linux/arch/mips/pci/pci-octeon.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2005-2009 Cavium Networks
   7 */
   8#include <linux/kernel.h>
   9#include <linux/init.h>
  10#include <linux/pci.h>
  11#include <linux/interrupt.h>
  12#include <linux/time.h>
  13#include <linux/delay.h>
  14
  15#include <asm/time.h>
  16
  17#include <asm/octeon/octeon.h>
  18#include <asm/octeon/cvmx-npi-defs.h>
  19#include <asm/octeon/cvmx-pci-defs.h>
  20#include <asm/octeon/pci-octeon.h>
  21
  22#define USE_OCTEON_INTERNAL_ARBITER
  23
  24/*
  25 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
  26 * addresses. Use PCI endian swapping 1 so no address swapping is
  27 * necessary. The Linux io routines will endian swap the data.
  28 */
  29#define OCTEON_PCI_IOSPACE_BASE     0x80011a0400000000ull
  30#define OCTEON_PCI_IOSPACE_SIZE     (1ull<<32)
  31
  32/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
  33#define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
  34
  35/**
  36 * This is the bit decoding used for the Octeon PCI controller addresses
  37 */
  38union octeon_pci_address {
  39        uint64_t u64;
  40        struct {
  41                uint64_t upper:2;
  42                uint64_t reserved:13;
  43                uint64_t io:1;
  44                uint64_t did:5;
  45                uint64_t subdid:3;
  46                uint64_t reserved2:4;
  47                uint64_t endian_swap:2;
  48                uint64_t reserved3:10;
  49                uint64_t bus:8;
  50                uint64_t dev:5;
  51                uint64_t func:3;
  52                uint64_t reg:8;
  53        } s;
  54};
  55
  56int __initdata (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
  57                                         u8 slot, u8 pin);
  58enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
  59
  60/**
  61 * Map a PCI device to the appropriate interrupt line
  62 *
  63 * @dev:    The Linux PCI device structure for the device to map
  64 * @slot:   The slot number for this device on __BUS 0__. Linux
  65 *               enumerates through all the bridges and figures out the
  66 *               slot on Bus 0 where this device eventually hooks to.
  67 * @pin:    The PCI interrupt pin read from the device, then swizzled
  68 *               as it goes through each bridge.
  69 * Returns Interrupt number for the device
  70 */
  71int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
  72{
  73        if (octeon_pcibios_map_irq)
  74                return octeon_pcibios_map_irq(dev, slot, pin);
  75        else
  76                panic("octeon_pcibios_map_irq not set.");
  77}
  78
  79
  80/*
  81 * Called to perform platform specific PCI setup
  82 */
  83int pcibios_plat_dev_init(struct pci_dev *dev)
  84{
  85        uint16_t config;
  86        uint32_t dconfig;
  87        int pos;
  88        /*
  89         * Force the Cache line setting to 64 bytes. The standard
  90         * Linux bus scan doesn't seem to set it. Octeon really has
  91         * 128 byte lines, but Intel bridges get really upset if you
  92         * try and set values above 64 bytes. Value is specified in
  93         * 32bit words.
  94         */
  95        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
  96        /* Set latency timers for all devices */
  97        pci_write_config_byte(dev, PCI_LATENCY_TIMER, 48);
  98
  99        /* Enable reporting System errors and parity errors on all devices */
 100        /* Enable parity checking and error reporting */
 101        pci_read_config_word(dev, PCI_COMMAND, &config);
 102        config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
 103        pci_write_config_word(dev, PCI_COMMAND, config);
 104
 105        if (dev->subordinate) {
 106                /* Set latency timers on sub bridges */
 107                pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 48);
 108                /* More bridge error detection */
 109                pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
 110                config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
 111                pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
 112        }
 113
 114        /* Enable the PCIe normal error reporting */
 115        pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
 116        if (pos) {
 117                /* Update Device Control */
 118                pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config);
 119                /* Correctable Error Reporting */
 120                config |= PCI_EXP_DEVCTL_CERE;
 121                /* Non-Fatal Error Reporting */
 122                config |= PCI_EXP_DEVCTL_NFERE;
 123                /* Fatal Error Reporting */
 124                config |= PCI_EXP_DEVCTL_FERE;
 125                /* Unsupported Request */
 126                config |= PCI_EXP_DEVCTL_URRE;
 127                pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config);
 128        }
 129
 130        /* Find the Advanced Error Reporting capability */
 131        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
 132        if (pos) {
 133                /* Clear Uncorrectable Error Status */
 134                pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
 135                                      &dconfig);
 136                pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
 137                                       dconfig);
 138                /* Enable reporting of all uncorrectable errors */
 139                /* Uncorrectable Error Mask - turned on bits disable errors */
 140                pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
 141                /*
 142                 * Leave severity at HW default. This only controls if
 143                 * errors are reported as uncorrectable or
 144                 * correctable, not if the error is reported.
