linux/arch/ia64/sn/pci/tioce_provider.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2003-2006 Silicon Graphics, Inc.  All Rights Reserved.
   7 */
   8
   9#include <linux/types.h>
  10#include <linux/interrupt.h>
  11#include <linux/pci.h>
  12#include <asm/sn/sn_sal.h>
  13#include <asm/sn/addrs.h>
  14#include <asm/sn/io.h>
  15#include <asm/sn/pcidev.h>
  16#include <asm/sn/pcibus_provider_defs.h>
  17#include <asm/sn/tioce_provider.h>
  18
  19/*
  20 * 1/26/2006
  21 *
  22 * WAR for SGI PV 944642.  For revA TIOCE, need to use the following recipe
  23 * (taken from the above PV) before and after accessing tioce internal MMR's
  24 * to avoid tioce lockups.
  25 *
  26 * The recipe as taken from the PV:
  27 *
  28 *      if(mmr address < 0x45000) {
  29 *              if(mmr address == 0 or 0x80)
  30 *                      mmr wrt or read address 0xc0
  31 *              else if(mmr address == 0x148 or 0x200)
  32 *                      mmr wrt or read address 0x28
  33 *              else
  34 *                      mmr wrt or read address 0x158
  35 *
  36 *              do desired mmr access (rd or wrt)
  37 *
  38 *              if(mmr address == 0x100)
  39 *                      mmr wrt or read address 0x38
  40 *              mmr wrt or read address 0xb050
  41 *      } else
  42 *              do desired mmr access
  43 *
  44 * According to hw, we can use reads instead of writes to the above address
  45 *
  46 * Note this WAR can only to be used for accessing internal MMR's in the
  47 * TIOCE Coretalk Address Range 0x0 - 0x07ff_ffff.  This includes the
  48 * "Local CE Registers and Memories" and "PCI Compatible Config Space" address
  49 * spaces from table 2-1 of the "CE Programmer's Reference Overview" document.
  50 *
  51 * All registers defined in struct tioce will meet that criteria.
  52 */
  53
  54static void inline
  55tioce_mmr_war_pre(struct tioce_kernel *kern, void __iomem *mmr_addr)
  56{
  57        u64 mmr_base;
  58        u64 mmr_offset;
  59
  60        if (kern->ce_common->ce_rev != TIOCE_REV_A)
  61                return;
  62
  63        mmr_base = kern->ce_common->ce_pcibus.bs_base;
  64        mmr_offset = (unsigned long)mmr_addr - mmr_base;
  65
  66        if (mmr_offset < 0x45000) {
  67                u64 mmr_war_offset;
  68
  69                if (mmr_offset == 0 || mmr_offset == 0x80)
  70                        mmr_war_offset = 0xc0;
  71                else if (mmr_offset == 0x148 || mmr_offset == 0x200)
  72                        mmr_war_offset = 0x28;
  73                else
  74                        mmr_war_offset = 0x158;
  75
  76                readq_relaxed((void __iomem *)(mmr_base + mmr_war_offset));
  77        }
  78}
  79
  80static void inline
  81tioce_mmr_war_post(struct tioce_kernel *kern, void __iomem *mmr_addr)
  82{
  83        u64 mmr_base;
  84        u64 mmr_offset;
  85
  86        if (kern->ce_common->ce_rev != TIOCE_REV_A)
  87                return;
  88
  89        mmr_base = kern->ce_common->ce_pcibus.bs_base;
  90        mmr_offset = (unsigned long)mmr_addr - mmr_base;
  91
  92        if (mmr_offset < 0x45000) {
  93                if (mmr_offset == 0x100)
  94                        readq_relaxed((void __iomem *)(mmr_base + 0x38));
  95                readq_relaxed((void __iomem *)(mmr_base + 0xb050));
  96        }
  97}
  98
  99/* load mmr contents into a variable */
 100#define tioce_mmr_load(kern, mmrp, varp) do {\
 101        tioce_mmr_war_pre(kern, mmrp); \
 102        *(varp) = readq_relaxed(mmrp); \
 103        tioce_mmr_war_post(kern, mmrp); \
 104} while (0)
 105
 106/* store variable contents into mmr */
 107#define tioce_mmr_store(kern, mmrp, varp) do {\
 108        tioce_mmr_war_pre(kern, mmrp); \
 109        writeq(*varp, mmrp); \
 110        tioce_mmr_war_post(kern, mmrp); \
 111} while (0)
 112
 113/* store immediate value into mmr */
 114#define tioce_mmr_storei(kern, mmrp, val) do {\
 115        tioce_mmr_war_pre(kern, mmrp); \
 116        writeq(val, mmrp); \
 117        tioce_mmr_war_post(kern, mmrp); \
 118} while (0)
 119
 120/* set bits (immediate value) into mmr */
 121#define tioce_mmr_seti(kern, mmrp, bits) do {\
 122        u64 tmp; \
 123        tioce_mmr_load(kern, mmrp, &tmp); \
