linux/arch/ia64/sn/kernel/sn2/sn2_smp.c
<<
>>
Prefs
   1/*
   2 * SN2 Platform specific SMP Support
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/spinlock.h>
  14#include <linux/threads.h>
  15#include <linux/sched.h>
  16#include <linux/smp.h>
  17#include <linux/interrupt.h>
  18#include <linux/irq.h>
  19#include <linux/mmzone.h>
  20#include <linux/module.h>
  21#include <linux/bitops.h>
  22#include <linux/nodemask.h>
  23#include <linux/proc_fs.h>
  24#include <linux/seq_file.h>
  25
  26#include <asm/processor.h>
  27#include <asm/irq.h>
  28#include <asm/sal.h>
  29#include <asm/system.h>
  30#include <asm/delay.h>
  31#include <asm/io.h>
  32#include <asm/smp.h>
  33#include <asm/tlb.h>
  34#include <asm/numa.h>
  35#include <asm/hw_irq.h>
  36#include <asm/current.h>
  37#include <asm/sn/sn_cpuid.h>
  38#include <asm/sn/sn_sal.h>
  39#include <asm/sn/addrs.h>
  40#include <asm/sn/shub_mmr.h>
  41#include <asm/sn/nodepda.h>
  42#include <asm/sn/rw_mmr.h>
  43#include <asm/sn/sn_feature_sets.h>
  44
  45DEFINE_PER_CPU(struct ptc_stats, ptcstats);
  46DECLARE_PER_CPU(struct ptc_stats, ptcstats);
  47
  48static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
  49
  50/* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
  51static int sn2_flush_opt = 0;
  52
  53extern unsigned long
  54sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
  55                               volatile unsigned long *, unsigned long,
  56                               volatile unsigned long *, unsigned long);
  57void
  58sn2_ptc_deadlock_recovery(short *, short, short, int,
  59                          volatile unsigned long *, unsigned long,
  60                          volatile unsigned long *, unsigned long);
  61
  62/*
  63 * Note: some is the following is captured here to make degugging easier
  64 * (the macros make more sense if you see the debug patch - not posted)
  65 */
  66#define sn2_ptctest     0
  67#define local_node_uses_ptc_ga(sh1)     ((sh1) ? 1 : 0)
  68#define max_active_pio(sh1)             ((sh1) ? 32 : 7)
  69#define reset_max_active_on_deadlock()  1
  70#define PTC_LOCK(sh1)                   ((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
  71
  72struct ptc_stats {
  73        unsigned long ptc_l;
  74        unsigned long change_rid;
  75        unsigned long shub_ptc_flushes;
  76        unsigned long nodes_flushed;
  77        unsigned long deadlocks;
  78        unsigned long deadlocks2;
  79        unsigned long lock_itc_clocks;
  80        unsigned long shub_itc_clocks;
  81        unsigned long shub_itc_clocks_max;
  82        unsigned long shub_ptc_flushes_not_my_mm;
  83        unsigned long shub_ipi_flushes;
  84        unsigned long shub_ipi_flushes_itc_clocks;
  85};
  86
  87#define sn2_ptctest     0
  88
  89static inline unsigned long wait_piowc(void)
  90{
  91        volatile unsigned long *piows;
  92        unsigned long zeroval, ws;
  93
  94        piows = pda->pio_write_status_addr;
  95        zeroval = pda->pio_write_status_val;
  96        do {
  97                cpu_relax();
  98        } while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
  99        return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
 100}
 101
 102/**
 103 * sn_migrate - SN-specific task migration actions
 104 * @task: Task being migrated to new CPU
 105 *
 106 * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
 107 * Context switching user threads which have memory-mapped MMIO may cause
 108 * PIOs to issue from separate CPUs, thus the PIO writes must be drained
 109 * from the previous CPU's Shub before execution resumes on the new CPU.