 145                 */
 146                /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
 147                /* Clear Correctable Error Status */
 148                pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
 149                pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
 150                /* Enable reporting of all correctable errors */
 151                /* Correctable Error Mask - turned on bits disable errors */
 152                pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
 153                /* Advanced Error Capabilities */
 154                pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
 155                /* ECRC Generation Enable */
 156                if (config & PCI_ERR_CAP_ECRC_GENC)
 157                        config |= PCI_ERR_CAP_ECRC_GENE;
 158                /* ECRC Check Enable */
 159                if (config & PCI_ERR_CAP_ECRC_CHKC)
 160                        config |= PCI_ERR_CAP_ECRC_CHKE;
 161                pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
 162                /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
 163                /* Report all errors to the root complex */
 164                pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
 165                                       PCI_ERR_ROOT_CMD_COR_EN |
 166                                       PCI_ERR_ROOT_CMD_NONFATAL_EN |
 167                                       PCI_ERR_ROOT_CMD_FATAL_EN);
 168                /* Clear the Root status register */
 169                pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
 170                pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
 171        }
 172
 173        return 0;
 174}
 175
 176/**
 177 * Return the mapping of PCI device number to IRQ line. Each
 178 * character in the return string represents the interrupt
 179 * line for the device at that position. Device 1 maps to the
 180 * first character, etc. The characters A-D are used for PCI
 181 * interrupts.
 182 *
 183 * Returns PCI interrupt mapping
 184 */
 185const char *octeon_get_pci_interrupts(void)
 186{
 187        /*
 188         * Returning an empty string causes the interrupts to be
 189         * routed based on the PCI specification. From the PCI spec:
 190         *
 191         * INTA# of Device Number 0 is connected to IRQW on the system
 192         * board.  (Device Number has no significance regarding being
 193         * located on the system board or in a connector.) INTA# of
 194         * Device Number 1 is connected to IRQX on the system
 195         * board. INTA# of Device Number 2 is connected to IRQY on the
 196         * system board. INTA# of Device Number 3 is connected to IRQZ
 197         * on the system board. The table below describes how each
 198         * agent's INTx# lines are connected to the system board
 199         * interrupt lines. The following equation can be used to
 200         * determine to which INTx# signal on the system board a given
 201         * device's INTx# line(s) is connected.
 202         *
 203         * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
 204         * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
 205         * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
 206         * INTD# = 3)
 207         */
 208        switch (octeon_bootinfo->board_type) {
 209        case CVMX_BOARD_TYPE_NAO38:
 210                /* This is really the NAC38 */
 211                return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
 212        case CVMX_BOARD_TYPE_THUNDER:
 213                return "";
 214        case CVMX_BOARD_TYPE_EBH3000:
 215                return "";
 216        case CVMX_BOARD_TYPE_EBH3100:
 217        case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
 218        case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
 219                return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
 220        case CVMX_BOARD_TYPE_BBGW_REF:
 221                return "AABCD";
 222        default:
 223                return "";
 224        }
 225}
 226
 227/**
 228 * Map a PCI device to the appropriate interrupt line
 229 *
 230 * @dev:    The Linux PCI device structure for the device to map
 231 * @slot:   The slot number for this device on __BUS 0__. Linux
 232 *               enumerates through all the bridges and figures out the
 233 *               slot on Bus 0 where this device eventually hooks to.