 124        tmp |= (bits); \
 125        tioce_mmr_store(kern, mmrp, &tmp); \
 126} while (0)
 127
 128/* clear bits (immediate value) into mmr */
 129#define tioce_mmr_clri(kern, mmrp, bits) do { \
 130        u64 tmp; \
 131        tioce_mmr_load(kern, mmrp, &tmp); \
 132        tmp &= ~(bits); \
 133        tioce_mmr_store(kern, mmrp, &tmp); \
 134} while (0)
 135
 136/**
 137 * Bus address ranges for the 5 flavors of TIOCE DMA
 138 */
 139
 140#define TIOCE_D64_MIN   0x8000000000000000UL
 141#define TIOCE_D64_MAX   0xffffffffffffffffUL
 142#define TIOCE_D64_ADDR(a)       ((a) >= TIOCE_D64_MIN)
 143
 144#define TIOCE_D32_MIN   0x0000000080000000UL
 145#define TIOCE_D32_MAX   0x00000000ffffffffUL
 146#define TIOCE_D32_ADDR(a)       ((a) >= TIOCE_D32_MIN && (a) <= TIOCE_D32_MAX)
 147
 148#define TIOCE_M32_MIN   0x0000000000000000UL
 149#define TIOCE_M32_MAX   0x000000007fffffffUL
 150#define TIOCE_M32_ADDR(a)       ((a) >= TIOCE_M32_MIN && (a) <= TIOCE_M32_MAX)
 151
 152#define TIOCE_M40_MIN   0x0000004000000000UL
 153#define TIOCE_M40_MAX   0x0000007fffffffffUL
 154#define TIOCE_M40_ADDR(a)       ((a) >= TIOCE_M40_MIN && (a) <= TIOCE_M40_MAX)
 155
 156#define TIOCE_M40S_MIN  0x0000008000000000UL
 157#define TIOCE_M40S_MAX  0x000000ffffffffffUL
 158#define TIOCE_M40S_ADDR(a)      ((a) >= TIOCE_M40S_MIN && (a) <= TIOCE_M40S_MAX)
 159
 160/*
 161 * ATE manipulation macros.
 162 */
 163
 164#define ATE_PAGESHIFT(ps)       (__ffs(ps))
 165#define ATE_PAGEMASK(ps)        ((ps)-1)
 166
 167#define ATE_PAGE(x, ps) ((x) >> ATE_PAGESHIFT(ps))
 168#define ATE_NPAGES(start, len, pagesize) \
 169        (ATE_PAGE((start)+(len)-1, pagesize) - ATE_PAGE(start, pagesize) + 1)
 170
 171#define ATE_VALID(ate)  ((ate) & (1UL << 63))
 172#define ATE_MAKE(addr, ps, msi) \
 173        (((addr) & ~ATE_PAGEMASK(ps)) | (1UL << 63) | ((msi)?(1UL << 62):0))
 174
 175/*
 176 * Flavors of ate-based mapping supported by tioce_alloc_map()
 177 */
 178
 179#define TIOCE_ATE_M32   1
 180#define TIOCE_ATE_M40   2
 181#define TIOCE_ATE_M40S  3
 182
 183#define KB(x)   ((u64)(x) << 10)
 184#define MB(x)   ((u64)(x) << 20)
 185#define GB(x)   ((u64)(x) << 30)
 186
 187/**
 188 * tioce_dma_d64 - create a DMA mapping using 64-bit direct mode
 189 * @ct_addr: system coretalk address
 190 *
 191 * Map @ct_addr into 64-bit CE bus space.  No device context is necessary
 192 * and no CE mapping are consumed.
 193 *
 194 * Bits 53:0 come from the coretalk address.  The remaining bits are set as
 195 * follows:
 196 *
 197 * 63    - must be 1 to indicate d64 mode to CE hardware
 198 * 62    - barrier bit ... controlled with tioce_dma_barrier()
 199 * 61    - msi bit ... specified through dma_flags
 200 * 60:54 - reserved, MBZ
 201 */
 202static u64
 203tioce_dma_d64(unsigned long ct_addr, int dma_flags)
 204{
 205        u64 bus_addr;
 206
 207        bus_addr = ct_addr | (1UL << 63);
 208        if (dma_flags & SN_DMA_MSI)
 209                bus_addr |= (1UL << 61);
 210
 211        return bus_addr;
 212}
 213
 214/**
 215 * pcidev_to_tioce - return misc ce related pointers given a pci_dev
 216 * @pci_dev: pci device context
 217 * @base: ptr to store struct tioce_mmr * for the CE holding this device
 218 * @kernel: ptr to store struct tioce_kernel * for the CE holding this device
 219 * @port: ptr to store the CE port number that this device is on
 220 *
 221 * Return pointers to various CE-related structures for the CE upstream of
 222 * @pci_dev.
 223 */
 224static inline void
 225pcidev_to_tioce(struct pci_dev *pdev, struct tioce __iomem **base,
 226                struct tioce_kernel **kernel, int *port)
 227{
 228        struct pcidev_info *pcidev_info;
 229        struct tioce_common *ce_common;
 230        struct tioce_kernel *ce_kernel;
 231
 232        pcidev_info = SN_PCIDEV_INFO(pdev);
 233        ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
 234        ce_kernel = (struct tioce_kernel *)ce_common->ce_kernel_private;
 235
 236        if (base)
 237                *base = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
 238        if (kernel)
 239                *kernel = ce_kernel;
 240
 241        /*
 242         * we use port as a zero-based value internally, even though the
 243         * documentation is 1-based.
