linux/arch/ia64/lib/clear_user.S
<<
>>
Prefs
   1/*
   2 * This routine clears to zero a linear memory buffer in user space.
   3 *
   4 * Inputs:
   5 *      in0:    address of buffer
   6 *      in1:    length of buffer in bytes
   7 * Outputs:
   8 *      r8:     number of bytes that didn't get cleared due to a fault
   9 *
  10 * Copyright (C) 1998, 1999, 2001 Hewlett-Packard Co
  11 *      Stephane Eranian <eranian@hpl.hp.com>
  12 */
  13
  14#include <asm/asmmacro.h>
  15
  16//
  17// arguments
  18//
  19#define buf             r32
  20#define len             r33
  21
  22//
  23// local registers
  24//
  25#define cnt             r16
  26#define buf2            r17
  27#define saved_lc        r18
  28#define saved_pfs       r19
  29#define tmp             r20
  30#define len2            r21
  31#define len3            r22
  32
  33//
  34// Theory of operations:
  35//      - we check whether or not the buffer is small, i.e., less than 17
  36//        in which case we do the byte by byte loop.
  37//
  38//      - Otherwise we go progressively from 1 byte store to 8byte store in
  39//        the head part, the body is a 16byte store loop and we finish we the
  40//        tail for the last 15 bytes.
  41//        The good point about this breakdown is that the long buffer handling
  42//        contains only 2 branches.
  43//
  44//      The reason for not using shifting & masking for both the head and the
  45//      tail is to stay semantically correct. This routine is not supposed
  46//      to write bytes outside of the buffer. While most of the time this would
  47//      be ok, we can't tolerate a mistake. A classical example is the case
  48//      of multithreaded code were to the extra bytes touched is actually owned
  49//      by another thread which runs concurrently to ours. Another, less likely,
  50//      example is with device drivers where reading an I/O mapped location may
  51//      have side effects (same thing for writing).
  52//
  53
  54GLOBAL_ENTRY(__do_clear_user)
  55        .prologue
  56        .save ar.pfs, saved_pfs
  57        alloc   saved_pfs=ar.pfs,2,0,0,0
  58        cmp.eq p6,p0=r0,len             // check for zero length
  59        .save ar.lc, saved_lc
  60        mov saved_lc=ar.lc              // preserve ar.lc (slow)
  61        .body
  62        ;;                              // avoid WAW on CFM
  63        adds tmp=-1,len                 // br.ctop is repeat/until
  64        mov ret0=len                    // return value is length at this point
  65(p6)    br.ret.spnt.many rp
  66        ;;
  67        cmp.lt p6,p0=16,len             // if len > 16 then long memset
  68        mov ar.lc=tmp                   // initialize lc for small count
  69(p6)    br.cond.dptk .long_do_clear
  70        ;;                              // WAR on ar.lc
  71        //
  72        // worst case 16 iterations, avg 8 iterations
  73        //
  74        // We could have played with the predicates to use the extra
  75        // M slot for 2 stores/iteration but the cost the initialization
  76        // the various counters compared to how long the loop is supposed
  77        // to last on average does not make this solution viable.
  78        //
  791:
  80        EX( .Lexit1, st1 [buf]=r0,1 )
  81        adds len=-1,len                 // countdown length using len
  82        br.cloop.dptk 1b
  83        ;;                              // avoid RAW on ar.lc
  84        //
  85        // .Lexit4: comes from byte by byte loop
  86        //          len contains bytes left
  87.Lexit1:
  88        mov ret0=len                    // faster than using ar.lc
  89        mov ar.lc=saved_lc
  90        br.ret.sptk.many rp             // end of short clear_user
  91
  92
  93        //
  94        // At this point we know we have more than 16 bytes to copy
  95        // so we focus on alignment (no branches required)
  96        //
  97        // The use of len/len2 for countdown of the number of bytes left
  98        // instead of ret0 is due to the fact that the exception code
  99        // changes the values of r8.
