linux/arch/ia64/lib/copy_page_mck.S
<<
>>
Prefs
   1/*
   2 * McKinley-optimized version of copy_page().
   3 *
   4 * Copyright (C) 2002 Hewlett-Packard Co
   5 *      David Mosberger <davidm@hpl.hp.com>
   6 *
   7 * Inputs:
   8 *      in0:    address of target page
   9 *      in1:    address of source page
  10 * Output:
  11 *      no return value
  12 *
  13 * General idea:
  14 *      - use regular loads and stores to prefetch data to avoid consuming M-slot just for
  15 *        lfetches => good for in-cache performance
  16 *      - avoid l2 bank-conflicts by not storing into the same 16-byte bank within a single
  17 *        cycle
  18 *
  19 * Principle of operation:
  20 *      First, note that L1 has a line-size of 64 bytes and L2 a line-size of 128 bytes.
  21 *      To avoid secondary misses in L2, we prefetch both source and destination with a line-size
  22 *      of 128 bytes.  When both of these lines are in the L2 and the first half of the
  23 *      source line is in L1, we start copying the remaining words.  The second half of the
  24 *      source line is prefetched in an earlier iteration, so that by the time we start
  25 *      accessing it, it's also present in the L1.
  26 *
  27 *      We use a software-pipelined loop to control the overall operation.  The pipeline
  28 *      has 2*PREFETCH_DIST+K stages.  The first PREFETCH_DIST stages are used for prefetching
  29 *      source cache-lines.  The second PREFETCH_DIST stages are used for prefetching destination
  30 *      cache-lines, the last K stages are used to copy the cache-line words not copied by
  31 *      the prefetches.  The four relevant points in the pipelined are called A, B, C, D:
  32 *      p[A] is TRUE if a source-line should be prefetched, p[B] is TRUE if a destination-line
  33 *      should be prefetched, p[C] is TRUE if the second half of an L2 line should be brought
  34 *      into L1D and p[D] is TRUE if a cacheline needs to be copied.
  35 *
  36 *      This all sounds very complicated, but thanks to the modulo-scheduled loop support,
  37 *      the resulting code is very regular and quite easy to follow (once you get the idea).
  38 *
  39 *      As a secondary optimization, the first 2*PREFETCH_DIST iterations are implemented
  40 *      as the separate .prefetch_loop.  Logically, this loop performs exactly like the
  41 *      main-loop (.line_copy), but has all known-to-be-predicated-off instructions removed,
  42 *      so that each loop iteration is faster (again, good for cached case).
  43 *
  44 *      When reading the code, it helps to keep the following picture in mind:
  45 *
  46 *             word 0 word 1
  47 *            +------+------+---
  48 *            | v[x] |  t1  | ^
  49 *            | t2   |  t3  | |
  50 *            | t4   |  t5  | |
  51 *            | t6   |  t7  | | 128 bytes
  52 *            | n[y] |  t9  | | (L2 cache line)
  53 *            | t10  |  t11 | |
  54 *            | t12  |  t13 | |
  55 *            | t14  |  t15 | v
  56 *            +------+------+---
  57 *
  58 *      Here, v[x] is copied by the (memory) prefetch.  n[y] is loaded at p[C]
  59 *      to fetch the second-half of the L2 cache line into L1, and the tX words are copied in
  60 *      an order that avoids bank conflicts.
  61 */
  62#include <asm/asmmacro.h>
  63#include <asm/page.h>
  64
  65#define PREFETCH_DIST   8               // McKinley sustains 16 outstanding L2 misses (8 ld, 8 st)
  66
  67#define src0            r2
  68#define src1            r3
  69#define dst0            r9
  70#define dst1            r10
  71#define src_pre_mem     r11
  72#define dst_pre_mem     r14
  73#define src_pre_l2      r15
  74#define dst_pre_l2      r16
  75#define t1              r17
  76#define t2              r18
  77#define t3              r19
  78#define t4              r20
  79#define t5              t1      // alias!
  80#define t6              t2      // alias!
  81#define t7              t3      // alias!
  82#define t9              t5      // alias!
  83#define t10             t4      // alias!
  84#define t11             t7      // alias!
  85#define t12             t6      // alias!
  86#define t14             t10     // alias!
