linux/arch/powerpc/mm/pgtable.c
<<
>>
Prefs
   1/*
   2 * This file contains common routines for dealing with free of page tables
   3 * Along with common page table handling code
   4 *
   5 *  Derived from arch/powerpc/mm/tlb_64.c:
   6 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   7 *
   8 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
   9 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
  10 *    Copyright (C) 1996 Paul Mackerras
  11 *
  12 *  Derived from "arch/i386/mm/init.c"
  13 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  14 *
  15 *  Dave Engebretsen <engebret@us.ibm.com>
  16 *      Rework for PPC64 port.
  17 *
  18 *  This program is free software; you can redistribute it and/or
  19 *  modify it under the terms of the GNU General Public License
  20 *  as published by the Free Software Foundation; either version
  21 *  2 of the License, or (at your option) any later version.
  22 */
  23
  24#include <linux/kernel.h>
  25#include <linux/mm.h>
  26#include <linux/init.h>
  27#include <linux/percpu.h>
  28#include <linux/hardirq.h>
  29#include <asm/pgalloc.h>
  30#include <asm/tlbflush.h>
  31#include <asm/tlb.h>
  32
  33#include "mmu_decl.h"
  34
  35DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  36
  37#ifdef CONFIG_SMP
  38
  39/*
  40 * Handle batching of page table freeing on SMP. Page tables are
  41 * queued up and send to be freed later by RCU in order to avoid
  42 * freeing a page table page that is being walked without locks
  43 */
  44
  45static DEFINE_PER_CPU(struct pte_freelist_batch *, pte_freelist_cur);
  46static unsigned long pte_freelist_forced_free;
  47
  48struct pte_freelist_batch
  49{
  50        struct rcu_head rcu;
  51        unsigned int    index;
  52        pgtable_free_t  tables[0];
  53};
  54
  55#define PTE_FREELIST_SIZE \
  56        ((PAGE_SIZE - sizeof(struct pte_freelist_batch)) \
  57          / sizeof(pgtable_free_t))
  58
  59static void pte_free_smp_sync(void *arg)
  60{
  61        /* Do nothing, just ensure we sync with all CPUs */
  62}
  63
  64/* This is only called when we are critically out of memory
  65 * (and fail to get a page in pte_free_tlb).
  66 */
  67static void pgtable_free_now(pgtable_free_t pgf)
  68{
  69        pte_freelist_forced_free++;
  70
  71        smp_call_function(pte_free_smp_sync, NULL, 1);
  72
  73        pgtable_free(pgf);
  74}
  75
  76static void pte_free_rcu_callback(struct rcu_head *head)
  77{
  78        struct pte_freelist_batch *batch =
  79                container_of(head, struct pte_freelist_batch, rcu);
  80        unsigned int i;
  81
  82        for (i = 0; i < batch->index; i++)
  83                pgtable_free(batch->tables[i]);
  84
  85        free_page((unsigned long)batch);
  86}
  87
  88static void pte_free_submit(struct pte_freelist_batch *batch)
  89{
  90        INIT_RCU_HEAD(&batch->rcu);
  91        call_rcu(&batch->rcu, pte_free_rcu_callback);
  92}
  93
  94void pgtable_free_tlb(struct mmu_gather *tlb, pgtable_free_t pgf)
  95{
  96        /* This is safe since tlb_gather_mmu has disabled preemption */
  97        struct pte_freelist_batch **batchp = &__get_cpu_var(pte_freelist_cur);
  98
  99        if (atomic_read(&tlb->mm->mm_users) < 2 ||
 100            cpumask_equal(mm_cpumask(tlb->mm), cpumask_of(smp_processor_id()))){
 101                pgtable_free(pgf);
 102                return;
 103        }
 104
 105        if (*batchp == NULL) {
 106                *batchp = (struct pte_freelist_batch *)__get_free_page(GFP_ATOMIC);
 107                if (*batchp == NULL) {
 108                        pgtable_free_now(pgf);
 109                        return;
 110                }
 111                (*batchp)->index = 0;
 112        }
 113        (*batchp)->tables[(*batchp)->index++] = pgf;
 114        if ((*batchp)->index == PTE_FREELIST_SIZE) {
 115                pte_free_submit(*batchp);
 116                *batchp = NULL;
 117        }
 118}
 119
 120void pte_free_finish(void)
 121{
 122        /* This is safe since tlb_gather_mmu has disabled preemption */
 123        struct pte_freelist_batch **batchp = &__get_cpu_var(pte_freelist_cur);
 124
 125        if (*batchp == NULL)
 126                return;
 127        pte_free_submit(*batchp);
 128        *batchp = NULL;
 129}
 130
 131#endif /* CONFIG_SMP */
 132
 133static inline int is_exec_fault(void)
 134{
 135        return current->thread.regs && TRAP(current->thread.regs) == 0x400;
 136}
 137
 138/* We only try to do i/d cache coherency on stuff that looks like
 139 * reasonably "normal" PTEs. We currently require a PTE to be present
 140 * and we avoid _PAGE_SPECIAL and _PAGE_NO_CACHE. We also only do that
 141 * on userspace PTEs
 142 */
 143static inline int pte_looks_normal(pte_t pte)
 144{
 145        return (pte_val(pte) &
 146            (_PAGE_PRESENT | _PAGE_SPECIAL | _PAGE_NO_CACHE | _PAGE_USER)) ==
 147            (_PAGE_PRESENT | _PAGE_USER);
 148}
 149
 150struct page * maybe_pte_to_page(pte_t pte)
 151{
 152        unsigned long pfn = pte_pfn(pte);
 153        struct page *page;
 154
 155        if (unlikely(!pfn_valid(pfn)))
 156                return NULL;
 157        page = pfn_to_page(pfn);
 158        if (PageReserved(page))
 159                return NULL;
 160        return page;
 161}
 162
 163#if defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0
 164
 165/* Server-style MMU handles coherency when hashing if HW exec permission
 166 * is supposed per page (currently 64-bit only). If not, then, we always
 167 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
 168 * support falls into the same category.