 110 */
 111void sn_migrate(struct task_struct *task)
 112{
 113        pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
 114        volatile unsigned long *adr = last_pda->pio_write_status_addr;
 115        unsigned long val = last_pda->pio_write_status_val;
 116
 117        /* Drain PIO writes from old CPU's Shub */
 118        while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
 119                        != val))
 120                cpu_relax();
 121}
 122
 123void sn_tlb_migrate_finish(struct mm_struct *mm)
 124{
 125        /* flush_tlb_mm is inefficient if more than 1 users of mm */
 126        if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
 127                flush_tlb_mm(mm);
 128}
 129
 130static void
 131sn2_ipi_flush_all_tlb(struct mm_struct *mm)
 132{
 133        unsigned long itc;
 134
 135        itc = ia64_get_itc();
 136        smp_flush_tlb_cpumask(*mm_cpumask(mm));
 137        itc = ia64_get_itc() - itc;
 138        __get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc;
 139        __get_cpu_var(ptcstats).shub_ipi_flushes++;
 140}
 141
 142/**
 143 * sn2_global_tlb_purge - globally purge translation cache of virtual address range
 144 * @mm: mm_struct containing virtual address range
 145 * @start: start of virtual address range
 146 * @end: end of virtual address range
 147 * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
 148 *
 149 * Purges the translation caches of all processors of the given virtual address
 150 * range.
 151 *
 152 * Note:
 153 *      - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
 154 *      - cpu_vm_mask is converted into a nodemask of the nodes containing the
 155 *        cpus in cpu_vm_mask.
 156 *      - if only one bit is set in cpu_vm_mask & it is the current cpu & the
 157 *        process is purging its own virtual address range, then only the
 158 *        local TLB needs to be flushed. This flushing can be done using
 159 *        ptc.l. This is the common case & avoids the global spinlock.
 160 *      - if multiple cpus have loaded the context, then flushing has to be
 161 *        done with ptc.g/MMRs under protection of the global ptc_lock.
 162 */
 163
 164void
 165sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
 166                     unsigned long end, unsigned long nbits)
 167{
 168        int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
 169        int mymm = (mm == current->active_mm && mm == current->mm);
 170        int use_cpu_ptcga;
 171        volatile unsigned long *ptc0, *ptc1;
 172        unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
 173        short nasids[MAX_NUMNODES], nix;
 174        nodemask_t nodes_flushed;
 175        int active, max_active, deadlock, flush_opt = sn2_flush_opt;
 176
 177        if (flush_opt > 2) {
 178                sn2_ipi_flush_all_tlb(mm);
 179                return;
 180        }
 181
 182        nodes_clear(nodes_flushed);
 183        i = 0;
 184
 185        for_each_cpu(cpu, mm_cpumask(mm)) {
 186                cnode = cpu_to_node(cpu);
 187                node_set(cnode, nodes_flushed);
 188                lcpu = cpu;
 189                i++;
 190        }
 191
 192        if (i == 0)
 193                return;
 194
 195        preempt_disable();
 196
 197        if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
 198                do {
 199                        ia64_ptcl(start, nbits << 2);
 200                        start += (1UL << nbits);
 201                } while (start < end);
 202                ia64_srlz_i();
 203                __get_cpu_var(ptcstats).ptc_l++;
 204                preempt_enable();
 205                return;
 206        }
 207
 208        if (atomic_read(&mm->mm_users) == 1 && mymm) {
 209                flush_tlb_mm(mm);
 210                __get_cpu_var(ptcstats).change_rid++;
 211                preempt_enable();
 212                return;
 213        }
 214
 215        if (flush_opt == 2) {
 216                sn2_ipi_flush_all_tlb(mm);
 217                preempt_enable();
 218                return;
 219        }
 220
 221        itc = ia64_get_itc();
 222        nix = 0;
 223        for_each_node_mask(cnode, nodes_flushed)
 224                nasids[nix++] = cnodeid_to_nasid(cnode);
 225
 226        rr_value = (mm->context << 3) | REGION_NUMBER(start);
 227