 244         */
 245        if (port)
 246                *port =
 247                    (pdev->bus->number < ce_kernel->ce_port1_secondary) ? 0 : 1;
 248}
 249
 250/**
 251 * tioce_alloc_map - Given a coretalk address, map it to pcie bus address
 252 * space using one of the various ATE-based address modes.
 253 * @ce_kern: tioce context
 254 * @type: map mode to use
 255 * @port: 0-based port that the requesting device is downstream of
 256 * @ct_addr: the coretalk address to map
 257 * @len: number of bytes to map
 258 *
 259 * Given the addressing type, set up various parameters that define the
 260 * ATE pool to use.  Search for a contiguous block of entries to cover the
 261 * length, and if enough resources exist, fill in the ATEs and construct a
 262 * tioce_dmamap struct to track the mapping.
 263 */
 264static u64
 265tioce_alloc_map(struct tioce_kernel *ce_kern, int type, int port,
 266                u64 ct_addr, int len, int dma_flags)
 267{
 268        int i;
 269        int j;
 270        int first;
 271        int last;
 272        int entries;
 273        int nates;
 274        u64 pagesize;
 275        int msi_capable, msi_wanted;
 276        u64 *ate_shadow;
 277        u64 __iomem *ate_reg;
 278        u64 addr;
 279        struct tioce __iomem *ce_mmr;
 280        u64 bus_base;
 281        struct tioce_dmamap *map;
 282
 283        ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
 284
 285        switch (type) {
 286        case TIOCE_ATE_M32:
 287                /*
 288                 * The first 64 entries of the ate3240 pool are dedicated to
 289                 * super-page (TIOCE_ATE_M40S) mode.
 290                 */
 291                first = 64;
 292                entries = TIOCE_NUM_M3240_ATES - 64;
 293                ate_shadow = ce_kern->ce_ate3240_shadow;
 294                ate_reg = ce_mmr->ce_ure_ate3240;
 295                pagesize = ce_kern->ce_ate3240_pagesize;
 296                bus_base = TIOCE_M32_MIN;
 297                msi_capable = 1;
 298                break;
 299        case TIOCE_ATE_M40:
 300                first = 0;
 301                entries = TIOCE_NUM_M40_ATES;
 302                ate_shadow = ce_kern->ce_ate40_shadow;
 303                ate_reg = ce_mmr->ce_ure_ate40;
 304                pagesize = MB(64);
 305                bus_base = TIOCE_M40_MIN;
 306                msi_capable = 0;
 307                break;
 308        case TIOCE_ATE_M40S:
 309                /*
 310                 * ate3240 entries 0-31 are dedicated to port1 super-page
 311                 * mappings.  ate3240 entries 32-63 are dedicated to port2.
 312                 */
 313                first = port * 32;
 314                entries = 32;
 315                ate_shadow = ce_kern->ce_ate3240_shadow;
 316                ate_reg = ce_mmr->ce_ure_ate3240;
 317                pagesize = GB(16);
 318                bus_base = TIOCE_M40S_MIN;
 319                msi_capable = 0;
 320                break;
 321        default:
 322                return 0;
 323        }
 324
 325        msi_wanted = dma_flags & SN_DMA_MSI;
 326        if (msi_wanted && !msi_capable)
 327                return 0;
 328
 329        nates = ATE_NPAGES(ct_addr, len, pagesize);
 330        if (nates > entries)
 331                return 0;
 332
 333        last = first + entries - nates;
 334        for (i = first; i <= last; i++) {
 335                if (ATE_VALID(ate_shadow[i]))
 336                        continue;
 337
 338                for (j = i; j < i + nates; j++)
 339                        if (ATE_VALID(ate_shadow[j]))
 340                                break;
 341
 342                if (j >= i + nates)
 343                        break;
 344        }
 345
 346        if (i > last)
 347                return 0;
 348
 349        map = kzalloc(sizeof(struct tioce_dmamap), GFP_ATOMIC);
 350        if (!map)
 351                return 0;
 352
 353        addr = ct_addr;
 354        for (j = 0; j < nates; j++) {
 355                u64 ate;
 356
 357                ate = ATE_MAKE(addr, pagesize, msi_wanted);
 358                ate_shadow[i + j] = ate;
 359                tioce_mmr_storei(ce_kern, &ate_reg[i + j], ate);
 360                addr += pagesize;
 361        }
 362
 363        map->refcnt = 1;
 364        map->nbytes = nates * pagesize;
 365        map->ct_start = ct_addr & ~ATE_PAGEMASK(pagesize);
 366        map->pci_start = bus_base + (i * pagesize);
 367        map->ate_hw = &ate_reg[i];
 368        map->ate_shadow = &ate_shadow[i];
 369        map->ate_count = nates;
 370
 371        list_add(&map->ce_dmamap_list, &ce_kern->ce_dmamap_list);
 372
 373        return (map->pci_start + (ct_addr - map->ct_start));
 374}
 375
 376/**
 377 * tioce_dma_d32 - create a DMA mapping using 32-bit direct mode
 378 * @pdev: linux pci_dev representing the function
 379 * @paddr: system physical address
 380 *
 381 * Map @paddr into 32-bit bus space of the CE associated with @pcidev_info.