  87#define t13             r21
  88#define t15             r22
  89
  90#define saved_lc        r23
  91#define saved_pr        r24
  92
  93#define A       0
  94#define B       (PREFETCH_DIST)
  95#define C       (B + PREFETCH_DIST)
  96#define D       (C + 3)
  97#define N       (D + 1)
  98#define Nrot    ((N + 7) & ~7)
  99
 100GLOBAL_ENTRY(copy_page)
 101        .prologue
 102        alloc r8 = ar.pfs, 2, Nrot-2, 0, Nrot
 103
 104        .rotr v[2*PREFETCH_DIST], n[D-C+1]
 105        .rotp p[N]
 106
 107        .save ar.lc, saved_lc
 108        mov saved_lc = ar.lc
 109        .save pr, saved_pr
 110        mov saved_pr = pr
 111        .body
 112
 113        mov src_pre_mem = in1
 114        mov pr.rot = 0x10000
 115        mov ar.ec = 1                           // special unrolled loop
 116
 117        mov dst_pre_mem = in0
 118        mov ar.lc = 2*PREFETCH_DIST - 1
 119
 120        add src_pre_l2 = 8*8, in1
 121        add dst_pre_l2 = 8*8, in0
 122        add src0 = 8, in1                       // first t1 src
 123        add src1 = 3*8, in1                     // first t3 src
 124        add dst0 = 8, in0                       // first t1 dst
 125        add dst1 = 3*8, in0                     // first t3 dst
 126        mov t1 = (PAGE_SIZE/128) - (2*PREFETCH_DIST) - 1
 127        nop.m 0
 128        nop.i 0
 129        ;;
 130        // same as .line_copy loop, but with all predicated-off instructions removed:
 131.prefetch_loop:
 132(p[A])  ld8 v[A] = [src_pre_mem], 128           // M0
 133(p[B])  st8 [dst_pre_mem] = v[B], 128           // M2
 134        br.ctop.sptk .prefetch_loop
 135        ;;
 136        cmp.eq p16, p0 = r0, r0                 // reset p16 to 1 (br.ctop cleared it to zero)
 137        mov ar.lc = t1                          // with 64KB pages, t1 is too big to fit in 8 bits!
 138        mov ar.ec = N                           // # of stages in pipeline
 139        ;;
 140.line_copy:
 141(p[D])  ld8 t2 = [src0], 3*8                    // M0
 142(p[D])  ld8 t4 = [src1], 3*8                    // M1
 143(p[B])  st8 [dst_pre_mem] = v[B], 128           // M2 prefetch dst from memory
 144(p[D])  st8 [dst_pre_l2] = n[D-C], 128          // M3 prefetch dst from L2
 145        ;;
 146(p[A])  ld8 v[A] = [src_pre_mem], 128           // M0 prefetch src from memory
 147(p[C])  ld8 n[0] = [src_pre_l2], 128            // M1 prefetch src from L2
 148(p[D])  st8 [dst0] =  t1, 8                     // M2
 149(p[D])  st8 [dst1] =  t3, 8                     // M3
 150        ;;
 151(p[D])  ld8  t5 = [src0], 8
 152(p[D])  ld8  t7 = [src1], 3*8
 153(p[D])  st8 [dst0] =  t2, 3*8
 154(p[D])  st8 [dst1] =  t4, 3*8
 155        ;;
 156(p[D])  ld8  t6 = [src0], 3*8
 157(p[D])  ld8 t10 = [src1], 8
 158(p[D])  st8 [dst0] =  t5, 8
 159(p[D])  st8 [dst1] =  t7, 3*8
 160        ;;
 161(p[D])  ld8  t9 = [src0], 3*8
 162(p[D])  ld8 t11 = [src1], 3*8
 163(p[D])  st8 [dst0] =  t6, 3*8
 164(p[D])  st8 [dst1] = t10, 8
 165        ;;
 166(p[D])  ld8 t12 = [src0], 8
 167(p[D])  ld8 t14 = [src1], 8
 168(p[D])  st8 [dst0] =  t9, 3*8
 169(p[D])  st8 [dst1] = t11, 3*8
 170        ;;
 171(p[D])  ld8 t13 = [src0], 4*8
 172(p[D])  ld8 t15 = [src1], 4*8
 173(p[D])  st8 [dst0] = t12, 8
 174(p[D])  st8 [dst1] = t14, 8
 175        ;;
 176(p[D-1])ld8  t1 = [src0], 8
 177(p[D-1])ld8  t3 = [src1], 8
 178(p[D])  st8 [dst0] = t13, 4*8
 179(p[D])  st8 [dst1] = t15, 4*8
 180        br.ctop.sptk .line_copy
 181        ;;
 182        mov ar.lc = saved_lc
 183        mov pr = saved_pr, -1
 184        br.ret.sptk.many rp
 185END(copy_page)
 186