 228        shub1 = is_shub1();
 229        if (shub1) {
 230                data0 = (1UL << SH1_PTC_0_A_SHFT) |
 231                        (nbits << SH1_PTC_0_PS_SHFT) |
 232                        (rr_value << SH1_PTC_0_RID_SHFT) |
 233                        (1UL << SH1_PTC_0_START_SHFT);
 234                ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
 235                ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
 236        } else {
 237                data0 = (1UL << SH2_PTC_A_SHFT) |
 238                        (nbits << SH2_PTC_PS_SHFT) |
 239                        (1UL << SH2_PTC_START_SHFT);
 240                ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC + 
 241                        (rr_value << SH2_PTC_RID_SHFT));
 242                ptc1 = NULL;
 243        }
 244        
 245
 246        mynasid = get_nasid();
 247        use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
 248        max_active = max_active_pio(shub1);
 249
 250        itc = ia64_get_itc();
 251        spin_lock_irqsave(PTC_LOCK(shub1), flags);
 252        itc2 = ia64_get_itc();
 253
 254        __get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
 255        __get_cpu_var(ptcstats).shub_ptc_flushes++;
 256        __get_cpu_var(ptcstats).nodes_flushed += nix;
 257        if (!mymm)
 258                 __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++;
 259
 260        if (use_cpu_ptcga && !mymm) {
 261                old_rr = ia64_get_rr(start);
 262                ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
 263                ia64_srlz_d();
 264        }
 265
 266        wait_piowc();
 267        do {
 268                if (shub1)
 269                        data1 = start | (1UL << SH1_PTC_1_START_SHFT);
 270                else
 271                        data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
 272                deadlock = 0;
 273                active = 0;
 274                for (ibegin = 0, i = 0; i < nix; i++) {
 275                        nasid = nasids[i];
 276                        if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
 277                                ia64_ptcga(start, nbits << 2);
 278                                ia64_srlz_i();
 279                        } else {
 280                                ptc0 = CHANGE_NASID(nasid, ptc0);
 281                                if (ptc1)
 282                                        ptc1 = CHANGE_NASID(nasid, ptc1);
 283                                pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
 284                                active++;
 285                        }
 286                        if (active >= max_active || i == (nix - 1)) {
 287                                if ((deadlock = wait_piowc())) {
 288                                        if (flush_opt == 1)
 289                                                goto done;
 290                                        sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
 291                                        if (reset_max_active_on_deadlock())
 292                                                max_active = 1;
 293                                }
 294                                active = 0;
 295                                ibegin = i + 1;
 296                        }
 297                }
 298                start += (1UL << nbits);
 299        } while (start < end);
 300
 301done:
 302        itc2 = ia64_get_itc() - itc2;
 303        __get_cpu_var(ptcstats).shub_itc_clocks += itc2;
 304        if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
 305                __get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
 306
 307        if (old_rr) {
 308                ia64_set_rr(start, old_rr);
 309                ia64_srlz_d();
 310        }
 311
 312        spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
 313
 314        if (flush_opt == 1 && deadlock) {
 315                __get_cpu_var(ptcstats).deadlocks++;
 316                sn2_ipi_flush_all_tlb(mm);
 317        }
 318
 319        preempt_enable();
 320}
 321
 322/*
 323 * sn2_ptc_deadlock_recovery
 324 *
 325 * Recover from PTC deadlocks conditions. Recovery requires stepping thru each 
 326 * TLB flush transaction.  The recovery sequence is somewhat tricky & is
 327 * coded in assembly language.