 234 * @pin:    The PCI interrupt pin read from the device, then swizzled
 235 *               as it goes through each bridge.
 236 * Returns Interrupt number for the device
 237 */
 238int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
 239                                      u8 slot, u8 pin)
 240{
 241        int irq_num;
 242        const char *interrupts;
 243        int dev_num;
 244
 245        /* Get the board specific interrupt mapping */
 246        interrupts = octeon_get_pci_interrupts();
 247
 248        dev_num = dev->devfn >> 3;
 249        if (dev_num < strlen(interrupts))
 250                irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
 251                        OCTEON_IRQ_PCI_INT0;
 252        else
 253                irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
 254        return irq_num;
 255}
 256
 257
 258/*
 259 * Read a value from configuration space
 260 */
 261static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
 262                              int reg, int size, u32 *val)
 263{
 264        union octeon_pci_address pci_addr;
 265
 266        pci_addr.u64 = 0;
 267        pci_addr.s.upper = 2;
 268        pci_addr.s.io = 1;
 269        pci_addr.s.did = 3;
 270        pci_addr.s.subdid = 1;
 271        pci_addr.s.endian_swap = 1;
 272        pci_addr.s.bus = bus->number;
 273        pci_addr.s.dev = devfn >> 3;
 274        pci_addr.s.func = devfn & 0x7;
 275        pci_addr.s.reg = reg;
 276
 277#if PCI_CONFIG_SPACE_DELAY
 278        udelay(PCI_CONFIG_SPACE_DELAY);
 279#endif
 280        switch (size) {
 281        case 4:
 282                *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
 283                return PCIBIOS_SUCCESSFUL;
 284        case 2:
 285                *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
 286                return PCIBIOS_SUCCESSFUL;
 287        case 1:
 288                *val = cvmx_read64_uint8(pci_addr.u64);
 289                return PCIBIOS_SUCCESSFUL;
 290        }
 291        return PCIBIOS_FUNC_NOT_SUPPORTED;
 292}
 293
 294
 295/*
 296 * Write a value to PCI configuration space
 297 */
 298static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
 299                               int reg, int size, u32 val)
 300{
 301        union octeon_pci_address pci_addr;
 302
 303        pci_addr.u64 = 0;
 304        pci_addr.s.upper = 2;
 305        pci_addr.s.io = 1;
 306        pci_addr.s.did = 3;
 307        pci_addr.s.subdid = 1;
 308        pci_addr.s.endian_swap = 1;
 309        pci_addr.s.bus = bus->number;
 310        pci_addr.s.dev = devfn >> 3;
 311        pci_addr.s.func = devfn & 0x7;
 312        pci_addr.s.reg = reg;
 313
 314#if PCI_CONFIG_SPACE_DELAY
 315        udelay(PCI_CONFIG_SPACE_DELAY);
 316#endif
 317        switch (size) {
 318        case 4:
 319                cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
 320                return PCIBIOS_SUCCESSFUL;
 321        case 2:
 322                cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
 323                return PCIBIOS_SUCCESSFUL;
 324        case 1:
 325                cvmx_write64_uint8(pci_addr.u64, val);
 326                return PCIBIOS_SUCCESSFUL;
 327        }
 328        return PCIBIOS_FUNC_NOT_SUPPORTED;
 329}
 330
 331
 332static struct pci_ops octeon_pci_ops = {
 333        octeon_read_config,
 334        octeon_write_config,
 335};
 336
 337static struct resource octeon_pci_mem_resource = {
 338        .start = 0,
 339        .end = 0,
 340        .name = "Octeon PCI MEM",
 341        .flags = IORESOURCE_MEM,
 342};
 343
 344/*
 345 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
 346 * bridge
 347 */
 348static struct resource octeon_pci_io_resource = {
 349        .start = 0x4000,
 350        .end = OCTEON_PCI_IOSPACE_SIZE - 1,
 351        .name = "Octeon PCI IO",
 352        .flags = IORESOURCE_IO,
 353};
 354
 355static struct pci_controller octeon_pci_controller = {
 356        .pci_ops = &octeon_pci_ops,
 357        .mem_resource = &octeon_pci_mem_resource,
 358        .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
 359        .io_resource = &octeon_pci_io_resource,
 360        .io_offset = 0,
 361        .io_map_base = OCTEON_PCI_IOSPACE_BASE,
 362};
 363
 364
 365/*
 366 * Low level initialize the Octeon PCI controller
 367 */
 368static void octeon_pci_initialize(void)
 369{
 370        union cvmx_pci_cfg01 cfg01;
