linux/arch/mn10300/include/asm/pgtable.h
<<
>>
Prefs
   1/* MN10300 Page table manipulators and constants
   2 *
   3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public Licence
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the Licence, or (at your option) any later version.
  10 *
  11 *
  12 * The Linux memory management assumes a three-level page table setup. On
  13 * the i386, we use that, but "fold" the mid level into the top-level page
  14 * table, so that we physically have the same two-level page table as the
  15 * i386 mmu expects.
  16 *
  17 * This file contains the functions and defines necessary to modify and use
  18 * the i386 page table tree for the purposes of the MN10300 TLB handler
  19 * functions.
  20 */
  21#ifndef _ASM_PGTABLE_H
  22#define _ASM_PGTABLE_H
  23
  24#include <asm/cpu-regs.h>
  25
  26#ifndef __ASSEMBLY__
  27#include <asm/processor.h>
  28#include <asm/cache.h>
  29#include <linux/threads.h>
  30
  31#include <asm/bitops.h>
  32
  33#include <linux/slab.h>
  34#include <linux/list.h>
  35#include <linux/spinlock.h>
  36
  37/*
  38 * ZERO_PAGE is a global shared page that is always zero: used
  39 * for zero-mapped memory areas etc..
  40 */
  41#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  42extern unsigned long empty_zero_page[1024];
  43extern spinlock_t pgd_lock;
  44extern struct page *pgd_list;
  45
  46extern void pmd_ctor(void *, struct kmem_cache *, unsigned long);
  47extern void pgtable_cache_init(void);
  48extern void paging_init(void);
  49
  50#endif /* !__ASSEMBLY__ */
  51
  52/*
  53 * The Linux mn10300 paging architecture only implements both the traditional
  54 * 2-level page tables
  55 */
  56#define PGDIR_SHIFT     22
  57#define PTRS_PER_PGD    1024
  58#define PTRS_PER_PUD    1       /* we don't really have any PUD physically */
  59#define PTRS_PER_PMD    1       /* we don't really have any PMD physically */
  60#define PTRS_PER_PTE    1024
  61
  62#define PGD_SIZE        PAGE_SIZE
  63#define PMD_SIZE        (1UL << PMD_SHIFT)
  64#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  65#define PGDIR_MASK      (~(PGDIR_SIZE - 1))
  66
  67#define USER_PTRS_PER_PGD       (TASK_SIZE / PGDIR_SIZE)
  68#define FIRST_USER_ADDRESS      0
  69
  70#define USER_PGD_PTRS           (PAGE_OFFSET >> PGDIR_SHIFT)
  71#define KERNEL_PGD_PTRS         (PTRS_PER_PGD - USER_PGD_PTRS)
  72
  73#define TWOLEVEL_PGDIR_SHIFT    22
  74#define BOOT_USER_PGD_PTRS      (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
  75#define BOOT_KERNEL_PGD_PTRS    (1024 - BOOT_USER_PGD_PTRS)
  76
  77#ifndef __ASSEMBLY__
  78extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  79#endif
  80
  81/*
  82 * Unfortunately, due to the way the MMU works on the MN10300, the vmalloc VM
  83 * area has to be in the lower half of the virtual address range (the upper
  84 * half is not translated through the TLB).
  85 *
  86 * So in this case, the vmalloc area goes at the bottom of the address map
  87 * (leaving a hole at the very bottom to catch addressing errors), and
  88 * userspace starts immediately above.
  89 *
  90 * The vmalloc() routines also leaves a hole of 4kB between each vmalloced
  91 * area to catch addressing errors.