 382 */
 383static u64
 384tioce_dma_d32(struct pci_dev *pdev, u64 ct_addr, int dma_flags)
 385{
 386        int dma_ok;
 387        int port;
 388        struct tioce __iomem *ce_mmr;
 389        struct tioce_kernel *ce_kern;
 390        u64 ct_upper;
 391        u64 ct_lower;
 392        dma_addr_t bus_addr;
 393
 394        if (dma_flags & SN_DMA_MSI)
 395                return 0;
 396
 397        ct_upper = ct_addr & ~0x3fffffffUL;
 398        ct_lower = ct_addr & 0x3fffffffUL;
 399
 400        pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
 401
 402        if (ce_kern->ce_port[port].dirmap_refcnt == 0) {
 403                u64 tmp;
 404
 405                ce_kern->ce_port[port].dirmap_shadow = ct_upper;
 406                tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
 407                                 ct_upper);
 408                tmp = ce_mmr->ce_ure_dir_map[port];
 409                dma_ok = 1;
 410        } else
 411                dma_ok = (ce_kern->ce_port[port].dirmap_shadow == ct_upper);
 412
 413        if (dma_ok) {
 414                ce_kern->ce_port[port].dirmap_refcnt++;
 415                bus_addr = TIOCE_D32_MIN + ct_lower;
 416        } else
 417                bus_addr = 0;
 418
 419        return bus_addr;
 420}
 421
 422/**
 423 * tioce_dma_barrier - swizzle a TIOCE bus address to include or exclude
 424 * the barrier bit.
 425 * @bus_addr:  bus address to swizzle
 426 *
 427 * Given a TIOCE bus address, set the appropriate bit to indicate barrier
 428 * attributes.
 429 */
 430static u64
 431tioce_dma_barrier(u64 bus_addr, int on)
 432{
 433        u64 barrier_bit;
 434
 435        /* barrier not supported in M40/M40S mode */
 436        if (TIOCE_M40_ADDR(bus_addr) || TIOCE_M40S_ADDR(bus_addr))
 437                return bus_addr;
 438
 439        if (TIOCE_D64_ADDR(bus_addr))
 440                barrier_bit = (1UL << 62);
 441        else                    /* must be m32 or d32 */
 442                barrier_bit = (1UL << 30);
 443
 444        return (on) ? (bus_addr | barrier_bit) : (bus_addr & ~barrier_bit);
 445}
 446
 447/**
 448 * tioce_dma_unmap - release CE mapping resources
 449 * @pdev: linux pci_dev representing the function
 450 * @bus_addr: bus address returned by an earlier tioce_dma_map
 451 * @dir: mapping direction (unused)
 452 *
 453 * Locate mapping resources associated with @bus_addr and release them.
 454 * For mappings created using the direct modes there are no resources
 455 * to release.
 456 */
 457void
 458tioce_dma_unmap(struct pci_dev *pdev, dma_addr_t bus_addr, int dir)
 459{
 460        int i;
 461        int port;
 462        struct tioce_kernel *ce_kern;
 463        struct tioce __iomem *ce_mmr;
 464        unsigned long flags;
 465
 466        bus_addr = tioce_dma_barrier(bus_addr, 0);
 467        pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
 468
 469        /* nothing to do for D64 */
 470
 471        if (TIOCE_D64_ADDR(bus_addr))
 472                return;
 473
 474        spin_lock_irqsave(&ce_kern->ce_lock, flags);
 475
 476        if (TIOCE_D32_ADDR(bus_addr)) {
 477                if (--ce_kern->ce_port[port].dirmap_refcnt == 0) {
 478                        ce_kern->ce_port[port].dirmap_shadow = 0;
 479                        tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
 480                                         0);
 481                }
 482        } else {
 483                struct tioce_dmamap *map;
 484
 485                list_for_each_entry(map, &ce_kern->ce_dmamap_list,
 486                                    ce_dmamap_list) {
 487                        u64 last;
 488
 489                        last = map->pci_start + map->nbytes - 1;
 490                        if (bus_addr >= map->pci_start && bus_addr <= last)
 491                                break;
 492                }
 493
 494                if (&map->ce_dmamap_list == &ce_kern->ce_dmamap_list) {
 495                        printk(KERN_WARNING
 496                               "%s:  %s - no map found for bus_addr 0x%llx\n",
 497                               __func__, pci_name(pdev), bus_addr);
 498                } else if (--map->refcnt == 0) {
 499                        for (i = 0; i < map->ate_count; i++) {
 500                                map->ate_shadow[i] = 0;
 501                                tioce_mmr_storei(ce_kern, &map->ate_hw[i], 0);
 502                        }
 503
 504                        list_del(&map->ce_dmamap_list);
 505                        kfree(map);
 506                }
 507        }
 508
 509        spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
 510}
 511
 512/**
 513 * tioce_do_dma_map - map pages for PCI DMA
 514 * @pdev: linux pci_dev representing the function
 515 * @paddr: host physical address to map
 516 * @byte_count: bytes to map
 517 *
 518 * This is the main wrapper for mapping host physical pages to CE PCI space.
