linux/arch/parisc/include/asm/pgtable.h
<<
>>
Prefs
   1#ifndef _PARISC_PGTABLE_H
   2#define _PARISC_PGTABLE_H
   3
   4#include <asm-generic/4level-fixup.h>
   5
   6#include <asm/fixmap.h>
   7
   8#ifndef __ASSEMBLY__
   9/*
  10 * we simulate an x86-style page table for the linux mm code
  11 */
  12
  13#include <linux/mm.h>           /* for vm_area_struct */
  14#include <linux/bitops.h>
  15#include <asm/processor.h>
  16#include <asm/cache.h>
  17
  18/*
  19 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
  20 * memory.  For the return value to be meaningful, ADDR must be >=
  21 * PAGE_OFFSET.  This operation can be relatively expensive (e.g.,
  22 * require a hash-, or multi-level tree-lookup or something of that
  23 * sort) but it guarantees to return TRUE only if accessing the page
  24 * at that address does not cause an error.  Note that there may be
  25 * addresses for which kern_addr_valid() returns FALSE even though an
  26 * access would not cause an error (e.g., this is typically true for
  27 * memory mapped I/O regions.
  28 *
  29 * XXX Need to implement this for parisc.
  30 */
  31#define kern_addr_valid(addr)   (1)
  32
  33/* Certain architectures need to do special things when PTEs
  34 * within a page table are directly modified.  Thus, the following
  35 * hook is made available.
  36 */
  37#define set_pte(pteptr, pteval)                                 \
  38        do{                                                     \
  39                *(pteptr) = (pteval);                           \
  40        } while(0)
  41#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
  42
  43#endif /* !__ASSEMBLY__ */
  44
  45#define pte_ERROR(e) \
  46        printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
  47#define pmd_ERROR(e) \
  48        printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
  49#define pgd_ERROR(e) \
  50        printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
  51
  52/* This is the size of the initially mapped kernel memory */
  53#define KERNEL_INITIAL_ORDER    24      /* 0 to 1<<24 = 16MB */
  54#define KERNEL_INITIAL_SIZE     (1 << KERNEL_INITIAL_ORDER)
  55
  56#if defined(CONFIG_64BIT) && defined(CONFIG_PARISC_PAGE_SIZE_4KB)
  57#define PT_NLEVELS      3
  58#define PGD_ORDER       1 /* Number of pages per pgd */
  59#define PMD_ORDER       1 /* Number of pages per pmd */
  60#define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */
  61#else
  62#define PT_NLEVELS      2
  63#define PGD_ORDER       1 /* Number of pages per pgd */
  64#define PGD_ALLOC_ORDER PGD_ORDER
  65#endif
  66
  67/* Definitions for 3rd level (we use PLD here for Page Lower directory
  68 * because PTE_SHIFT is used lower down to mean shift that has to be
  69 * done to get usable bits out of the PTE) */
  70#define PLD_SHIFT       PAGE_SHIFT
  71#define PLD_SIZE        PAGE_SIZE
  72#define BITS_PER_PTE    (PAGE_SHIFT - BITS_PER_PTE_ENTRY)
  73#define PTRS_PER_PTE    (1UL << BITS_PER_PTE)
  74
  75/* Definitions for 2nd level */
  76#define pgtable_cache_init()    do { } while (0)
  77
  78#define PMD_SHIFT       (PLD_SHIFT + BITS_PER_PTE)
  79#define PMD_SIZE        (1UL << PMD_SHIFT)
  80#define PMD_MASK        (~(PMD_SIZE-1))
  81#if PT_NLEVELS == 3
  82#define BITS_PER_PMD    (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
  83#else
  84#define BITS_PER_PMD    0
  85#endif
  86#define PTRS_PER_PMD    (1UL << BITS_PER_PMD)
  87
  88/* Definitions for 1st level */
  89#define PGDIR_SHIFT     (PMD_SHIFT + BITS_PER_PMD)
  90#if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG
  91#define BITS_PER_PGD    (BITS_PER_LONG - PGDIR_SHIFT)
  92#else