 100        //
 101.long_do_clear:
 102        tbit.nz p6,p0=buf,0             // odd alignment (for long_do_clear)
 103        ;;
 104        EX( .Lexit3, (p6) st1 [buf]=r0,1 )      // 1-byte aligned
 105(p6)    adds len=-1,len;;               // sync because buf is modified
 106        tbit.nz p6,p0=buf,1
 107        ;;
 108        EX( .Lexit3, (p6) st2 [buf]=r0,2 )      // 2-byte aligned
 109(p6)    adds len=-2,len;;
 110        tbit.nz p6,p0=buf,2
 111        ;;
 112        EX( .Lexit3, (p6) st4 [buf]=r0,4 )      // 4-byte aligned
 113(p6)    adds len=-4,len;;
 114        tbit.nz p6,p0=buf,3
 115        ;;
 116        EX( .Lexit3, (p6) st8 [buf]=r0,8 )      // 8-byte aligned
 117(p6)    adds len=-8,len;;
 118        shr.u cnt=len,4         // number of 128-bit (2x64bit) words
 119        ;;
 120        cmp.eq p6,p0=r0,cnt
 121        adds tmp=-1,cnt
 122(p6)    br.cond.dpnt .dotail            // we have less than 16 bytes left
 123        ;;
 124        adds buf2=8,buf                 // setup second base pointer
 125        mov ar.lc=tmp
 126        ;;
 127
 128        //
 129        // 16bytes/iteration core loop
 130        //
 131        // The second store can never generate a fault because
 132        // we come into the loop only when we are 16-byte aligned.
 133        // This means that if we cross a page then it will always be
 134        // in the first store and never in the second.
 135        //
 136        //
 137        // We need to keep track of the remaining length. A possible (optimistic)
 138        // way would be to use ar.lc and derive how many byte were left by
 139        // doing : left= 16*ar.lc + 16.  this would avoid the addition at
 140        // every iteration.
 141        // However we need to keep the synchronization point. A template
 142        // M;;MB does not exist and thus we can keep the addition at no
 143        // extra cycle cost (use a nop slot anyway). It also simplifies the
 144        // (unlikely)  error recovery code
 145        //
 146
 1472:      EX(.Lexit3, st8 [buf]=r0,16 )
 148        ;;                              // needed to get len correct when error
 149        st8 [buf2]=r0,16
 150        adds len=-16,len
 151        br.cloop.dptk 2b
 152        ;;
 153        mov ar.lc=saved_lc
 154        //
 155        // tail correction based on len only
 156        //
 157        // We alternate the use of len3,len2 to allow parallelism and correct
 158        // error handling. We also reuse p6/p7 to return correct value.
 159        // The addition of len2/len3 does not cost anything more compared to
 160        // the regular memset as we had empty slots.
 161        //
 162.dotail:
 163        mov len2=len                    // for parallelization of error handling
 164        mov len3=len
 165        tbit.nz p6,p0=len,3
 166        ;;
 167        EX( .Lexit2, (p6) st8 [buf]=r0,8 )      // at least 8 bytes
 168(p6)    adds len3=-8,len2
 169        tbit.nz p7,p6=len,2
 170        ;;
 171        EX( .Lexit2, (p7) st4 [buf]=r0,4 )      // at least 4 bytes
 172(p7)    adds len2=-4,len3
 173        tbit.nz p6,p7=len,1
 174        ;;
 175        EX( .Lexit2, (p6) st2 [buf]=r0,2 )      // at least 2 bytes
 176(p6)    adds len3=-2,len2
 177        tbit.nz p7,p6=len,0
 178        ;;
 179        EX( .Lexit2, (p7) st1 [buf]=r0 )        // only 1 byte left
 180        mov ret0=r0                             // success
 181        br.ret.sptk.many rp                     // end of most likely path
 182
 183        //
 184        // Outlined error handling code
 185        //
 186
 187        //
 188        // .Lexit3: comes from core loop, need restore pr/lc
 189        //          len contains bytes left
 190        //
 191        //
 192        // .Lexit2:
 193        //      if p6 -> coming from st8 or st2 : len2 contains what's left
 194        //      if p7 -> coming from st4 or st1 : len3 contains what's left
 195        // We must restore lc/pr even though might not have been used.
 196.Lexit2:
 197        .pred.rel "mutex", p6, p7
 198(p6)    mov len=len2
 199(p7)    mov len=len3
 200        ;;
 201        //
 202        // .Lexit4: comes from head, need not restore pr/lc
 203        //          len contains bytes left
 204        //
 205.Lexit3:
 206        mov ret0=len
 207        mov ar.lc=saved_lc
 208        br.ret.sptk.many rp
 209END(__do_clear_user)
 210