 328 */
 329
 330void
 331sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid,
 332                          volatile unsigned long *ptc0, unsigned long data0,
 333                          volatile unsigned long *ptc1, unsigned long data1)
 334{
 335        short nasid, i;
 336        unsigned long *piows, zeroval, n;
 337
 338        __get_cpu_var(ptcstats).deadlocks++;
 339
 340        piows = (unsigned long *) pda->pio_write_status_addr;
 341        zeroval = pda->pio_write_status_val;
 342
 343
 344        for (i=ib; i <= ie; i++) {
 345                nasid = nasids[i];
 346                if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
 347                        continue;
 348                ptc0 = CHANGE_NASID(nasid, ptc0);
 349                if (ptc1)
 350                        ptc1 = CHANGE_NASID(nasid, ptc1);
 351
 352                n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
 353                __get_cpu_var(ptcstats).deadlocks2 += n;
 354        }
 355
 356}
 357
 358/**
 359 * sn_send_IPI_phys - send an IPI to a Nasid and slice
 360 * @nasid: nasid to receive the interrupt (may be outside partition)
 361 * @physid: physical cpuid to receive the interrupt.
 362 * @vector: command to send
 363 * @delivery_mode: delivery mechanism
 364 *
 365 * Sends an IPI (interprocessor interrupt) to the processor specified by
 366 * @physid
 367 *
 368 * @delivery_mode can be one of the following
 369 *
 370 * %IA64_IPI_DM_INT - pend an interrupt
 371 * %IA64_IPI_DM_PMI - pend a PMI
 372 * %IA64_IPI_DM_NMI - pend an NMI
 373 * %IA64_IPI_DM_INIT - pend an INIT interrupt
 374 */
 375void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
 376{
 377        long val;
 378        unsigned long flags = 0;
 379        volatile long *p;
 380
 381        p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
 382        val = (1UL << SH_IPI_INT_SEND_SHFT) |
 383            (physid << SH_IPI_INT_PID_SHFT) |
 384            ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
 385            ((long)vector << SH_IPI_INT_IDX_SHFT) |
 386            (0x000feeUL << SH_IPI_INT_BASE_SHFT);
 387
 388        mb();
 389        if (enable_shub_wars_1_1()) {
 390                spin_lock_irqsave(&sn2_global_ptc_lock, flags);
 391        }
 392        pio_phys_write_mmr(p, val);
 393        if (enable_shub_wars_1_1()) {
 394                wait_piowc();
 395                spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
 396        }
 397
 398}
 399
 400EXPORT_SYMBOL(sn_send_IPI_phys);
 401
 402/**
 403 * sn2_send_IPI - send an IPI to a processor
 404 * @cpuid: target of the IPI
 405 * @vector: command to send
 406 * @delivery_mode: delivery mechanism
 407 * @redirect: redirect the IPI?
 408 *
 409 * Sends an IPI (InterProcessor Interrupt) to the processor specified by
 410 * @cpuid.  @vector specifies the command to send, while @delivery_mode can 
 411 * be one of the following
 412 *
 413 * %IA64_IPI_DM_INT - pend an interrupt
 414 * %IA64_IPI_DM_PMI - pend a PMI
 415 * %IA64_IPI_DM_NMI - pend an NMI
 416 * %IA64_IPI_DM_INIT - pend an INIT interrupt
 417 */
 418void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
 419{
 420        long physid;
 421        int nasid;
 422
 423        physid = cpu_physical_id(cpuid);
 424        nasid = cpuid_to_nasid(cpuid);
 425
 426        /* the following is used only when starting cpus at boot time */
 427        if (unlikely(nasid == -1))
 428                ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
 429
 430        sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
 431}
 432
 433#ifdef CONFIG_HOTPLUG_CPU
 434/**
 435 * sn_cpu_disable_allowed - Determine if a CPU can be disabled.
 436 * @cpu - CPU that is requested to be disabled.
 437 *
 438 * CPU disable is only allowed on SHub2 systems running with a PROM
 439 * that supports CPU disable. It is not permitted to disable the boot processor.