  93#define BITS_PER_PGD    (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
  94#endif
  95#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  96#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  97#define PTRS_PER_PGD    (1UL << BITS_PER_PGD)
  98#define USER_PTRS_PER_PGD       PTRS_PER_PGD
  99
 100#ifdef CONFIG_64BIT
 101#define MAX_ADDRBITS    (PGDIR_SHIFT + BITS_PER_PGD)
 102#define MAX_ADDRESS     (1UL << MAX_ADDRBITS)
 103#define SPACEID_SHIFT   (MAX_ADDRBITS - 32)
 104#else
 105#define MAX_ADDRBITS    (BITS_PER_LONG)
 106#define MAX_ADDRESS     (1UL << MAX_ADDRBITS)
 107#define SPACEID_SHIFT   0
 108#endif
 109
 110/* This calculates the number of initial pages we need for the initial
 111 * page tables */
 112#if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT)
 113# define PT_INITIAL     (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
 114#else
 115# define PT_INITIAL     (1)  /* all initial PTEs fit into one page */
 116#endif
 117
 118/*
 119 * pgd entries used up by user/kernel:
 120 */
 121
 122#define FIRST_USER_ADDRESS      0
 123
 124/* NB: The tlb miss handlers make certain assumptions about the order */
 125/*     of the following bits, so be careful (One example, bits 25-31  */
 126/*     are moved together in one instruction).                        */
 127
 128#define _PAGE_READ_BIT     31   /* (0x001) read access allowed */
 129#define _PAGE_WRITE_BIT    30   /* (0x002) write access allowed */
 130#define _PAGE_EXEC_BIT     29   /* (0x004) execute access allowed */
 131#define _PAGE_GATEWAY_BIT  28   /* (0x008) privilege promotion allowed */
 132#define _PAGE_DMB_BIT      27   /* (0x010) Data Memory Break enable (B bit) */
 133#define _PAGE_DIRTY_BIT    26   /* (0x020) Page Dirty (D bit) */
 134#define _PAGE_FILE_BIT  _PAGE_DIRTY_BIT /* overload this bit */
 135#define _PAGE_REFTRAP_BIT  25   /* (0x040) Page Ref. Trap enable (T bit) */
 136#define _PAGE_NO_CACHE_BIT 24   /* (0x080) Uncached Page (U bit) */
 137#define _PAGE_ACCESSED_BIT 23   /* (0x100) Software: Page Accessed */
 138#define _PAGE_PRESENT_BIT  22   /* (0x200) Software: translation valid */
 139#define _PAGE_FLUSH_BIT    21   /* (0x400) Software: translation valid */
 140                                /*             for cache flushing only */
 141#define _PAGE_USER_BIT     20   /* (0x800) Software: User accessible page */
 142
 143/* N.B. The bits are defined in terms of a 32 bit word above, so the */
 144/*      following macro is ok for both 32 and 64 bit.                */
 145
 146#define xlate_pabit(x) (31 - x)
 147
 148/* this defines the shift to the usable bits in the PTE it is set so
 149 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
 150 * to zero */
 151#define PTE_SHIFT               xlate_pabit(_PAGE_USER_BIT)
 152
 153/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
 154#define PFN_PTE_SHIFT           12
 155
 156
 157/* this is how many bits may be used by the file functions */
 158#define PTE_FILE_MAX_BITS       (BITS_PER_LONG - PTE_SHIFT)
 159
 160#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT)
 161#define pgoff_to_pte(off) ((pte_t) { ((off) << PTE_SHIFT) | _PAGE_FILE })
 162
 163#define _PAGE_READ     (1 << xlate_pabit(_PAGE_READ_BIT))
 164#define _PAGE_WRITE    (1 << xlate_pabit(_PAGE_WRITE_BIT))
 165#define _PAGE_RW       (_PAGE_READ | _PAGE_WRITE)
 166#define _PAGE_EXEC     (1 << xlate_pabit(_PAGE_EXEC_BIT))
 167#define _PAGE_GATEWAY  (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
 168#define _PAGE_DMB      (1 << xlate_pabit(_PAGE_DMB_BIT))
 169#define _PAGE_DIRTY    (1 << xlate_pabit(_PAGE_DIRTY_BIT))
 170#define _PAGE_REFTRAP  (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
 171#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