 371        union cvmx_npi_ctl_status ctl_status;
 372        union cvmx_pci_ctl_status_2 ctl_status_2;
 373        union cvmx_pci_cfg19 cfg19;
 374        union cvmx_pci_cfg16 cfg16;
 375        union cvmx_pci_cfg22 cfg22;
 376        union cvmx_pci_cfg56 cfg56;
 377
 378        /* Reset the PCI Bus */
 379        cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
 380        cvmx_read_csr(CVMX_CIU_SOFT_PRST);
 381
 382        udelay(2000);           /* Hold PCI reset for 2 ms */
 383
 384        ctl_status.u64 = 0;     /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
 385        ctl_status.s.max_word = 1;
 386        ctl_status.s.timer = 1;
 387        cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
 388
 389        /* Deassert PCI reset and advertize PCX Host Mode Device Capability
 390           (64b) */
 391        cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
 392        cvmx_read_csr(CVMX_CIU_SOFT_PRST);
 393
 394        udelay(2000);           /* Wait 2 ms after deasserting PCI reset */
 395
 396        ctl_status_2.u32 = 0;
 397        ctl_status_2.s.tsr_hwm = 1;     /* Initializes to 0.  Must be set
 398                                           before any PCI reads. */
 399        ctl_status_2.s.bar2pres = 1;    /* Enable BAR2 */
 400        ctl_status_2.s.bar2_enb = 1;
 401        ctl_status_2.s.bar2_cax = 1;    /* Don't use L2 */
 402        ctl_status_2.s.bar2_esx = 1;
 403        ctl_status_2.s.pmo_amod = 1;    /* Round robin priority */
 404        if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
 405                /* BAR1 hole */
 406                ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
 407                ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
 408                ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
 409                ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
 410                ctl_status_2.s.bb1 = 1;      /* BAR1 is big */
 411                ctl_status_2.s.bb0 = 1;      /* BAR0 is big */
 412        }
 413
 414        octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
 415        udelay(2000);           /* Wait 2 ms before doing PCI reads */
 416
 417        ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
 418        pr_notice("PCI Status: %s %s-bit\n",
 419                  ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
 420                  ctl_status_2.s.ap_64ad ? "64" : "32");
 421
 422        if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
 423                union cvmx_pci_cnt_reg cnt_reg_start;
 424                union cvmx_pci_cnt_reg cnt_reg_end;
 425                unsigned long cycles, pci_clock;
 426
 427                cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
 428                cycles = read_c0_cvmcount();
 429                udelay(1000);
 430                cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
 431                cycles = read_c0_cvmcount() - cycles;
 432                pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
 433                            (cycles / (mips_hpt_frequency / 1000000));
 434                pr_notice("PCI Clock: %lu MHz\n", pci_clock);
 435        }
 436
 437        /*
 438         * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
 439         * in PCI-X mode to allow four oustanding splits. Otherwise,
 440         * should not change from its reset value. Don't write PCI_CFG19
 441         * in PCI mode (0x82000001 reset value), write it to 0x82000004
 442         * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
 443         * MRBCM -> must be one.
 444         */
 445        if (ctl_status_2.s.ap_pcix) {
 446                cfg19.u32 = 0;
 447                /*
 448                 * Target Delayed/Split request outstanding maximum
 449                 * count. [1..31] and 0=32.  NOTE: If the user
 450                 * programs these bits beyond the Designed Maximum
 451                 * outstanding count, then the designed maximum table
 452                 * depth will be used instead.  No additional
 453                 * Deferred/Split transactions will be accepted if
 454                 * this outstanding maximum count is
 455                 * reached. Furthermore, no additional deferred/split
 456                 * transactions will be accepted if the I/O delay/ I/O
 457                 * Split Request outstanding maximum is reached.
