linux/arch/powerpc/include/asm/pgtable.h
<<
>>
Prefs
   1#ifndef _ASM_POWERPC_PGTABLE_H
   2#define _ASM_POWERPC_PGTABLE_H
   3#ifdef __KERNEL__
   4
   5#ifndef __ASSEMBLY__
   6#include <asm/processor.h>              /* For TASK_SIZE */
   7#include <asm/mmu.h>
   8#include <asm/page.h>
   9
  10struct mm_struct;
  11
  12#ifdef CONFIG_DEBUG_VM
  13extern void assert_pte_locked(struct mm_struct *mm, unsigned long addr);
  14#else /* CONFIG_DEBUG_VM */
  15static inline void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
  16{
  17}
  18#endif /* !CONFIG_DEBUG_VM */
  19
  20#endif /* !__ASSEMBLY__ */
  21
  22#if defined(CONFIG_PPC64)
  23#  include <asm/pgtable-ppc64.h>
  24#else
  25#  include <asm/pgtable-ppc32.h>
  26#endif
  27
  28#ifndef __ASSEMBLY__
  29
  30/* Generic accessors to PTE bits */
  31static inline int pte_write(pte_t pte)          { return pte_val(pte) & _PAGE_RW; }
  32static inline int pte_dirty(pte_t pte)          { return pte_val(pte) & _PAGE_DIRTY; }
  33static inline int pte_young(pte_t pte)          { return pte_val(pte) & _PAGE_ACCESSED; }
  34static inline int pte_file(pte_t pte)           { return pte_val(pte) & _PAGE_FILE; }
  35static inline int pte_special(pte_t pte)        { return pte_val(pte) & _PAGE_SPECIAL; }
  36static inline int pte_present(pte_t pte)        { return pte_val(pte) & _PAGE_PRESENT; }
  37static inline int pte_none(pte_t pte)           { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
  38static inline pgprot_t pte_pgprot(pte_t pte)    { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
  39
  40/* Conversion functions: convert a page and protection to a page entry,
  41 * and a page entry and page directory to the page they refer to.
  42 *
  43 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
  44 * long for now.
  45 */
  46static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
  47        return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
  48                     pgprot_val(pgprot)); }
  49static inline unsigned long pte_pfn(pte_t pte)  {
  50        return pte_val(pte) >> PTE_RPN_SHIFT; }
  51
  52/* Keep these as a macros to avoid include dependency mess */
  53#define pte_page(x)             pfn_to_page(pte_pfn(x))
  54#define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
  55
  56/* Generic modifiers for PTE bits */
  57static inline pte_t pte_wrprotect(pte_t pte) {
  58        pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
  59static inline pte_t pte_mkclean(pte_t pte) {
  60        pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
  61static inline pte_t pte_mkold(pte_t pte) {
  62        pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
  63static inline pte_t pte_mkwrite(pte_t pte) {
  64        pte_val(pte) |= _PAGE_RW; return pte; }
  65static inline pte_t pte_mkdirty(pte_t pte) {
  66        pte_val(pte) |= _PAGE_DIRTY; return pte; }
  67static inline pte_t pte_mkyoung(pte_t pte) {
  68        pte_val(pte) |= _PAGE_ACCESSED; return pte; }
  69static inline pte_t pte_mkspecial(pte_t pte) {
  70        pte_val(pte) |= _PAGE_SPECIAL; return pte; }
  71static inline pte_t pte_mkhuge(pte_t pte) {
  72        return pte; }
  73static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  74{
  75        pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
  76        return pte;
  77}
  78
  79
  80/* Insert a PTE, top-level function is out of line. It uses an inline
  81 * low level function in the respective pgtable-* files
  82 */
  83extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
  84                       pte_t pte);
  85
  86/* This low level function performs the actual PTE insertion
  87 * Setting the PTE depends on the MMU type and other factors. It's
  88 * an horrible mess that I'm not going to try to clean up now but
  89 * I'm keeping it in one place rather than spread around
  90 */
  91static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
  92                                pte_t *ptep, pte_t pte, int percpu)
  93{
  94#if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
  95        /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
  96         * helper pte_update() which does an atomic update. We need to do that
  97         * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
  98         * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
  99         * the hash bits instead (ie, same as the non-SMP case)
 100         */
 101        if (percpu)
 102                *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
 103                              | (pte_val(pte) & ~_PAGE_HASHPTE));
 104        else
 105                pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
 106
 107#elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
 108        /* Second case is 32-bit with 64-bit PTE.  In this case, we
 109         * can just store as long as we do the two halves in the right order
 110         * with a barrier in between. This is possible because we take care,
 111         * in the hash code, to pre-invalidate if the PTE was already hashed,
 112         * which synchronizes us with any concurrent invalidation.