 172#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
 173#define _PAGE_PRESENT  (1 << xlate_pabit(_PAGE_PRESENT_BIT))
 174#define _PAGE_FLUSH    (1 << xlate_pabit(_PAGE_FLUSH_BIT))
 175#define _PAGE_USER     (1 << xlate_pabit(_PAGE_USER_BIT))
 176#define _PAGE_FILE     (1 << xlate_pabit(_PAGE_FILE_BIT))
 177
 178#define _PAGE_TABLE     (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_ACCESSED)
 179#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 180#define _PAGE_KERNEL    (_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
 181
 182/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
 183 * are page-aligned, we don't care about the PAGE_OFFSET bits, except
 184 * for a few meta-information bits, so we shift the address to be
 185 * able to effectively address 40/42/44-bits of physical address space
 186 * depending on 4k/16k/64k PAGE_SIZE */
 187#define _PxD_PRESENT_BIT   31
 188#define _PxD_ATTACHED_BIT  30
 189#define _PxD_VALID_BIT     29
 190
 191#define PxD_FLAG_PRESENT  (1 << xlate_pabit(_PxD_PRESENT_BIT))
 192#define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
 193#define PxD_FLAG_VALID    (1 << xlate_pabit(_PxD_VALID_BIT))
 194#define PxD_FLAG_MASK     (0xf)
 195#define PxD_FLAG_SHIFT    (4)
 196#define PxD_VALUE_SHIFT   (8) /* (PAGE_SHIFT-PxD_FLAG_SHIFT) */
 197
 198#ifndef __ASSEMBLY__
 199
 200#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 201#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED)
 202/* Others seem to make this executable, I don't know if that's correct
 203   or not.  The stack is mapped this way though so this is necessary
 204   in the short term - dhd@linuxcare.com, 2000-08-08 */
 205#define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED)
 206#define PAGE_WRITEONLY  __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED)
 207#define PAGE_EXECREAD   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED)
 208#define PAGE_COPY       PAGE_EXECREAD
 209#define PAGE_RWX        __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED)
 210#define PAGE_KERNEL     __pgprot(_PAGE_KERNEL)
 211#define PAGE_KERNEL_RO  __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
 212#define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
 213#define PAGE_GATEWAY    __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ)
 214#define PAGE_FLUSH      __pgprot(_PAGE_FLUSH)
 215
 216
 217/*
 218 * We could have an execute only page using "gateway - promote to priv
 219 * level 3", but that is kind of silly. So, the way things are defined
 220 * now, we must always have read permission for pages with execute
 221 * permission. For the fun of it we'll go ahead and support write only
 222 * pages.
 223 */
 224
 225         /*xwr*/
 226#define __P000  PAGE_NONE
 227#define __P001  PAGE_READONLY
 228#define __P010  __P000 /* copy on write */
 229#define __P011  __P001 /* copy on write */
 230#define __P100  PAGE_EXECREAD
 231#define __P101  PAGE_EXECREAD
 232#define __P110  __P100 /* copy on write */
 233#define __P111  __P101 /* copy on write */
 234
 235#define __S000  PAGE_NONE
 236#define __S001  PAGE_READONLY
 237#define __S010  PAGE_WRITEONLY
 238#define __S011  PAGE_SHARED
 239#define __S100  PAGE_EXECREAD
 240#define __S101  PAGE_EXECREAD
 241#define __S110  PAGE_RWX
 242#define __S111  PAGE_RWX
 243
 244
 245extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
 246
 247/* initial page tables for 0-8MB for kernel */
 248
 249extern pte_t pg0[];
 250
 251/* zero page used for uninitialized stuff */
 252
 253extern unsigned long *empty_zero_page;
 254
 255/*
 256 * ZERO_PAGE is a global shared page that is always zero: used
 257 * for zero-mapped memory areas etc..
