linux/arch/powerpc/include/asm/pgtable-ppc32.h
<<
>>
Prefs
   1#ifndef _ASM_POWERPC_PGTABLE_PPC32_H
   2#define _ASM_POWERPC_PGTABLE_PPC32_H
   3
   4#include <asm-generic/pgtable-nopmd.h>
   5
   6#ifndef __ASSEMBLY__
   7#include <linux/sched.h>
   8#include <linux/threads.h>
   9#include <asm/io.h>                     /* For sub-arch specific PPC_PIN_SIZE */
  10
  11extern unsigned long va_to_phys(unsigned long address);
  12extern pte_t *va_to_pte(unsigned long address);
  13extern unsigned long ioremap_bot;
  14
  15#ifdef CONFIG_44x
  16extern int icache_44x_need_flush;
  17#endif
  18
  19#endif /* __ASSEMBLY__ */
  20
  21/*
  22 * The normal case is that PTEs are 32-bits and we have a 1-page
  23 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
  24 *
  25 * For any >32-bit physical address platform, we can use the following
  26 * two level page table layout where the pgdir is 8KB and the MS 13 bits
  27 * are an index to the second level table.  The combined pgdir/pmd first
  28 * level has 2048 entries and the second level has 512 64-bit PTE entries.
  29 * -Matt
  30 */
  31/* PGDIR_SHIFT determines what a top-level page table entry can map */
  32#define PGDIR_SHIFT     (PAGE_SHIFT + PTE_SHIFT)
  33#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  34#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  35
  36/*
  37 * entries per page directory level: our page-table tree is two-level, so
  38 * we don't really have any PMD directory.
  39 */
  40#ifndef __ASSEMBLY__
  41#define PTE_TABLE_SIZE  (sizeof(pte_t) << PTE_SHIFT)
  42#define PGD_TABLE_SIZE  (sizeof(pgd_t) << (32 - PGDIR_SHIFT))
  43#endif  /* __ASSEMBLY__ */
  44
  45#define PTRS_PER_PTE    (1 << PTE_SHIFT)
  46#define PTRS_PER_PMD    1
  47#define PTRS_PER_PGD    (1 << (32 - PGDIR_SHIFT))
  48
  49#define USER_PTRS_PER_PGD       (TASK_SIZE / PGDIR_SIZE)
  50#define FIRST_USER_ADDRESS      0
  51
  52#define pte_ERROR(e) \
  53        printk("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
  54                (unsigned long long)pte_val(e))
  55#define pgd_ERROR(e) \
  56        printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
  57
  58/*
  59 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
  60 * value (for now) on others, from where we can start layout kernel
  61 * virtual space that goes below PKMAP and FIXMAP
  62 */
  63#ifdef CONFIG_HIGHMEM
  64#define KVIRT_TOP       PKMAP_BASE
  65#else
  66#define KVIRT_TOP       (0xfe000000UL)  /* for now, could be FIXMAP_BASE ? */
  67#endif
  68
  69/*
  70 * ioremap_bot starts at that address. Early ioremaps move down from there,
  71 * until mem_init() at which point this becomes the top of the vmalloc
  72 * and ioremap space
  73 */
  74#ifdef CONFIG_NOT_COHERENT_CACHE
  75#define IOREMAP_TOP     ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK)
  76#else
  77#define IOREMAP_TOP     KVIRT_TOP
  78#endif
  79
  80/*
  81 * Just any arbitrary offset to the start of the vmalloc VM area: the
  82 * current 16MB value just means that there will be a 64MB "hole" after the
  83 * physical memory until the kernel virtual memory starts.  That means that
  84 * any out-of-bounds memory accesses will hopefully be caught.
  85 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  86 * area for the same reason. ;)
  87 *
  88 * We no longer map larger than phys RAM with the BATs so we don't have
  89 * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
  90 * about clashes between our early calls to ioremap() that start growing down
  91 * from ioremap_base being run into the VM area allocations (growing upwards
  92 * from VMALLOC_START).  For this reason we have ioremap_bot to check when
  93 * we actually run into our mappings setup in the early boot with the VM
  94 * system.  This really does become a problem for machines with good amounts
  95 * of RAM.  -- Cort
  96 */
  97#define VMALLOC_OFFSET (0x1000000) /* 16M */
  98#ifdef PPC_PIN_SIZE
  99#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
 100#else
 101#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
 102#endif
 103#define VMALLOC_END     ioremap_bot
 104
 105/*
 106 * Bits in a linux-style PTE.  These match the bits in the
 107 * (hardware-defined) PowerPC PTE as closely as possible.