 519 * The mapping mode used is based on the device's dma_mask.
 520 */
 521static u64
 522tioce_do_dma_map(struct pci_dev *pdev, u64 paddr, size_t byte_count,
 523                 int barrier, int dma_flags)
 524{
 525        unsigned long flags;
 526        u64 ct_addr;
 527        u64 mapaddr = 0;
 528        struct tioce_kernel *ce_kern;
 529        struct tioce_dmamap *map;
 530        int port;
 531        u64 dma_mask;
 532
 533        dma_mask = (barrier) ? pdev->dev.coherent_dma_mask : pdev->dma_mask;
 534
 535        /* cards must be able to address at least 31 bits */
 536        if (dma_mask < 0x7fffffffUL)
 537                return 0;
 538
 539        if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
 540                ct_addr = PHYS_TO_TIODMA(paddr);
 541        else
 542                ct_addr = paddr;
 543
 544        /*
 545         * If the device can generate 64 bit addresses, create a D64 map.
 546         */
 547        if (dma_mask == ~0UL) {
 548                mapaddr = tioce_dma_d64(ct_addr, dma_flags);
 549                if (mapaddr)
 550                        goto dma_map_done;
 551        }
 552
 553        pcidev_to_tioce(pdev, NULL, &ce_kern, &port);
 554
 555        spin_lock_irqsave(&ce_kern->ce_lock, flags);
 556
 557        /*
 558         * D64 didn't work ... See if we have an existing map that covers
 559         * this address range.  Must account for devices dma_mask here since
 560         * an existing map might have been done in a mode using more pci
 561         * address bits than this device can support.
 562         */
 563        list_for_each_entry(map, &ce_kern->ce_dmamap_list, ce_dmamap_list) {
 564                u64 last;
 565
 566                last = map->ct_start + map->nbytes - 1;
 567                if (ct_addr >= map->ct_start &&
 568                    ct_addr + byte_count - 1 <= last &&
 569                    map->pci_start <= dma_mask) {
 570                        map->refcnt++;
 571                        mapaddr = map->pci_start + (ct_addr - map->ct_start);
 572                        break;
 573                }
 574        }
 575
 576        /*
 577         * If we don't have a map yet, and the card can generate 40
 578         * bit addresses, try the M40/M40S modes.  Note these modes do not
 579         * support a barrier bit, so if we need a consistent map these
 580         * won't work.
 581         */
 582        if (!mapaddr && !barrier && dma_mask >= 0xffffffffffUL) {
 583                /*
 584                 * We have two options for 40-bit mappings:  16GB "super" ATEs
 585                 * and 64MB "regular" ATEs.  We'll try both if needed for a
 586                 * given mapping but which one we try first depends on the
 587                 * size.  For requests >64MB, prefer to use a super page with
 588                 * regular as the fallback. Otherwise, try in the reverse order.
 589                 */
 590
 591                if (byte_count > MB(64)) {
 592                        mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
 593                                                  port, ct_addr, byte_count,
 594                                                  dma_flags);
 595                        if (!mapaddr)
 596                                mapaddr =
 597                                    tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
 598                                                    ct_addr, byte_count,
 599                                                    dma_flags);
 600                } else {
 601                        mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
 602                                                  ct_addr, byte_count,
 603                                                  dma_flags);
 604                        if (!mapaddr)
 605                                mapaddr =
 606                                    tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
 607                                                    port, ct_addr, byte_count,
 608                                                    dma_flags);
 609                }
 610        }
 611
 612        /*
 613         * 32-bit direct is the next mode to try
 614         */
 615        if (!mapaddr && dma_mask >= 0xffffffffUL)
 616                mapaddr = tioce_dma_d32(pdev, ct_addr, dma_flags);
 617
 618        /*
 619         * Last resort, try 32-bit ATE-based map.
 620         */
 621        if (!mapaddr)
 622                mapaddr =
 623                    tioce_alloc_map(ce_kern, TIOCE_ATE_M32, -1, ct_addr,
 624                                    byte_count, dma_flags);
 625
 626        spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
 627
 628dma_map_done:
 629        if (mapaddr && barrier)
 630                mapaddr = tioce_dma_barrier(mapaddr, 1);
 631
 632        return mapaddr;
 633}
 634
 635/**
 636 * tioce_dma - standard pci dma map interface
 637 * @pdev: pci device requesting the map
 638 * @paddr: system physical address to map into pci space
 639 * @byte_count: # bytes to map
 640 *
 641 * Simply call tioce_do_dma_map() to create a map with the barrier bit clear
 642 * in the address.
 643 */
 644static u64
 645tioce_dma(struct pci_dev *pdev, unsigned long  paddr, size_t byte_count, int dma_flags)
 646{
 647        return tioce_do_dma_map(pdev, paddr, byte_count, 0, dma_flags);
 648}
 649
 650/**
 651 * tioce_dma_consistent - consistent pci dma map interface
 652 * @pdev: pci device requesting the map
 653 * @paddr: system physical address to map into pci space
 654 * @byte_count: # bytes to map
 655 *
 656 * Simply call tioce_do_dma_map() to create a map with the barrier bit set
 657 * in the address.