  92 */
  93#define VMALLOC_OFFSET  (8 * 1024 * 1024)
  94#define VMALLOC_START   (0x70000000)
  95#define VMALLOC_END     (0x7C000000)
  96
  97#ifndef __ASSEMBLY__
  98extern pte_t kernel_vmalloc_ptes[(VMALLOC_END - VMALLOC_START) / PAGE_SIZE];
  99#endif
 100
 101/* IPTEL/DPTEL bit assignments */
 102#define _PAGE_BIT_VALID         xPTEL_V_BIT
 103#define _PAGE_BIT_ACCESSED      xPTEL_UNUSED1_BIT       /* mustn't be loaded into IPTEL/DPTEL */
 104#define _PAGE_BIT_NX            xPTEL_UNUSED2_BIT       /* mustn't be loaded into IPTEL/DPTEL */
 105#define _PAGE_BIT_CACHE         xPTEL_C_BIT
 106#define _PAGE_BIT_PRESENT       xPTEL_PV_BIT
 107#define _PAGE_BIT_DIRTY         xPTEL_D_BIT
 108#define _PAGE_BIT_GLOBAL        xPTEL_G_BIT
 109
 110#define _PAGE_VALID             xPTEL_V
 111#define _PAGE_ACCESSED          xPTEL_UNUSED1
 112#define _PAGE_NX                xPTEL_UNUSED2           /* no-execute bit */
 113#define _PAGE_CACHE             xPTEL_C
 114#define _PAGE_PRESENT           xPTEL_PV
 115#define _PAGE_DIRTY             xPTEL_D
 116#define _PAGE_PROT              xPTEL_PR
 117#define _PAGE_PROT_RKNU         xPTEL_PR_ROK
 118#define _PAGE_PROT_WKNU         xPTEL_PR_RWK
 119#define _PAGE_PROT_RKRU         xPTEL_PR_ROK_ROU
 120#define _PAGE_PROT_WKRU         xPTEL_PR_RWK_ROU
 121#define _PAGE_PROT_WKWU         xPTEL_PR_RWK_RWU
 122#define _PAGE_GLOBAL            xPTEL_G
 123#define _PAGE_PSE               xPTEL_PS_4Mb            /* 4MB page */
 124
 125#define _PAGE_FILE              xPTEL_UNUSED1_BIT       /* set:pagecache unset:swap */
 126
 127#define __PAGE_PROT_UWAUX       0x040
 128#define __PAGE_PROT_USER        0x080
 129#define __PAGE_PROT_WRITE       0x100
 130
 131#define _PAGE_PRESENTV          (_PAGE_PRESENT|_PAGE_VALID)
 132#define _PAGE_PROTNONE          0x000   /* If not present */
 133
 134#ifndef __ASSEMBLY__
 135
 136#define VMALLOC_VMADDR(x) ((unsigned long)(x))
 137
 138#define _PAGE_TABLE     (_PAGE_PRESENTV | _PAGE_PROT_WKNU | _PAGE_ACCESSED | _PAGE_DIRTY)
 139#define _PAGE_CHG_MASK  (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 140
 141#define __PAGE_NONE     (_PAGE_PRESENTV | _PAGE_PROT_RKNU | _PAGE_ACCESSED | _PAGE_CACHE)
 142#define __PAGE_SHARED   (_PAGE_PRESENTV | _PAGE_PROT_WKWU | _PAGE_ACCESSED | _PAGE_CACHE)
 143#define __PAGE_COPY     (_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE)
 144#define __PAGE_READONLY (_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE)
 145
 146#define PAGE_NONE               __pgprot(__PAGE_NONE     | _PAGE_NX)
 147#define PAGE_SHARED_NOEXEC      __pgprot(__PAGE_SHARED   | _PAGE_NX)
 148#define PAGE_COPY_NOEXEC        __pgprot(__PAGE_COPY     | _PAGE_NX)
 149#define PAGE_READONLY_NOEXEC    __pgprot(__PAGE_READONLY | _PAGE_NX)
 150#define PAGE_SHARED_EXEC        __pgprot(__PAGE_SHARED)
 151#define PAGE_COPY_EXEC          __pgprot(__PAGE_COPY)
 152#define PAGE_READONLY_EXEC      __pgprot(__PAGE_READONLY)
 153#define PAGE_COPY               PAGE_COPY_NOEXEC
 154#define PAGE_READONLY           PAGE_READONLY_NOEXEC
 155#define PAGE_SHARED             PAGE_SHARED_EXEC
 156
 157#define __PAGE_KERNEL_BASE (_PAGE_PRESENTV | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_GLOBAL)
 158
 159#define __PAGE_KERNEL           (__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_CACHE | _PAGE_NX)
 160#define __PAGE_KERNEL_NOCACHE   (__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_NX)
 161#define __PAGE_KERNEL_EXEC      (__PAGE_KERNEL & ~_PAGE_NX)
 162#define __PAGE_KERNEL_RO        (__PAGE_KERNEL_BASE | _PAGE_PROT_RKNU | _PAGE_CACHE | _PAGE_NX)
 163#define __PAGE_KERNEL_LARGE     (__PAGE_KERNEL | _PAGE_PSE)
 164#define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
 165
 166#define PAGE_KERNEL             __pgprot(__PAGE_KERNEL)
 167#define PAGE_KERNEL_RO          __pgprot(__PAGE_KERNEL_RO)
 168#define PAGE_KERNEL_EXEC        __pgprot(__PAGE_KERNEL_EXEC)
 169#define PAGE_KERNEL_NOCACHE     __pgprot(__PAGE_KERNEL_NOCACHE)
 170#define PAGE_KERNEL_LARGE       __pgprot(__PAGE_KERNEL_LARGE)
 171#define PAGE_KERNEL_LARGE_EXEC  __pgprot(__PAGE_KERNEL_LARGE_EXEC)
 172
 173/*
 174 * Whilst the MN10300 can do page protection for execute (given separate data
 175 * and insn TLBs), we are not supporting it at the moment. Write permission,
 176 * however, always implies read permission (but not execute permission).
