <linux/node.h>
  20#include <linux/init.h>
  21#include <linux/bootmem.h>
  22#include <linux/nodemask.h>
  23#include <linux/notifier.h>
  24#include <asm/mmzone.h>
  25#include <asm/numa.h>
  26#include <asm/cpu.h>
  27
  28static struct ia64_cpu *sysfs_cpus;
  29
  30void arch_fix_phys_package_id(int num, u32 slot)
  31{
  32#ifdef CONFIG_SMP
  33        if (cpu_data(num)->socket_id == -1)
  34                cpu_data(num)->socket_id = slot;
  35#endif
  36}
  37EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
  38
  39
  40#ifdef CONFIG_HOTPLUG_CPU
  41int __ref arch_register_cpu(int num)
  42{
  43#ifdef CONFIG_ACPI
  44        /*
  45         * If CPEI can be re-targetted or if this is not
  46         * CPEI target, then it is hotpluggable
  47         */
  48        if (can_cpei_retarget() || !is_cpu_cpei_target(num))
  49                sysfs_cpus[num].cpu.hotpluggable = 1;
  50        map_cpu_to_node(num, node_cpuid[num].nid);
  51#endif
  52        return register_cpu(&sysfs_cpus[num].cpu, num);
  53}
  54EXPORT_SYMBOL(arch_register_cpu);
  55
  56void __ref arch_unregister_cpu(int num)
  57{
  58        unregister_cpu(&sysfs_cpus[num].cpu);
  59#ifdef CONFIG_ACPI
  60        unmap_cpu_from_node(num, cpu_to_node(num));
  61#endif
  62}
  63EXPORT_SYMBOL(arch_unregister_cpu);
  64#else
  65static int __init arch_register_cpu(int num)
  66{
  67        return register_cpu(&sysfs_cpus[num].cpu, num);
  68}
  69#endif /*CONFIG_HOTPLUG_CPU*/
  70
  71
  72static int __init topology_init(void)
  73{
  74        int i, err = 0;
  75
  76#ifdef CONFIG_NUMA
  77        /*
  78         * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
  79         */
  80        for_each_online_node(i) {
  81                if ((err = register_one_node(i)))
  82                        goto out;
  83        }
  84#endif
  85
  86        sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
  87        if (!sysfs_cpus)
  88                panic("kzalloc in topology_init failed - NR_CPUS too big?");
  89
  90        for_each_present_cpu(i) {
  91                if((err = arch_register_cpu(i)))
  92                        goto out;
  93        }
  94out:
  95        return err;
  96}
  97
  98subsys_initcall(topology_init);
  99
 100
 101/*
 102 * Export cpu cache information through sysfs
 103 */
 104
 105/*
 106 *  A bunch of string array to get pretty printing
 107 */
 108static const char *cache_types[] = {
 109        "",                     /* not used */
 110        "Instruction",
 111        "Data",
 112        "Unified"       /* unified */
 113};
 114
 115static const char *cache_mattrib[]={
 116        "WriteThrough",
 117        "WriteBack",
 118        "",             /* reserved */
 119        ""              /* reserved */
 120};
 121
 122struct cache_info {
 123        pal_cache_config_info_t cci;
 124        cpumask_t shared_cpu_map;
 125        int level;
 126        int type;
 127        struct kobject kobj;
 128};
 129
 130struct cpu_cache_info {
 131        struct cache_info *cache_leaves;
 132        int     num_cache_leaves;
 133        struct kobject kobj;
 134};
 135
 136static struct cpu_cache_info    all_cpu_cache_info[NR_CPUS] __cpuinitdata;
 137#define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
 138
 139#ifdef CONFIG_SMP
 140static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
 141                struct cache_info * this_leaf)
 142{
 143        pal_cache_shared_info_t csi;
 144        int num_shared, i = 0;
 145        unsigned int j;
 146
 147        if (cpu_data(cpu)->threads_per_core <= 1 &&
 148                cpu_data(cpu)->cores_per_socket <= 1) {
 149                cpu_set(cpu, this_leaf->shared_cpu_map);
 150                return;
 151        }
 152
 153        if (ia64_pal_cache_shared_info(this_leaf->level,
 154                                        this_leaf->type,
 155                                        0,
 156                                        &csi) != PAL_STATUS_SUCCESS)
 157                return;
 158
 159        num_shared = (int) csi.num_shared;
 160        do {
 161                for_each_possible_cpu(j)
 162                        if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
 163                                && cpu_data(j)->core_id == csi.log1_cid
 164                                && cpu_data(j)->thread_id == csi.log1_tid)
 165                                cpu_set(j, this_leaf->shared_cpu_map);
 166
 167                i++;
 168        } while (i < num_shared &&
 169                ia64_pal_cache_shared_info(this_leaf->level,
 170                                this_leaf->type,
 171                                i,
 172                                &csi) == PAL_STATUS_SUCCESS);
 173}
 174#else
 175static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
 176                struct cache_info * this_leaf)
 177{