 108 */
 109
 110#if defined(CONFIG_40x)
 111#include <asm/pte-40x.h>
 112#elif defined(CONFIG_44x)
 113#include <asm/pte-44x.h>
 114#elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
 115#include <asm/pte-book3e.h>
 116#elif defined(CONFIG_FSL_BOOKE)
 117#include <asm/pte-fsl-booke.h>
 118#elif defined(CONFIG_8xx)
 119#include <asm/pte-8xx.h>
 120#else /* CONFIG_6xx */
 121#include <asm/pte-hash32.h>
 122#endif
 123
 124/* And here we include common definitions */
 125#include <asm/pte-common.h>
 126
 127#ifndef __ASSEMBLY__
 128
 129#define pte_clear(mm, addr, ptep) \
 130        do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
 131
 132#define pmd_none(pmd)           (!pmd_val(pmd))
 133#define pmd_bad(pmd)            (pmd_val(pmd) & _PMD_BAD)
 134#define pmd_present(pmd)        (pmd_val(pmd) & _PMD_PRESENT_MASK)
 135#define pmd_clear(pmdp)         do { pmd_val(*(pmdp)) = 0; } while (0)
 136
 137/*
 138 * When flushing the tlb entry for a page, we also need to flush the hash
 139 * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S.
 140 */
 141extern int flush_hash_pages(unsigned context, unsigned long va,
 142                            unsigned long pmdval, int count);
 143
 144/* Add an HPTE to the hash table */
 145extern void add_hash_page(unsigned context, unsigned long va,
 146                          unsigned long pmdval);
 147
 148/* Flush an entry from the TLB/hash table */
 149extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
 150                             unsigned long address);
 151
 152/*
 153 * PTE updates. This function is called whenever an existing
 154 * valid PTE is updated. This does -not- include set_pte_at()
 155 * which nowadays only sets a new PTE.
 156 *
 157 * Depending on the type of MMU, we may need to use atomic updates
 158 * and the PTE may be either 32 or 64 bit wide. In the later case,
 159 * when using atomic updates, only the low part of the PTE is
 160 * accessed atomically.
 161 *
 162 * In addition, on 44x, we also maintain a global flag indicating
 163 * that an executable user mapping was modified, which is needed
 164 * to properly flush the virtually tagged instruction cache of
 165 * those implementations.
 166 */
 167#ifndef CONFIG_PTE_64BIT
 168static inline unsigned long pte_update(pte_t *p,
 169                                       unsigned long clr,
 170                                       unsigned long set)
 171{
 172#ifdef PTE_ATOMIC_UPDATES
 173        unsigned long old, tmp;
 174
 175        __asm__ __volatile__("\
 1761:      lwarx   %0,0,%3\n\
 177        andc    %1,%0,%4\n\
 178        or      %1,%1,%5\n"
 179        PPC405_ERR77(0,%3)
 180"       stwcx.  %1,0,%3\n\
 181        bne-    1b"
 182        : "=&r" (old), "=&r" (tmp), "=m" (*p)
 183        : "r" (p), "r" (clr), "r" (set), "m" (*p)
 184        : "cc" );
 185#else /* PTE_ATOMIC_UPDATES */
 186        unsigned long old = pte_val(*p);
 187        *p = __pte((old & ~clr) | set);
 188#endif /* !PTE_ATOMIC_UPDATES */
 189
 190#ifdef CONFIG_44x
 191        if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
 192                icache_44x_need_flush = 1;
 193#endif
 194        return old;
 195}
 196#else /* CONFIG_PTE_64BIT */
 197static inline unsigned long long pte_update(pte_t *p,
 198                                            unsigned long clr,
 199                                            unsigned long set)
 200{
 201#ifdef PTE_ATOMIC_UPDATES
 202        unsigned long long old;
 203        unsigned long tmp;
 204
 205        __asm__ __volatile__("\
 2061:      lwarx   %L0,0,%4\n\
 207        lwzx    %0,0,%3\n\
 208        andc    %1,%L0,%5\n\
 209        or      %1,%1,%6\n"
 210        PPC405_ERR77(0,%3)
 211"       stwcx.  %1,0,%4\n\
 212        bne-    1b"
 213        : "=&r" (old), "=&r" (tmp), "=m" (*p)
 214        : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
 215        : "cc" );
 216#else /* PTE_ATOMIC_UPDATES */
 217        unsigned long long old = pte_val(*p);
 218        *p = __pte((old & ~(unsigned long long)clr) | set);
 219#endif /* !PTE_ATOMIC_UPDATES */
 220
 221#ifdef CONFIG_44x
 222        if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
 223                icache_44x_need_flush = 1;
 224#endif
 225        return old;
 226}
 227#endif /* CONFIG_PTE_64BIT */
 228
 229/*
 230 * 2.6 calls this without flushing the TLB entry; this is wrong
 231 * for our hash-based implementation, we fix that up here.