 177 */
 178#define __P000  PAGE_NONE
 179#define __P001  PAGE_READONLY_NOEXEC
 180#define __P010  PAGE_COPY_NOEXEC
 181#define __P011  PAGE_COPY_NOEXEC
 182#define __P100  PAGE_READONLY_EXEC
 183#define __P101  PAGE_READONLY_EXEC
 184#define __P110  PAGE_COPY_EXEC
 185#define __P111  PAGE_COPY_EXEC
 186
 187#define __S000  PAGE_NONE
 188#define __S001  PAGE_READONLY_NOEXEC
 189#define __S010  PAGE_SHARED_NOEXEC
 190#define __S011  PAGE_SHARED_NOEXEC
 191#define __S100  PAGE_READONLY_EXEC
 192#define __S101  PAGE_READONLY_EXEC
 193#define __S110  PAGE_SHARED_EXEC
 194#define __S111  PAGE_SHARED_EXEC
 195
 196/*
 197 * Define this to warn about kernel memory accesses that are
 198 * done without a 'verify_area(VERIFY_WRITE,..)'
 199 */
 200#undef TEST_VERIFY_AREA
 201
 202#define pte_present(x)  (pte_val(x) & _PAGE_VALID)
 203#define pte_clear(mm, addr, xp)                         \
 204do {                                                    \
 205        set_pte_at((mm), (addr), (xp), __pte(0));       \
 206} while (0)
 207
 208#define pmd_none(x)     (!pmd_val(x))
 209#define pmd_present(x)  (!pmd_none(x))
 210#define pmd_clear(xp)   do { set_pmd(xp, __pmd(0)); } while (0)
 211#define pmd_bad(x)      0
 212
 213
 214#define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
 215
 216#ifndef __ASSEMBLY__
 217
 218/*
 219 * The following only work if pte_present() is true.
 220 * Undefined behaviour if not..
 221 */
 222static inline int pte_user(pte_t pte)   { return pte_val(pte) & __PAGE_PROT_USER; }
 223static inline int pte_read(pte_t pte)   { return pte_val(pte) & __PAGE_PROT_USER; }
 224static inline int pte_dirty(pte_t pte)  { return pte_val(pte) & _PAGE_DIRTY; }
 225static inline int pte_young(pte_t pte)  { return pte_val(pte) & _PAGE_ACCESSED; }
 226static inline int pte_write(pte_t pte)  { return pte_val(pte) & __PAGE_PROT_WRITE; }
 227static inline int pte_special(pte_t pte){ return 0; }
 228
 229/*
 230 * The following only works if pte_present() is not true.