 658 */
 659static u64
 660tioce_dma_consistent(struct pci_dev *pdev, unsigned long  paddr, size_t byte_count, int dma_flags)
 661{
 662        return tioce_do_dma_map(pdev, paddr, byte_count, 1, dma_flags);
 663}
 664
 665/**
 666 * tioce_error_intr_handler - SGI TIO CE error interrupt handler
 667 * @irq: unused
 668 * @arg: pointer to tioce_common struct for the given CE
 669 *
 670 * Handle a CE error interrupt.  Simply a wrapper around a SAL call which
 671 * defers processing to the SGI prom.
 672 */
 673static irqreturn_t
 674tioce_error_intr_handler(int irq, void *arg)
 675{
 676        struct tioce_common *soft = arg;
 677        struct ia64_sal_retval ret_stuff;
 678        ret_stuff.status = 0;
 679        ret_stuff.v0 = 0;
 680
 681        SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_ERROR_INTERRUPT,
 682                        soft->ce_pcibus.bs_persist_segment,
 683                        soft->ce_pcibus.bs_persist_busnum, 0, 0, 0, 0, 0);
 684
 685        if (ret_stuff.v0)
 686                panic("tioce_error_intr_handler:  Fatal TIOCE error");
 687
 688        return IRQ_HANDLED;
 689}
 690
 691/**
 692 * tioce_reserve_m32 - reserve M32 ATEs for the indicated address range
 693 * @tioce_kernel: TIOCE context to reserve ATEs for
 694 * @base: starting bus address to reserve
 695 * @limit: last bus address to reserve
 696 *
 697 * If base/limit falls within the range of bus space mapped through the
 698 * M32 space, reserve the resources corresponding to the range.
 699 */
 700static void
 701tioce_reserve_m32(struct tioce_kernel *ce_kern, u64 base, u64 limit)
 702{
 703        int ate_index, last_ate, ps;
 704        struct tioce __iomem *ce_mmr;
 705
 706        ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
 707        ps = ce_kern->ce_ate3240_pagesize;
 708        ate_index = ATE_PAGE(base, ps);
 709        last_ate = ate_index + ATE_NPAGES(base, limit-base+1, ps) - 1;
 710
 711        if (ate_index < 64)
 712                ate_index = 64;
 713
 714        if (last_ate >= TIOCE_NUM_M3240_ATES)
 715                last_ate = TIOCE_NUM_M3240_ATES - 1;
 716
 717        while (ate_index <= last_ate) {
 718                u64 ate;
 719
 720                ate = ATE_MAKE(0xdeadbeef, ps, 0);
 721                ce_kern->ce_ate3240_shadow[ate_index] = ate;
 722                tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_ate3240[ate_index],
 723                                 ate);
 724                ate_index++;
 725        }
 726}
 727
 728/**
 729 * tioce_kern_init - init kernel structures related to a given TIOCE
 730 * @tioce_common: ptr to a cached tioce_common struct that originated in prom
 731 */
 732static struct tioce_kernel *
 733tioce_kern_init(struct tioce_common *tioce_common)
 734{
 735        int i;
 736        int ps;
 737        int dev;
 738        u32 tmp;
 739        unsigned int seg, bus;
 740        struct tioce __iomem *tioce_mmr;
 741        struct tioce_kernel *tioce_kern;
 742
 743        tioce_kern = kzalloc(sizeof(struct tioce_kernel), GFP_KERNEL);
 744        if (!tioce_kern) {
 745                return NULL;
 746        }
 747
 748        tioce_kern->ce_common = tioce_common;
 749        spin_lock_init(&tioce_kern->ce_lock);
 750        INIT_LIST_HEAD(&tioce_kern->ce_dmamap_list);
 751        tioce_common->ce_kernel_private = (u64) tioce_kern;
 752
 753        /*
 754         * Determine the secondary bus number of the port2 logical PPB.
 755         * This is used to decide whether a given pci device resides on
 756         * port1 or port2.  Note:  We don't have enough plumbing set up
 757         * here to use pci_read_config_xxx() so use raw_pci_read().
 758         */
 759
 760        seg = tioce_common->ce_pcibus.bs_persist_segment;
 761        bus = tioce_common->ce_pcibus.bs_persist_busnum;
 762
 763        raw_pci_read(seg, bus, PCI_DEVFN(2, 0), PCI_SECONDARY_BUS, 1,&tmp);
 764        tioce_kern->ce_port1_secondary = (u8) tmp;
 765
 766        /*
 767         * Set PMU pagesize to the largest size available, and zero out
 768         * the ATEs.
 769         */
 770
 771        tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
 772        tioce_mmr_clri(tioce_kern, &tioce_mmr->ce_ure_page_map,
 773                       CE_URE_PAGESIZE_MASK);
 774        tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_ure_page_map,
 775                       CE_URE_256K_PAGESIZE);
 776        ps = tioce_kern->ce_ate3240_pagesize = KB(256);
 777
 778        for (i = 0; i < TIOCE_NUM_M40_ATES; i++) {
 779                tioce_kern->ce_ate40_shadow[i] = 0;
 780                tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate40[i], 0);
 781        }
 782
 783        for (i = 0; i < TIOCE_NUM_M3240_ATES; i++) {
 784                tioce_kern->ce_ate3240_shadow[i] = 0;
 785                tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate3240[i], 0);
 786        }
 787
 788        /*
 789         * Reserve ATEs corresponding to reserved address ranges.  These
 790         * include:
 791         *
 792         *      Memory space covered by each PPB mem base/limit register
 793         *      Memory space covered by each PPB prefetch base/limit register
 794         *
 795         * These bus ranges are for pio (downstream) traffic only, and so
 796         * cannot be used for DMA.