 178        cpu_set(cpu, this_leaf->shared_cpu_map);
 179        return;
 180}
 181#endif
 182
 183static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
 184                                        char *buf)
 185{
 186        return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
 187}
 188
 189static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
 190                                        char *buf)
 191{
 192        return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
 193}
 194
 195static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
 196{
 197        return sprintf(buf,
 198                        "%s\n",
 199                        cache_mattrib[this_leaf->cci.pcci_cache_attr]);
 200}
 201
 202static ssize_t show_size(struct cache_info *this_leaf, char *buf)
 203{
 204        return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
 205}
 206
 207static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
 208{
 209        unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
 210        number_of_sets /= this_leaf->cci.pcci_assoc;
 211        number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
 212
 213        return sprintf(buf, "%u\n", number_of_sets);
 214}
 215
 216static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
 217{
 218        ssize_t len;
 219        cpumask_t shared_cpu_map;
 220
 221        cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
 222        len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map);
 223        len += sprintf(buf+len, "\n");
 224        return len;
 225}
 226
 227static ssize_t show_type(struct cache_info *this_leaf, char *buf)
 228{
 229        int type = this_leaf->type + this_leaf->cci.pcci_unified;
 230        return sprintf(buf, "%s\n", cache_types[type]);
 231}
 232
 233static ssize_t show_level(struct cache_info *this_leaf, char *buf)
 234{
 235        return sprintf(buf, "%u\n", this_leaf->level);
 236}
 237
 238struct cache_attr {
 239        struct attribute attr;
 240        ssize_t (*show)(struct cache_info *, char *);
 241        ssize_t (*store)(struct cache_info *, const char *, size_t count);
 242};
 243
 244#ifdef define_one_ro
 245        #undef define_one_ro
 246#endif
 247#define define_one_ro(_name) \
 248        static struct cache_attr _name = \
 249__ATTR(_name, 0444, show_##_name, NULL)
 250
 251define_one_ro(level);
 252define_one_ro(type);
 253define_one_ro(coherency_line_size);
 254define_one_ro(ways_of_associativity);
 255define_one_ro(size);
 256define_one_ro(number_of_sets);
 257define_one_ro(shared_cpu_map);
 258define_one_ro(attributes);
 259
 260static struct attribute * cache_default_attrs[] = {
 261        &type.attr,
 262        &level.attr,
 263        &coherency_line_size.attr,
 264        &ways_of_associativity.attr,
 265        &attributes.attr,
 266        &size.attr,
 267        &number_of_sets.attr,
 268        &shared_cpu_map.attr,
 269        NULL
 270};
 271
 272#define to_object(k) container_of(k, struct cache_info, kobj)
 273#define to_attr(a) container_of(a, struct cache_attr, attr)
 274
 275static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
 276{
 277        struct cache_attr *fattr = to_attr(attr);
 278        struct cache_info *this_leaf = to_object(kobj);
 279        ssize_t ret;
 280
 281        ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
 282        return ret;
 283}
 284
 285static struct sysfs_ops cache_sysfs_ops = {
 286        .show   = cache_show
 287};
 288
 289static struct kobj_type cache_ktype = {
 290        .sysfs_ops      = &cache_sysfs_ops,
 291        .default_attrs  = cache_default_attrs,
 292};
 293
 294static struct kobj_type cache_ktype_percpu_entry = {
 295        .sysfs_ops      = &cache_sysfs_ops,
 296};
 297
 298static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
 299{
 300        kfree(all_cpu_cache_info[cpu].cache_leaves);
 301        all_cpu_cache_info[cpu].cache_leaves = NULL;
 302        all_cpu_cache_info[cpu].num_cache_leaves = 0;
 303        memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
 304        return;
 305}
 306
 307static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
 308{
 309        unsigned long i, levels, unique_caches;
 310        pal_cache_config_info_t cci;
 311        int j;
 312        long status;
 313        struct cache_info *this_cache;
 314        int num_cache_leaves = 0;
 315
 316        if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
 317                printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
 318                return -1;
 319        }
 320
 321        this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
 322                        GFP_KERNEL);
 323        if (this_cache == NULL)
 324                return -ENOMEM;
 325
 326        for (i=0; i < levels; i++) {
 327                for (j=2; j >0 ; j--) {
 328                        if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