 231 */
 232static inline int pte_file(pte_t pte)   { return pte_val(pte) & _PAGE_FILE; }
 233
 234static inline pte_t pte_rdprotect(pte_t pte)
 235{
 236        pte_val(pte) &= ~(__PAGE_PROT_USER|__PAGE_PROT_UWAUX); return pte;
 237}
 238static inline pte_t pte_exprotect(pte_t pte)
 239{
 240        pte_val(pte) |= _PAGE_NX; return pte;
 241}
 242
 243static inline pte_t pte_wrprotect(pte_t pte)
 244{
 245        pte_val(pte) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX); return pte;
 246}
 247
 248static inline pte_t pte_mkclean(pte_t pte)      { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
 249static inline pte_t pte_mkold(pte_t pte)        { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
 250static inline pte_t pte_mkdirty(pte_t pte)      { pte_val(pte) |= _PAGE_DIRTY; return pte; }
 251static inline pte_t pte_mkyoung(pte_t pte)      { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
 252static inline pte_t pte_mkexec(pte_t pte)       { pte_val(pte) &= ~_PAGE_NX; return pte; }
 253
 254static inline pte_t pte_mkread(pte_t pte)
 255{
 256        pte_val(pte) |= __PAGE_PROT_USER;
 257        if (pte_write(pte))
 258                pte_val(pte) |= __PAGE_PROT_UWAUX;
 259        return pte;
 260}
 261static inline pte_t pte_mkwrite(pte_t pte)
 262{
 263        pte_val(pte) |= __PAGE_PROT_WRITE;
 264        if (pte_val(pte) & __PAGE_PROT_USER)
 265                pte_val(pte) |= __PAGE_PROT_UWAUX;
 266        return pte;
 267}
 268
 269static inline pte_t pte_mkspecial(pte_t pte)    { return pte; }
 270
 271#define pte_ERROR(e) \
 272        printk(KERN_ERR "%s:%d: bad pte %08lx.\n", \
 273               __FILE__, __LINE__, pte_val(e))
 274#define pgd_ERROR(e) \
 275        printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
 276               __FILE__, __LINE__, pgd_val(e))
 277
 278/*
 279 * The "pgd_xxx()" functions here are trivial for a folded two-level
 280 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 281 * into the pgd entry)
 282 */
 283#define pgd_clear(xp)                           do { } while (0)
 284
 285/*
 286 * Certain architectures need to do special things when PTEs
 287 * within a page table are directly modified.  Thus, the following
 288 * hook is made available.
 289 */
 290#define set_pte(pteptr, pteval)                 (*(pteptr) = pteval)
 291#define set_pte_at(mm, addr, ptep, pteval)      set_pte((ptep), (pteval))
 292#define set_pte_atomic(pteptr, pteval)          set_pte((pteptr), (pteval))
 293
 294/*
 295 * (pmds are folded into pgds so this doesn't get actually called,
 296 * but the define is needed for a generic inline function.)
 297 */
 298#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
 299
 300#define ptep_get_and_clear(mm, addr, ptep) \
 301        __pte(xchg(&(ptep)->pte, 0))
 302#define pte_same(a, b)          (pte_val(a) == pte_val(b))
 303#define pte_page(x)             pfn_to_page(pte_pfn(x))
 304#define pte_none(x)             (!pte_val(x))
 305#define pte_pfn(x)              ((unsigned long) (pte_val(x) >> PAGE_SHIFT))
 306#define __pfn_addr(pfn)         ((pfn) << PAGE_SHIFT)
 307#define pfn_pte(pfn, prot)      __pte(__pfn_addr(pfn) | pgprot_val(prot))
 308#define pfn_pmd(pfn, prot)      __pmd(__pfn_addr(pfn) | pgprot_val(prot))
 309
 310/*
 311 * All present user pages are user-executable:
 312 */
 313static inline int pte_exec(pte_t pte)
 314{
 315        return pte_user(pte);
 316}
 317
 318/*
 319 * All present pages are kernel-executable:
 320 */
 321static inline int pte_exec_kernel(pte_t pte)
 322{
 323        return 1;
 324}
 325
 326/*
 327 * Bits 0 and 1 are taken, split up the 29 bits of offset
 328 * into this range:
 329 */
 330#define PTE_FILE_MAX_BITS       29
 331
 332#define pte_to_pgoff(pte)       (pte_val(pte) >> 2)
 333#define pgoff_to_pte(off)       __pte((off) << 2 | _PAGE_FILE)
 334
 335/* Encode and de-code a swap entry */
 336#define __swp_type(x)                   (((x).val >> 2) & 0x3f)
 337#define __swp_offset(x)                 ((x).val >> 8)
 338#define __swp_entry(type, offset) \
 339        ((swp_entry_t) { ((type) << 2) | ((offset) << 8) })
 340#define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) })
 341#define __swp_entry_to_pte(x)           __pte((x).val)
 342
 343static inline
 344int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr,
 345                              pte_t *ptep)
 346{
 347        if (!pte_dirty(*ptep))
 348                return 0;
 349        return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte);
 350}
 351
 352static inline
 353int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
 354                              pte_t *ptep)
 355{
 356        if (!pte_young(*ptep))
 357                return 0;
 358        return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte);
 359}
 360
 361static inline
 362void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 363{
 364        pte_val(*ptep) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX);
 365}
 366
 367static inline void ptep_mkdirty(pte_t *ptep)
 368{
 369        set_bit(_PAGE_BIT_DIRTY, &ptep->pte);
 370}
 371
 372/*
 373 * Macro to mark a page protection value as "uncacheable".  On processors which
 374 * do not support it, this is a no-op.