 458                 */
 459                cfg19.s.tdomc = 4;
 460                /*
 461                 * Master Deferred Read Request Outstanding Max Count
 462                 * (PCI only).  CR4C[26:24] Max SAC cycles MAX DAC
 463                 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
 464                 * 5 2 110 6 3 111 7 3 For example, if these bits are
 465                 * programmed to 100, the core can support 2 DAC
 466                 * cycles, 4 SAC cycles or a combination of 1 DAC and
 467                 * 2 SAC cycles. NOTE: For the PCI-X maximum
 468                 * outstanding split transactions, refer to
 469                 * CRE0[22:20].
 470                 */
 471                cfg19.s.mdrrmc = 2;
 472                /*
 473                 * Master Request (Memory Read) Byte Count/Byte Enable
 474                 * select. 0 = Byte Enables valid. In PCI mode, a
 475                 * burst transaction cannot be performed using Memory
 476                 * Read command=4?h6. 1 = DWORD Byte Count valid
 477                 * (default). In PCI Mode, the memory read byte
 478                 * enables are automatically generated by the
 479                 * core. Note: N3 Master Request transaction sizes are
 480                 * always determined through the
 481                 * am_attr[<35:32>|<7:0>] field.
 482                 */
 483                cfg19.s.mrbcm = 1;
 484                octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
 485        }
 486
 487
 488        cfg01.u32 = 0;
 489        cfg01.s.msae = 1;       /* Memory Space Access Enable */
 490        cfg01.s.me = 1;         /* Master Enable */
 491        cfg01.s.pee = 1;        /* PERR# Enable */
 492        cfg01.s.see = 1;        /* System Error Enable */
 493        cfg01.s.fbbe = 1;       /* Fast Back to Back Transaction Enable */
 494
 495        octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
 496
 497#ifdef USE_OCTEON_INTERNAL_ARBITER
 498        /*
 499         * When OCTEON is a PCI host, most systems will use OCTEON's
 500         * internal arbiter, so must enable it before any PCI/PCI-X
 501         * traffic can occur.
 502         */
 503        {
 504                union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
 505
 506                pci_int_arb_cfg.u64 = 0;
 507                pci_int_arb_cfg.s.en = 1;       /* Internal arbiter enable */
 508                cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
 509        }
 510#endif  /* USE_OCTEON_INTERNAL_ARBITER */
 511
 512        /*
 513         * Preferrably written to 1 to set MLTD. [RDSATI,TRTAE,
 514         * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
 515         * 1..7.
 516         */
 517        cfg16.u32 = 0;
 518        cfg16.s.mltd = 1;       /* Master Latency Timer Disable */
 519        octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
 520
 521        /*
 522         * Should be written to 0x4ff00. MTTV -> must be zero.
 523         * FLUSH -> must be 1. MRV -> should be 0xFF.
 524         */
 525        cfg22.u32 = 0;
 526        /* Master Retry Value [1..255] and 0=infinite */
 527        cfg22.s.mrv = 0xff;
 528        /*
 529         * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
 530         * N3K operation.
 531         */
 532        cfg22.s.flush = 1;
 533        octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
 534
 535        /*
 536         * MOST Indicates the maximum number of outstanding splits (in -1
 537         * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
 538         * affected by the MOST selection.  Should generally be written
 539         * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
 540         * depending on the desired MOST of 3, 2, 1, or 0, respectively.
 541         */
 542        cfg56.u32 = 0;
 543        cfg56.s.pxcid = 7;      /* RO - PCI-X Capability ID */
 544        cfg56.s.ncp = 0xe8;     /* RO - Next Capability Pointer */
 545        cfg56.s.dpere = 1;      /* Data Parity Error Recovery Enable */
 546        cfg56.s.roe = 1;        /* Relaxed Ordering Enable */
 547        cfg56.s.mmbc = 1;       /* Maximum Memory Byte Count
 548                                   [0=512B,1=1024B,2=2048B,3=4096B] */
 549        cfg56.s.most = 3;       /* Maximum outstanding Split transactions [0=1
 550                                   .. 7=32] */
 551
 552        octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
 553
 554        /*
 555         * Affects PCI performance when OCTEON services reads to its
 556         * BAR1/BAR2. Refer to Section 10.6.1.  The recommended values are
 557         * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
 558         * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
 559         * these values need to be changed so they won't possibly prefetch off
 560         * of the end of memory if PCI is DMAing a buffer at the end of
 561         * memory. Note that these values differ from their reset values.