 329                                        PAL_STATUS_SUCCESS)
 330                                continue;
 331
 332                        this_cache[num_cache_leaves].cci = cci;
 333                        this_cache[num_cache_leaves].level = i + 1;
 334                        this_cache[num_cache_leaves].type = j;
 335
 336                        cache_shared_cpu_map_setup(cpu,
 337                                        &this_cache[num_cache_leaves]);
 338                        num_cache_leaves ++;
 339                }
 340        }
 341
 342        all_cpu_cache_info[cpu].cache_leaves = this_cache;
 343        all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
 344
 345        memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
 346
 347        return 0;
 348}
 349
 350/* Add cache interface for CPU device */
 351static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
 352{
 353        unsigned int cpu = sys_dev->id;
 354        unsigned long i, j;
 355        struct cache_info *this_object;
 356        int retval = 0;
 357        cpumask_t oldmask;
 358
 359        if (all_cpu_cache_info[cpu].kobj.parent)
 360                return 0;
 361
 362        oldmask = current->cpus_allowed;
 363        retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
 364        if (unlikely(retval))
 365                return retval;
 366
 367        retval = cpu_cache_sysfs_init(cpu);
 368        set_cpus_allowed(current, oldmask);
 369        if (unlikely(retval < 0))
 370                return retval;
 371
 372        retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
 373                                      &cache_ktype_percpu_entry, &sys_dev->kobj,
 374                                      "%s", "cache");
 375        if (unlikely(retval < 0)) {
 376                cpu_cache_sysfs_exit(cpu);
 377                return retval;
 378        }
 379
 380        for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
 381                this_object = LEAF_KOBJECT_PTR(cpu,i);
 382                retval = kobject_init_and_add(&(this_object->kobj),
 383                                              &cache_ktype,
 384                                              &all_cpu_cache_info[cpu].kobj,
 385                                              "index%1lu", i);
 386                if (unlikely(retval)) {
 387                        for (j = 0; j < i; j++) {
 388                                kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
 389                        }
 390                        kobject_put(&all_cpu_cache_info[cpu].kobj);
 391                        cpu_cache_sysfs_exit(cpu);
 392                        return retval;
 393                }
 394                kobject_uevent(&(this_object->kobj), KOBJ_ADD);
 395        }
 396        kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
 397        return retval;
 398}
 399
 400/* Remove cache interface for CPU device */
 401static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
 402{
 403        unsigned int cpu = sys_dev->id;
 404        unsigned long i;
 405
 406        for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
 407                kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
 408
 409        if (all_cpu_cache_info[cpu].kobj.parent) {
 410                kobject_put(&all_cpu_cache_info[cpu].kobj);
 411                memset(&all_cpu_cache_info[cpu].kobj,
 412                        0,
 413                        sizeof(struct kobject));
 414        }
 415
 416        cpu_cache_sysfs_exit(cpu);
 417
 418        return 0;
 419}
 420
 421/*
 422 * When a cpu is hot-plugged, do a check and initiate
 423 * cache kobject if necessary
 424 */
 425static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
 426                unsigned long action, void *hcpu)
 427{
 428        unsigned int cpu = (unsigned long)hcpu;
 429        struct sys_device *sys_dev;
 430
 431        sys_dev = get_cpu_sysdev(cpu);
 432        switch (action) {
 433        case CPU_ONLINE:
 434        case CPU_ONLINE_FROZEN:
 435                cache_add_dev(sys_dev);
 436                break;
 437        case CPU_DEAD:
 438        case CPU_DEAD_FROZEN:
 439                cache_remove_dev(sys_dev);
 440                break;
 441        }
 442        return NOTIFY_OK;
 443}
 444
 445static struct notifier_block __cpuinitdata cache_cpu_notifier =
 446{
 447        .notifier_call = cache_cpu_callback
 448};
 449
 450static int __init cache_sysfs_init(void)
 451{
 452        int i;
 453
 454        for_each_online_cpu(i) {
 455                struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);
 456                cache_add_dev(sys_dev);
 457        }
 458
 459        register_hotcpu_notifier(&cache_cpu_notifier);
 460
 461        return 0;
 462}
 463
 464device_initcall(cache_sysfs_init);
 465
 466