 113         * In the percpu case, we also fallback to the simple update preserving
 114         * the hash bits
 115         */
 116        if (percpu) {
 117                *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
 118                              | (pte_val(pte) & ~_PAGE_HASHPTE));
 119                return;
 120        }
 121#if _PAGE_HASHPTE != 0
 122        if (pte_val(*ptep) & _PAGE_HASHPTE)
 123                flush_hash_entry(mm, ptep, addr);
 124#endif
 125        __asm__ __volatile__("\
 126                stw%U0%X0 %2,%0\n\
 127                eieio\n\
 128                stw%U0%X0 %L2,%1"
 129        : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
 130        : "r" (pte) : "memory");
 131
 132#elif defined(CONFIG_PPC_STD_MMU_32)
 133        /* Third case is 32-bit hash table in UP mode, we need to preserve
 134         * the _PAGE_HASHPTE bit since we may not have invalidated the previous
 135         * translation in the hash yet (done in a subsequent flush_tlb_xxx())
 136         * and see we need to keep track that this PTE needs invalidating
 137         */
 138        *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
 139                      | (pte_val(pte) & ~_PAGE_HASHPTE));
 140
 141#else
 142        /* Anything else just stores the PTE normally. That covers all 64-bit
 143         * cases, and 32-bit non-hash with 32-bit PTEs.
 144         */
 145        *ptep = pte;
 146#endif
 147}
 148
 149
 150#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 151extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
 152                                 pte_t *ptep, pte_t entry, int dirty);
 153
 154/*
 155 * Macro to mark a page protection value as "uncacheable".
 156 */
 157
 158#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
 159                         _PAGE_WRITETHRU)
 160
 161#define pgprot_noncached(prot)    (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
 162                                            _PAGE_NO_CACHE | _PAGE_GUARDED))
 163
 164#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
 165                                            _PAGE_NO_CACHE))
 166
 167#define pgprot_cached(prot)       (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
 168                                            _PAGE_COHERENT))
 169
 170#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
 171                                            _PAGE_COHERENT | _PAGE_WRITETHRU))
 172
 173
 174struct file;
 175extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 176                                     unsigned long size, pgprot_t vma_prot);
 177#define __HAVE_PHYS_MEM_ACCESS_PROT
 178
 179/*
 180 * ZERO_PAGE is a global shared page that is always zero: used
 181 * for zero-mapped memory areas etc..
 182 */
 183extern unsigned long empty_zero_page[];
 184#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 185
 186extern pgd_t swapper_pg_dir[];
 187
 188extern void paging_init(void);
 189
 190/*
 191 * kern_addr_valid is intended to indicate whether an address is a valid
 192 * kernel address.  Most 32-bit archs define it as always true (like this)
 193 * but most 64-bit archs actually perform a test.  What should we do here?
 194 */
 195#define kern_addr_valid(addr)   (1)
 196
 197#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)         \
 198                remap_pfn_range(vma, vaddr, pfn, size, prot)
 199
 200#include <asm-generic/pgtable.h>
 201
 202
 203/*
 204 * This gets called at the end of handling a page fault, when
 205 * the kernel has put a new PTE into the page table for the process.
 206 * We use it to ensure coherency between the i-cache and d-cache
 207 * for the page which has just been mapped in.
 208 * On machines which use an MMU hash table, we use this to put a
 209 * corresponding HPTE into the hash table ahead of time, instead of
 210 * waiting for the inevitable extra hash-table miss exception.
 211 */
 212extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
 213
 214#endif /* __ASSEMBLY__ */
 215
 216#endif /* __KERNEL__ */
 217#endif /* _ASM_POWERPC_PGTABLE_H */
 218