 562         */
 563        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
 564        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
 565        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
 566}
 567
 568
 569/*
 570 * Initialize the Octeon PCI controller
 571 */
 572static int __init octeon_pci_setup(void)
 573{
 574        union cvmx_npi_mem_access_subidx mem_access;
 575        int index;
 576
 577        /* Only these chips have PCI */
 578        if (octeon_has_feature(OCTEON_FEATURE_PCIE))
 579                return 0;
 580
 581        /* Point pcibios_map_irq() to the PCI version of it */
 582        octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
 583
 584        /* Only use the big bars on chips that support it */
 585        if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
 586            OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
 587            OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
 588                octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
 589        else
 590                octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
 591
 592        /* PCI I/O and PCI MEM values */
 593        set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
 594        ioport_resource.start = 0;
 595        ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
 596        if (!octeon_is_pci_host()) {
 597                pr_notice("Not in host mode, PCI Controller not initialized\n");
 598                return 0;
 599        }
 600
 601        pr_notice("%s Octeon big bar support\n",
 602                  (octeon_dma_bar_type ==
 603                  OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
 604
 605        octeon_pci_initialize();
 606
 607        mem_access.u64 = 0;
 608        mem_access.s.esr = 1;   /* Endian-Swap on read. */
 609        mem_access.s.esw = 1;   /* Endian-Swap on write. */
 610        mem_access.s.nsr = 0;   /* No-Snoop on read. */
 611        mem_access.s.nsw = 0;   /* No-Snoop on write. */
 612        mem_access.s.ror = 0;   /* Relax Read on read. */
 613        mem_access.s.row = 0;   /* Relax Order on write. */
 614        mem_access.s.ba = 0;    /* PCI Address bits [63:36]. */
 615        cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
 616
 617        /*
 618         * Remap the Octeon BAR 2 above all 32 bit devices
 619         * (0x8000000000ul).  This is done here so it is remapped
 620         * before the readl()'s below. We don't want BAR2 overlapping
 621         * with BAR0/BAR1 during these reads.
 622         */
 623        octeon_npi_write32(CVMX_NPI_PCI_CFG08, 0);
 624        octeon_npi_write32(CVMX_NPI_PCI_CFG09, 0x80);
 625
 626        /* Disable the BAR1 movable mappings */
 627        for (index = 0; index < 32; index++)
 628                octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 0);
 629
 630        if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
 631                /* Remap the Octeon BAR 0 to 0-2GB */
 632                octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
 633                octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
 634
 635                /*
 636                 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
 637                 * BAR 1 hole).
 638                 */
 639                octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
 640                octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
 641
 642                /* Devices go after BAR1 */
 643                octeon_pci_mem_resource.start =
 644                        OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
 645                        (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
 646                octeon_pci_mem_resource.end =
 647                        octeon_pci_mem_resource.start + (1ul << 30);
 648        } else {
 649                /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
 650                octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
 651                octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
 652
 653                /* Remap the Octeon BAR 1 to map 0-128MB */
 654                octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
 655                octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
 656
 657                /* Devices go after BAR0 */
 658                octeon_pci_mem_resource.start =
 659                        OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
 660                        (4ul << 10);
 661                octeon_pci_mem_resource.end =
 662                        octeon_pci_mem_resource.start + (1ul << 30);
 663        }
 664
 665        register_pci_controller(&octeon_pci_controller);
 666
 667        /*
 668         * Clear any errors that might be pending from before the bus
 669         * was setup properly.
 670         */
 671        cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
 672        return 0;
 673}
 674
 675arch_initcall(octeon_pci_setup);
 676