 258 */
 259
 260#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 261
 262#define pte_none(x)     ((pte_val(x) == 0) || (pte_val(x) & _PAGE_FLUSH))
 263#define pte_present(x)  (pte_val(x) & _PAGE_PRESENT)
 264#define pte_clear(mm,addr,xp)   do { pte_val(*(xp)) = 0; } while (0)
 265
 266#define pmd_flag(x)     (pmd_val(x) & PxD_FLAG_MASK)
 267#define pmd_address(x)  ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
 268#define pgd_flag(x)     (pgd_val(x) & PxD_FLAG_MASK)
 269#define pgd_address(x)  ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
 270
 271#if PT_NLEVELS == 3
 272/* The first entry of the permanent pmd is not there if it contains
 273 * the gateway marker */
 274#define pmd_none(x)     (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
 275#else
 276#define pmd_none(x)     (!pmd_val(x))
 277#endif
 278#define pmd_bad(x)      (!(pmd_flag(x) & PxD_FLAG_VALID))
 279#define pmd_present(x)  (pmd_flag(x) & PxD_FLAG_PRESENT)
 280static inline void pmd_clear(pmd_t *pmd) {
 281#if PT_NLEVELS == 3
 282        if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
 283                /* This is the entry pointing to the permanent pmd
 284                 * attached to the pgd; cannot clear it */
 285                __pmd_val_set(*pmd, PxD_FLAG_ATTACHED);
 286        else
 287#endif
 288                __pmd_val_set(*pmd,  0);
 289}
 290
 291
 292
 293#if PT_NLEVELS == 3
 294#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd)))
 295#define pgd_page(pgd)   virt_to_page((void *)pgd_page_vaddr(pgd))
 296
 297/* For 64 bit we have three level tables */
 298
 299#define pgd_none(x)     (!pgd_val(x))
 300#define pgd_bad(x)      (!(pgd_flag(x) & PxD_FLAG_VALID))
 301#define pgd_present(x)  (pgd_flag(x) & PxD_FLAG_PRESENT)
 302static inline void pgd_clear(pgd_t *pgd) {
 303#if PT_NLEVELS == 3
 304        if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED)
 305                /* This is the permanent pmd attached to the pgd; cannot
 306                 * free it */
 307                return;
 308#endif
 309        __pgd_val_set(*pgd, 0);
 310}
 311#else
 312/*
 313 * The "pgd_xxx()" functions here are trivial for a folded two-level
 314 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 315 * into the pgd entry)
 316 */
 317static inline int pgd_none(pgd_t pgd)           { return 0; }
 318static inline int pgd_bad(pgd_t pgd)            { return 0; }
 319static inline int pgd_present(pgd_t pgd)        { return 1; }
 320static inline void pgd_clear(pgd_t * pgdp)      { }
 321#endif
 322
 323/*
 324 * The following only work if pte_present() is true.
 325 * Undefined behaviour if not..
 326 */
 327static inline int pte_dirty(pte_t pte)          { return pte_val(pte) & _PAGE_DIRTY; }
 328static inline int pte_young(pte_t pte)          { return pte_val(pte) & _PAGE_ACCESSED; }
 329static inline int pte_write(pte_t pte)          { return pte_val(pte) & _PAGE_WRITE; }
 330static inline int pte_file(pte_t pte)           { return pte_val(pte) & _PAGE_FILE; }
 331static inline int pte_special(pte_t pte)        { return 0; }
 332
 333static inline pte_t pte_mkclean(pte_t pte)      { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
 334static inline pte_t pte_mkold(pte_t pte)        { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
 335static inline pte_t pte_wrprotect(pte_t pte)    { pte_val(pte) &= ~_PAGE_WRITE; return pte; }
 336static inline pte_t pte_mkdirty(pte_t pte)      { pte_val(pte) |= _PAGE_DIRTY; return pte; }
 337static inline pte_t pte_mkyoung(pte_t pte)      { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
 338static inline pte_t pte_mkwrite(pte_t pte)      { pte_val(pte) |= _PAGE_WRITE; return pte; }
 339static inline pte_t pte_mkspecial(pte_t pte)    { return pte; }
 340
 341/*
 342 * Conversion functions: convert a page and protection to a page entry,
 343 * and a page entry and page directory to the page they refer to.
