linux/arch/mips/sni/time.c
<<
>>
Prefs
   1#include <linux/types.h>
   2#include <linux/interrupt.h>
   3#include <linux/smp.h>
   4#include <linux/time.h>
   5#include <linux/clockchips.h>
   6
   7#include <asm/i8253.h>
   8#include <asm/sni.h>
   9#include <asm/time.h>
  10#include <asm-generic/rtc.h>
  11
  12#define SNI_CLOCK_TICK_RATE     3686400
  13#define SNI_COUNTER2_DIV        64
  14#define SNI_COUNTER0_DIV        ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
  15
  16static void a20r_set_mode(enum clock_event_mode mode,
  17                          struct clock_event_device *evt)
  18{
  19        switch (mode) {
  20        case CLOCK_EVT_MODE_PERIODIC:
  21                *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
  22                wmb();
  23                *(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV;
  24                wmb();
  25                *(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV >> 8;
  26                wmb();
  27
  28                *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
  29                wmb();
  30                *(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV;
  31                wmb();
  32                *(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV >> 8;
  33                wmb();
  34
  35                break;
  36        case CLOCK_EVT_MODE_ONESHOT:
  37        case CLOCK_EVT_MODE_UNUSED:
  38        case CLOCK_EVT_MODE_SHUTDOWN:
  39                break;
  40        case CLOCK_EVT_MODE_RESUME:
  41                break;
  42        }
  43}
  44
  45static struct clock_event_device a20r_clockevent_device = {
  46        .name           = "a20r-timer",
  47        .features       = CLOCK_EVT_FEAT_PERIODIC,
  48
  49        /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
  50
  51        .rating         = 300,
  52        .irq            = SNI_A20R_IRQ_TIMER,
  53        .set_mode       = a20r_set_mode,
  54};
  55
  56static irqreturn_t a20r_interrupt(int irq, void *dev_id)
  57{
  58        struct clock_event_device *cd = dev_id;
  59
  60        *(volatile u8 *)A20R_PT_TIM0_ACK = 0;
  61        wmb();
  62
  63        cd->event_handler(cd);
  64
  65        return IRQ_HANDLED;
  66}
  67
  68static struct irqaction a20r_irqaction = {
  69        .handler        = a20r_interrupt,
  70        .flags          = IRQF_DISABLED | IRQF_PERCPU | IRQF_TIMER,
  71        .name           = "a20r-timer",
  72};
  73
  74/*
  75 * a20r platform uses 2 counters to divide the input frequency.
  76 * Counter 2 output is connected to Counter 0 & 1 input.
  77 */
  78static void __init sni_a20r_timer_setup(void)
  79{
  80        struct clock_event_device *cd = &a20r_clockevent_device;
  81        struct irqaction *action = &a20r_irqaction;
  82        unsigned int cpu = smp_processor_id();
  83
  84        cd->cpumask             = cpumask_of(cpu);
  85        clockevents_register_device(cd);
  86        action->dev_id = cd;
  87        setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
  88}
  89
  90#define SNI_8254_TICK_RATE        1193182UL
  91
  92#define SNI_8254_TCSAMP_COUNTER   ((SNI_8254_TICK_RATE / HZ) + 255)
  93
  94static __init unsigned long dosample(void)
  95{
  96        u32 ct0, ct1;
  97        volatile u8 msb, lsb;
  98
  99        /* Start the counter. */
 100        outb_p(0x34, 0x43);
 101        outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
 102        outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
 103
 104        /* Get initial counter invariant */
 105        ct0 = read_c0_count();
 106
 107        /* Latch and spin until top byte of counter0 is zero */
 108        do {
 109                outb(0x00, 0x43);
 110                lsb = inb(0x40);
 111                msb = inb(0x40);
 112                ct1 = read_c0_count();
 113        } while (msb);
 114
 115        /* Stop the counter. */
 116        outb(0x38, 0x43);
 117        /*
 118         * Return the difference, this is how far the r4k counter increments
 119         * for every 1/HZ seconds. We round off the nearest 1 MHz of master
 120         * clock (= 1000000 / HZ / 2).
 121         */
 122        /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
 123        return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
 124}
 125
 126/*
 127 * Here we need to calibrate the cycle counter to at least be close.
 128 */
 129void __init plat_time_init(void)
 130{
 131        unsigned long r4k_ticks[3];
 132        unsigned long r4k_tick;
 133
 134        /*
 135         * Figure out the r4k offset, the algorithm is very simple and works in
 136         * _all_ cases as long as the 8254 counter register itself works ok (as
 137         * an interrupt driving timer it does not because of bug, this is why
 138         * we are using the onchip r4k counter/compare register to serve this
 139         * purpose, but for r4k_offset calculation it will work ok for us).
 140         * There are other very complicated ways of performing this calculation
 141         * but this one works just fine so I am not going to futz around. ;-)
 142         */
 143        printk(KERN_INFO "Calibrating system timer... ");
 144        dosample();     /* Prime cache. */
 145        dosample();     /* Prime cache. */
 146        /* Zero is NOT an option. */
 147        do {
 148                r4k_ticks[0] = dosample();
 149        } while (!r4k_ticks[0]);
 150        do {
 151                r4k_ticks[1] = dosample();
 152        } while (!r4k_ticks[1]);
 153
 154        if (r4k_ticks[0] != r4k_ticks[1]) {
 155                printk("warning: timer counts differ, retrying... ");
 156                r4k_ticks[2] = dosample();
 157                if (r4k_ticks[2] == r4k_ticks[0]
 158                    || r4k_ticks[2] == r4k_ticks[1])
 159                        r4k_tick = r4k_ticks[2];
 160                else {
 161                        printk("disagreement, using average... ");
 162                        r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
 163                                   + r4k_ticks[2]) / 3;
 164                }
 165        } else
 166                r4k_tick = r4k_ticks[0];
 167
 168        printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
 169                (int) (r4k_tick / (500000 / HZ)),
 170                (int) (r4k_tick % (500000 / HZ)));
 171
 172        mips_hpt_frequency = r4k_tick * HZ;
 173
 174        switch (sni_brd_type) {
 175        case SNI_BRD_10:
 176        case SNI_BRD_10NEW:
 177        case SNI_BRD_TOWER_OASIC:
 178        case SNI_BRD_MINITOWER:
 179                sni_a20r_timer_setup();
 180                break;
 181        }
 182        setup_pit_timer();
 183}
 184
 185void read_persistent_clock(struct timespec *ts)
 186{
 187        ts->tv_sec = -1;
 188        ts->tv_nsec = 0;
 189}
 190