 232 */
 233#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 234static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
 235{
 236        unsigned long old;
 237        old = pte_update(ptep, _PAGE_ACCESSED, 0);
 238#if _PAGE_HASHPTE != 0
 239        if (old & _PAGE_HASHPTE) {
 240                unsigned long ptephys = __pa(ptep) & PAGE_MASK;
 241                flush_hash_pages(context, addr, ptephys, 1);
 242        }
 243#endif
 244        return (old & _PAGE_ACCESSED) != 0;
 245}
 246#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
 247        __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
 248
 249#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 250static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
 251                                       pte_t *ptep)
 252{
 253        return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
 254}
 255
 256#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 257static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
 258                                      pte_t *ptep)
 259{
 260        pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
 261}
 262static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
 263                                           unsigned long addr, pte_t *ptep)
 264{
 265        ptep_set_wrprotect(mm, addr, ptep);
 266}
 267
 268
 269static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
 270{
 271        unsigned long bits = pte_val(entry) &
 272                (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
 273        pte_update(ptep, 0, bits);
 274}
 275
 276#define __HAVE_ARCH_PTE_SAME
 277#define pte_same(A,B)   (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
 278
 279/*
 280 * Note that on Book E processors, the pmd contains the kernel virtual
 281 * (lowmem) address of the pte page.  The physical address is less useful
 282 * because everything runs with translation enabled (even the TLB miss
 283 * handler).  On everything else the pmd contains the physical address
 284 * of the pte page.  -- paulus
 285 */
 286#ifndef CONFIG_BOOKE
 287#define pmd_page_vaddr(pmd)     \
 288        ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
 289#define pmd_page(pmd)           \
 290        (mem_map + (pmd_val(pmd) >> PAGE_SHIFT))
 291#else
 292#define pmd_page_vaddr(pmd)     \
 293        ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
 294#define pmd_page(pmd)           \
 295        pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
 296#endif
 297
 298/* to find an entry in a kernel page-table-directory */
 299#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 300
 301/* to find an entry in a page-table-directory */
 302#define pgd_index(address)       ((address) >> PGDIR_SHIFT)
 303#define pgd_offset(mm, address)  ((mm)->pgd + pgd_index(address))
 304
 305/* Find an entry in the third-level page table.. */
 306#define pte_index(address)              \
 307        (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 308#define pte_offset_kernel(dir, addr)    \
 309        ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
 310#define pte_offset_map(dir, addr)               \
 311        ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
 312#define pte_offset_map_nested(dir, addr)        \
 313        ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
 314
 315#define pte_unmap(pte)          kunmap_atomic(pte, KM_PTE0)
 316#define pte_unmap_nested(pte)   kunmap_atomic(pte, KM_PTE1)
 317
 318/*
 319 * Encode and decode a swap entry.
 320 * Note that the bits we use in a PTE for representing a swap entry
 321 * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the
 322 *_PAGE_HASHPTE bit (if used).  -- paulus
 323 */
 324#define __swp_type(entry)               ((entry).val & 0x1f)
 325#define __swp_offset(entry)             ((entry).val >> 5)
 326#define __swp_entry(type, offset)       ((swp_entry_t) { (type) | ((offset) << 5) })
 327#define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) >> 3 })
 328#define __swp_entry_to_pte(x)           ((pte_t) { (x).val << 3 })
 329
 330/* Encode and decode a nonlinear file mapping entry */
 331#define PTE_FILE_MAX_BITS       29
 332#define pte_to_pgoff(pte)       (pte_val(pte) >> 3)
 333#define pgoff_to_pte(off)       ((pte_t) { ((off) << 3) | _PAGE_FILE })
 334
 335/*
 336 * No page table caches to initialise
 337 */
 338#define pgtable_cache_init()    do { } while (0)
 339
 340extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
 341                      pmd_t **pmdp);
 342
 343#endif /* !__ASSEMBLY__ */
 344
 345#endif /* _ASM_POWERPC_PGTABLE_PPC32_H */
 346