 797         */
 798
 799        for (dev = 1; dev <= 2; dev++) {
 800                u64 base, limit;
 801
 802                /* mem base/limit */
 803
 804                raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
 805                                  PCI_MEMORY_BASE, 2, &tmp);
 806                base = (u64)tmp << 16;
 807
 808                raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
 809                                  PCI_MEMORY_LIMIT, 2, &tmp);
 810                limit = (u64)tmp << 16;
 811                limit |= 0xfffffUL;
 812
 813                if (base < limit)
 814                        tioce_reserve_m32(tioce_kern, base, limit);
 815
 816                /*
 817                 * prefetch mem base/limit.  The tioce ppb's have 64-bit
 818                 * decoders, so read the upper portions w/o checking the
 819                 * attributes.
 820                 */
 821
 822                raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
 823                                  PCI_PREF_MEMORY_BASE, 2, &tmp);
 824                base = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
 825
 826                raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
 827                                  PCI_PREF_BASE_UPPER32, 4, &tmp);
 828                base |= (u64)tmp << 32;
 829
 830                raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
 831                                  PCI_PREF_MEMORY_LIMIT, 2, &tmp);
 832
 833                limit = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
 834                limit |= 0xfffffUL;
 835
 836                raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
 837                                  PCI_PREF_LIMIT_UPPER32, 4, &tmp);
 838                limit |= (u64)tmp << 32;
 839
 840                if ((base < limit) && TIOCE_M32_ADDR(base))
 841                        tioce_reserve_m32(tioce_kern, base, limit);
 842        }
 843
 844        return tioce_kern;
 845}
 846
 847/**
 848 * tioce_force_interrupt - implement altix force_interrupt() backend for CE
 849 * @sn_irq_info: sn asic irq that we need an interrupt generated for
 850 *
 851 * Given an sn_irq_info struct, set the proper bit in ce_adm_force_int to
 852 * force a secondary interrupt to be generated.  This is to work around an
 853 * asic issue where there is a small window of opportunity for a legacy device
 854 * interrupt to be lost.
 855 */
 856static void
 857tioce_force_interrupt(struct sn_irq_info *sn_irq_info)
 858{
 859        struct pcidev_info *pcidev_info;
 860        struct tioce_common *ce_common;
 861        struct tioce_kernel *ce_kern;
 862        struct tioce __iomem *ce_mmr;
 863        u64 force_int_val;
 864
 865        if (!sn_irq_info->irq_bridge)
 866                return;
 867
 868        if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_TIOCE)
 869                return;
 870
 871        pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
 872        if (!pcidev_info)
 873                return;
 874
 875        ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
 876        ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
 877        ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
 878
 879        /*
 880         * TIOCE Rev A workaround (PV 945826), force an interrupt by writing
 881         * the TIO_INTx register directly (1/26/2006)
 882         */
 883        if (ce_common->ce_rev == TIOCE_REV_A) {
 884                u64 int_bit_mask = (1ULL << sn_irq_info->irq_int_bit);
 885                u64 status;
 886
 887                tioce_mmr_load(ce_kern, &ce_mmr->ce_adm_int_status, &status);
 888                if (status & int_bit_mask) {
 889                        u64 force_irq = (1 << 8) | sn_irq_info->irq_irq;
 890                        u64 ctalk = sn_irq_info->irq_xtalkaddr;
 891                        u64 nasid, offset;
 892
 893                        nasid = (ctalk & CTALK_NASID_MASK) >> CTALK_NASID_SHFT;
 894                        offset = (ctalk & CTALK_NODE_OFFSET);
 895                        HUB_S(TIO_IOSPACE_ADDR(nasid, offset), force_irq);
 896                }
 897
 898                return;
 899        }
 900
 901        /*
 902         * irq_int_bit is originally set up by prom, and holds the interrupt
 903         * bit shift (not mask) as defined by the bit definitions in the
 904         * ce_adm_int mmr.  These shifts are not the same for the
 905         * ce_adm_force_int register, so do an explicit mapping here to make
 906         * things clearer.
 907         */
 908
 909        switch (sn_irq_info->irq_int_bit) {
 910        case CE_ADM_INT_PCIE_PORT1_DEV_A_SHFT:
 911                force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_A_SHFT;
 912                break;
 913        case CE_ADM_INT_PCIE_PORT1_DEV_B_SHFT:
 914                force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_B_SHFT;
 915                break;
 916        case CE_ADM_INT_PCIE_PORT1_DEV_C_SHFT:
 917                force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_C_SHFT;
 918                break;
 919        case CE_ADM_INT_PCIE_PORT1_DEV_D_SHFT:
 920                force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_D_SHFT;
 921                break;
 922        case CE_ADM_INT_PCIE_PORT2_DEV_A_SHFT:
 923                force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_A_SHFT;
 924                break;
 925        case CE_ADM_INT_PCIE_PORT2_DEV_B_SHFT:
 926                force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_B_SHFT;
 927                break;
 928        case CE_ADM_INT_PCIE_PORT2_DEV_C_SHFT:
 929                force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_C_SHFT;
 930                break;
 931        case CE_ADM_INT_PCIE_PORT2_DEV_D_SHFT:
 932                force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_D_SHFT;
 933                break;
 934        default:
 935                return;
 936        }
 937        tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_force_int, force_int_val);
 938}
 939
 940/**
 941 * tioce_target_interrupt - implement set_irq_affinity for tioce resident
 942 * functions.  Note:  only applies to line interrupts, not MSI's.