 375 */
 376#define pgprot_noncached(prot)  __pgprot(pgprot_val(prot) | _PAGE_CACHE)
 377
 378
 379/*
 380 * Conversion functions: convert a page and protection to a page entry,
 381 * and a page entry and page directory to the page they refer to.
 382 */
 383
 384#define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
 385#define mk_pte_huge(entry) \
 386        ((entry).pte |= _PAGE_PRESENT | _PAGE_PSE | _PAGE_VALID)
 387
 388static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 389{
 390        pte_val(pte) &= _PAGE_CHG_MASK;
 391        pte_val(pte) |= pgprot_val(newprot);
 392        return pte;
 393}
 394
 395#define page_pte(page)  page_pte_prot((page), __pgprot(0))
 396
 397#define pmd_page_kernel(pmd) \
 398        ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
 399
 400#define pmd_page(pmd)   pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
 401
 402#define pmd_large(pmd) \
 403        ((pmd_val(pmd) & (_PAGE_PSE | _PAGE_PRESENT)) == \
 404         (_PAGE_PSE | _PAGE_PRESENT))
 405
 406/*
 407 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
 408 *
 409 * this macro returns the index of the entry in the pgd page which would
 410 * control the given virtual address
 411 */
 412#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
 413
 414/*
 415 * pgd_offset() returns a (pgd_t *)
 416 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
 417 */
 418#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
 419
 420/*
 421 * a shortcut which implies the use of the kernel's pgd, instead
 422 * of a process's
 423 */
 424#define pgd_offset_k(address)   pgd_offset(&init_mm, address)
 425
 426/*
 427 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
 428 *
 429 * this macro returns the index of the entry in the pmd page which would
 430 * control the given virtual address
 431 */
 432#define pmd_index(address) \
 433        (((address) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
 434
 435/*
 436 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
 437 *
 438 * this macro returns the index of the entry in the pte page which would
 439 * control the given virtual address
 440 */
 441#define pte_index(address) \
 442        (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 443
 444#define pte_offset_kernel(dir, address) \
 445        ((pte_t *) pmd_page_kernel(*(dir)) +  pte_index(address))
 446
 447/*
 448 * Make a given kernel text page executable/non-executable.
 449 * Returns the previous executability setting of that page (which
 450 * is used to restore the previous state). Used by the SMP bootup code.
 451 * NOTE: this is an __init function for security reasons.
 452 */
 453static inline int set_kernel_exec(unsigned long vaddr, int enable)
 454{
 455        return 0;
 456}
 457
 458#define pte_offset_map(dir, address) \
 459        ((pte_t *) page_address(pmd_page(*(dir))) + pte_index(address))
 460#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
 461#define pte_unmap(pte)          do {} while (0)
 462#define pte_unmap_nested(pte)   do {} while (0)
 463
 464/*
 465 * The MN10300 has external MMU info in the form of a TLB: this is adapted from
 466 * the kernel page tables containing the necessary information by tlb-mn10300.S
 467 */
 468extern void update_mmu_cache(struct vm_area_struct *vma,
 469                             unsigned long address, pte_t pte);
 470
 471#endif /* !__ASSEMBLY__ */
 472
 473#define kern_addr_valid(addr)   (1)
 474
 475#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
 476        remap_pfn_range((vma), (vaddr), (pfn), (size), (prot))
 477
 478#define MK_IOSPACE_PFN(space, pfn)      (pfn)
 479#define GET_IOSPACE(pfn)                0
 480#define GET_PFN(pfn)                    (pfn)
 481
 482#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 483#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
 484#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 485#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 486#define __HAVE_ARCH_PTEP_MKDIRTY
 487#define __HAVE_ARCH_PTE_SAME
 488#include <asm-generic/pgtable.h>
 489
 490#endif /* !__ASSEMBLY__ */
 491
 492#endif /* _ASM_PGTABLE_H */
 493