 344 */
 345#define __mk_pte(addr,pgprot) \
 346({                                                                      \
 347        pte_t __pte;                                                    \
 348                                                                        \
 349        pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot));  \
 350                                                                        \
 351        __pte;                                                          \
 352})
 353
 354#define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
 355
 356static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
 357{
 358        pte_t pte;
 359        pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot);
 360        return pte;
 361}
 362
 363static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 364{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
 365
 366/* Permanent address of a page.  On parisc we don't have highmem. */
 367
 368#define pte_pfn(x)              (pte_val(x) >> PFN_PTE_SHIFT)
 369
 370#define pte_page(pte)           (pfn_to_page(pte_pfn(pte)))
 371
 372#define pmd_page_vaddr(pmd)     ((unsigned long) __va(pmd_address(pmd)))
 373
 374#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
 375#define pmd_page(pmd)   virt_to_page((void *)__pmd_page(pmd))
 376
 377#define pgd_index(address) ((address) >> PGDIR_SHIFT)
 378
 379/* to find an entry in a page-table-directory */
 380#define pgd_offset(mm, address) \
 381((mm)->pgd + ((address) >> PGDIR_SHIFT))
 382
 383/* to find an entry in a kernel page-table-directory */
 384#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 385
 386/* Find an entry in the second-level page table.. */
 387
 388#if PT_NLEVELS == 3
 389#define pmd_offset(dir,address) \
 390((pmd_t *) pgd_page_vaddr(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1)))
 391#else
 392#define pmd_offset(dir,addr) ((pmd_t *) dir)
 393#endif
 394
 395/* Find an entry in the third-level page table.. */ 
 396#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
 397#define pte_offset_kernel(pmd, address) \
 398        ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address))
 399#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
 400#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
 401#define pte_unmap(pte) do { } while (0)
 402#define pte_unmap_nested(pte) do { } while (0)
 403
 404#define pte_unmap(pte)                  do { } while (0)
 405#define pte_unmap_nested(pte)           do { } while (0)
 406
 407extern void paging_init (void);
 408
 409/* Used for deferring calls to flush_dcache_page() */
 410
 411#define PG_dcache_dirty         PG_arch_1
 412
 413extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
 414
 415/* Encode and de-code a swap entry */
 416
 417#define __swp_type(x)                     ((x).val & 0x1f)
 418#define __swp_offset(x)                   ( (((x).val >> 6) &  0x7) | \
 419                                          (((x).val >> 8) & ~0x7) )
 420#define __swp_entry(type, offset)         ((swp_entry_t) { (type) | \
 421                                            ((offset &  0x7) << 6) | \
 422                                            ((offset & ~0x7) << 8) })
 423#define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) })
 424#define __swp_entry_to_pte(x)           ((pte_t) { (x).val })
 425
 426static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
 427{
 428#ifdef CONFIG_SMP
 429        if (!pte_young(*ptep))
 430                return 0;
 431        return test_and_clear_bit(xlate_pabit(_PAGE_ACCESSED_BIT), &pte_val(*ptep));
 432#else
 433        pte_t pte = *ptep;
 434        if (!pte_young(pte))
 435                return 0;
 436        set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
 437        return 1;
 438#endif
 439}
 440
 441extern spinlock_t pa_dbit_lock;
 442
 443struct mm_struct;
 444static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 445{
 446        pte_t old_pte;
 447        pte_t pte;
 448
 449        spin_lock(&pa_dbit_lock);
 450        pte = old_pte = *ptep;
 451        pte_val(pte) &= ~_PAGE_PRESENT;
 452        pte_val(pte) |= _PAGE_FLUSH;
 453        set_pte_at(mm,addr,ptep,pte);
 454        spin_unlock(&pa_dbit_lock);
 455
 456        return old_pte;
 457}
 458
 459static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 460{
 461#ifdef CONFIG_SMP
 462        unsigned long new, old;
 463
 464        do {
 465                old = pte_val(*ptep);
 466                new = pte_val(pte_wrprotect(__pte (old)));
 467        } while (cmpxchg((unsigned long *) ptep, old, new) != old);
 468#else
 469        pte_t old_pte = *ptep;
 470        set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
 471#endif
 472}
 473
 474#define pte_same(A,B)   (pte_val(A) == pte_val(B))
 475
 476#endif /* !__ASSEMBLY__ */
 477
 478
 479/* TLB page size encoding - see table 3-1 in parisc20.pdf */
 480#define _PAGE_SIZE_ENCODING_4K          0
 481#define _PAGE_SIZE_ENCODING_16K         1
 482#define _PAGE_SIZE_ENCODING_64K         2
 483#define _PAGE_SIZE_ENCODING_256K        3
 484#define _PAGE_SIZE_ENCODING_1M          4
 485#define _PAGE_SIZE_ENCODING_4M          5
 486#define _PAGE_SIZE_ENCODING_16M         6
 487#define _PAGE_SIZE_ENCODING_64M         7
 488
 489#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 490# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
 491#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
 492# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
 493#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
 494# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
 495#endif
 496
 497
 498#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)         \
 499                remap_pfn_range(vma, vaddr, pfn, size, prot)
 500
 501#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
 502
 503/* We provide our own get_unmapped_area to provide cache coherency */
 504
 505#define HAVE_ARCH_UNMAPPED_AREA
 506
 507#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 508#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 509#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 510#define __HAVE_ARCH_PTE_SAME
 511#include <asm-generic/pgtable.h>
 512
 513#endif /* _PARISC_PGTABLE_H */
 514