 440 */
 441bool sn_cpu_disable_allowed(int cpu)
 442{
 443        if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) {
 444                if (cpu != 0)
 445                        return true;
 446                else
 447                        printk(KERN_WARNING
 448                              "Disabling the boot processor is not allowed.\n");
 449
 450        } else
 451                printk(KERN_WARNING
 452                       "CPU disable is not supported on this system.\n");
 453
 454        return false;
 455}
 456#endif /* CONFIG_HOTPLUG_CPU */
 457
 458#ifdef CONFIG_PROC_FS
 459
 460#define PTC_BASENAME    "sgi_sn/ptc_statistics"
 461
 462static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
 463{
 464        if (*offset < nr_cpu_ids)
 465                return offset;
 466        return NULL;
 467}
 468
 469static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
 470{
 471        (*offset)++;
 472        if (*offset < nr_cpu_ids)
 473                return offset;
 474        return NULL;
 475}
 476
 477static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
 478{
 479}
 480
 481static int sn2_ptc_seq_show(struct seq_file *file, void *data)
 482{
 483        struct ptc_stats *stat;
 484        int cpu;
 485
 486        cpu = *(loff_t *) data;
 487
 488        if (!cpu) {
 489                seq_printf(file,
 490                           "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
 491                seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
 492        }
 493
 494        if (cpu < nr_cpu_ids && cpu_online(cpu)) {
 495                stat = &per_cpu(ptcstats, cpu);
 496                seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
 497                                stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
 498                                stat->deadlocks,
 499                                1000 * stat->lock_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
 500                                1000 * stat->shub_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
 501                                1000 * stat->shub_itc_clocks_max / per_cpu(cpu_info, cpu).cyc_per_usec,
 502                                stat->shub_ptc_flushes_not_my_mm,
 503                                stat->deadlocks2,
 504                                stat->shub_ipi_flushes,
 505                                1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec);
 506        }
 507        return 0;
 508}
 509
 510static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
 511{
 512        int cpu;
 513        char optstr[64];
 514
 515        if (count == 0 || count > sizeof(optstr))
 516                return -EINVAL;
 517        if (copy_from_user(optstr, user, count))
 518                return -EFAULT;
 519        optstr[count - 1] = '\0';
 520        sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
 521
 522        for_each_online_cpu(cpu)
 523                memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
 524
 525        return count;
 526}
 527
 528static const struct seq_operations sn2_ptc_seq_ops = {
 529        .start = sn2_ptc_seq_start,
 530        .next = sn2_ptc_seq_next,
 531        .stop = sn2_ptc_seq_stop,
 532        .show = sn2_ptc_seq_show
 533};
 534
 535static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
 536{
 537        return seq_open(file, &sn2_ptc_seq_ops);
 538}
 539
 540static const struct file_operations proc_sn2_ptc_operations = {
 541        .open = sn2_ptc_proc_open,
 542        .read = seq_read,
 543        .write = sn2_ptc_proc_write,
 544        .llseek = seq_lseek,
 545        .release = seq_release,
 546};
 547
 548static struct proc_dir_entry *proc_sn2_ptc;
 549
 550static int __init sn2_ptc_init(void)
 551{
 552        if (!ia64_platform_is("sn2"))
 553                return 0;
 554
 555        proc_sn2_ptc = proc_create(PTC_BASENAME, 0444,
 556                                   NULL, &proc_sn2_ptc_operations);
 557        if (!proc_sn2_ptc) {
 558                printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
 559                return -EINVAL;
 560        }
 561        spin_lock_init(&sn2_global_ptc_lock);
 562        return 0;
 563}
 564
 565static void __exit sn2_ptc_exit(void)
 566{
 567        remove_proc_entry(PTC_BASENAME, NULL);
 568}
 569
 570module_init(sn2_ptc_init);
 571module_exit(sn2_ptc_exit);
 572#endif /* CONFIG_PROC_FS */
 573
 574