 943 *
 944 * @sn_irq_info: SN IRQ context
 945 *
 946 * Given an sn_irq_info, set the associated CE device's interrupt destination
 947 * register.  Since the interrupt destination registers are on a per-ce-slot
 948 * basis, this will retarget line interrupts for all functions downstream of
 949 * the slot.
 950 */
 951static void
 952tioce_target_interrupt(struct sn_irq_info *sn_irq_info)
 953{
 954        struct pcidev_info *pcidev_info;
 955        struct tioce_common *ce_common;
 956        struct tioce_kernel *ce_kern;
 957        struct tioce __iomem *ce_mmr;
 958        int bit;
 959        u64 vector;
 960
 961        pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
 962        if (!pcidev_info)
 963                return;
 964
 965        ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
 966        ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
 967        ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
 968
 969        bit = sn_irq_info->irq_int_bit;
 970
 971        tioce_mmr_seti(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
 972        vector = (u64)sn_irq_info->irq_irq << INTR_VECTOR_SHFT;
 973        vector |= sn_irq_info->irq_xtalkaddr;
 974        tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_int_dest[bit], vector);
 975        tioce_mmr_clri(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
 976
 977        tioce_force_interrupt(sn_irq_info);
 978}
 979
 980/**
 981 * tioce_bus_fixup - perform final PCI fixup for a TIO CE bus
 982 * @prom_bussoft: Common prom/kernel struct representing the bus
 983 *
 984 * Replicates the tioce_common pointed to by @prom_bussoft in kernel
 985 * space.  Allocates and initializes a kernel-only area for a given CE,
 986 * and sets up an irq for handling CE error interrupts.
 987 *
 988 * On successful setup, returns the kernel version of tioce_common back to
 989 * the caller.
 990 */
 991static void *
 992tioce_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *controller)
 993{
 994        struct tioce_common *tioce_common;
 995        struct tioce_kernel *tioce_kern;
 996        struct tioce __iomem *tioce_mmr;
 997
 998        /*
 999         * Allocate kernel bus soft and copy from prom.
1000         */
1001
1002        tioce_common = kzalloc(sizeof(struct tioce_common), GFP_KERNEL);
1003        if (!tioce_common)
1004                return NULL;
1005
1006        memcpy(tioce_common, prom_bussoft, sizeof(struct tioce_common));
1007        tioce_common->ce_pcibus.bs_base = (unsigned long)
1008                ioremap(REGION_OFFSET(tioce_common->ce_pcibus.bs_base),
1009                        sizeof(struct tioce_common));
1010
1011        tioce_kern = tioce_kern_init(tioce_common);
1012        if (tioce_kern == NULL) {
1013                kfree(tioce_common);
1014                return NULL;
1015        }
1016
1017        /*
1018         * Clear out any transient errors before registering the error
1019         * interrupt handler.
1020         */
1021
1022        tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
1023        tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_int_status_alias, ~0ULL);
1024        tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_error_summary_alias,
1025                       ~0ULL);
1026        tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_dre_comp_err_addr, 0ULL);
1027
1028        if (request_irq(SGI_PCIASIC_ERROR,
1029                        tioce_error_intr_handler,
1030                        IRQF_SHARED, "TIOCE error", (void *)tioce_common))
1031                printk(KERN_WARNING
1032                       "%s:  Unable to get irq %d.  "
1033                       "Error interrupts won't be routed for "
1034                       "TIOCE bus %04x:%02x\n",
1035                       __func__, SGI_PCIASIC_ERROR,
1036                       tioce_common->ce_pcibus.bs_persist_segment,
1037                       tioce_common->ce_pcibus.bs_persist_busnum);
1038
1039        sn_set_err_irq_affinity(SGI_PCIASIC_ERROR);
1040        return tioce_common;
1041}
1042
1043static struct sn_pcibus_provider tioce_pci_interfaces = {
1044        .dma_map = tioce_dma,
1045        .dma_map_consistent = tioce_dma_consistent,
1046        .dma_unmap = tioce_dma_unmap,
1047        .bus_fixup = tioce_bus_fixup,
1048        .force_interrupt = tioce_force_interrupt,
1049        .target_interrupt = tioce_target_interrupt
1050};
1051
1052/**
1053 * tioce_init_provider - init SN PCI provider ops for TIO CE
1054 */
1055int
1056tioce_init_provider(void)
1057{
1058        sn_pci_provider[PCIIO_ASIC_TYPE_TIOCE] = &tioce_pci_interfaces;
1059        return 0;
1060}
1061