 169 */
 170
 171static pte_t set_pte_filter(pte_t pte, unsigned long addr)
 172{
 173        pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
 174        if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
 175                                       cpu_has_feature(CPU_FTR_NOEXECUTE))) {
 176                struct page *pg = maybe_pte_to_page(pte);
 177                if (!pg)
 178                        return pte;
 179                if (!test_bit(PG_arch_1, &pg->flags)) {
 180#ifdef CONFIG_8xx
 181                        /* On 8xx, cache control instructions (particularly
 182                         * "dcbst" from flush_dcache_icache) fault as write
 183                         * operation if there is an unpopulated TLB entry
 184                         * for the address in question. To workaround that,
 185                         * we invalidate the TLB here, thus avoiding dcbst
 186                         * misbehaviour.
 187                         */
 188                        /* 8xx doesn't care about PID, size or ind args */
 189                        _tlbil_va(addr, 0, 0, 0);
 190#endif /* CONFIG_8xx */
 191                        flush_dcache_icache_page(pg);
 192                        set_bit(PG_arch_1, &pg->flags);
 193                }
 194        }
 195        return pte;
 196}
 197
 198static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
 199                                     int dirty)
 200{
 201        return pte;
 202}
 203
 204#else /* defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 */
 205
 206/* Embedded type MMU with HW exec support. This is a bit more complicated
 207 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
 208 * instead we "filter out" the exec permission for non clean pages.
 209 */
 210static pte_t set_pte_filter(pte_t pte, unsigned long addr)
 211{
 212        struct page *pg;
 213
 214        /* No exec permission in the first place, move on */
 215        if (!(pte_val(pte) & _PAGE_EXEC) || !pte_looks_normal(pte))
 216                return pte;
 217
 218        /* If you set _PAGE_EXEC on weird pages you're on your own */
 219        pg = maybe_pte_to_page(pte);
 220        if (unlikely(!pg))
 221                return pte;
 222
 223        /* If the page clean, we move on */
 224        if (test_bit(PG_arch_1, &pg->flags))
 225                return pte;
 226
 227        /* If it's an exec fault, we flush the cache and make it clean */
 228        if (is_exec_fault()) {
 229                flush_dcache_icache_page(pg);
 230                set_bit(PG_arch_1, &pg->flags);
 231                return pte;
 232        }
 233
 234        /* Else, we filter out _PAGE_EXEC */
 235        return __pte(pte_val(pte) & ~_PAGE_EXEC);
 236}
 237
 238static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
 239                                     int dirty)
 240{
 241        struct page *pg;
 242
 243        /* So here, we only care about exec faults, as we use them
 244         * to recover lost _PAGE_EXEC and perform I$/D$ coherency
 245         * if necessary. Also if _PAGE_EXEC is already set, same deal,
 246         * we just bail out
 247         */
 248        if (dirty || (pte_val(pte) & _PAGE_EXEC) || !is_exec_fault())
 249                return pte;
 250
 251#ifdef CONFIG_DEBUG_VM
 252        /* So this is an exec fault, _PAGE_EXEC is not set. If it was
 253         * an error we would have bailed out earlier in do_page_fault()
 254         * but let's make sure of it
 255         */
 256        if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
 257                return pte;
 258#endif /* CONFIG_DEBUG_VM */
 259
 260        /* If you set _PAGE_EXEC on weird pages you're on your own */
 261        pg = maybe_pte_to_page(pte);
 262        if (unlikely(!pg))
 263                goto bail;
 264
 265        /* If the page is already clean, we move on */
 266        if (test_bit(PG_arch_1, &pg->flags))
 267                goto bail;
 268
 269        /* Clean the page and set PG_arch_1 */
 270        flush_dcache_icache_page(pg);
 271        set_bit(PG_arch_1, &pg->flags);
 272
 273 bail:
 274        return __pte(pte_val(pte) | _PAGE_EXEC);
 275}
 276
 277#endif /* !(defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0) */
 278
 279/*
 280 * set_pte stores a linux PTE into the linux page table.
 281 */
 282void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
 283                pte_t pte)
 284{
 285#ifdef CONFIG_DEBUG_VM
 286        WARN_ON(pte_present(*ptep));
 287#endif
 288        /* Note: mm->context.id might not yet have been assigned as
 289         * this context might not have been activated yet when this
 290         * is called.
 291         */
 292        pte = set_pte_filter(pte, addr);
 293
 294        /* Perform the setting of the PTE */
 295        __set_pte_at(mm, addr, ptep, pte, 0);
 296}
 297
 298/*
 299 * This is called when relaxing access to a PTE. It's also called in the page
 300 * fault path when we don't hit any of the major fault cases, ie, a minor
 301 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
 302 * handled those two for us, we additionally deal with missing execute
 303 * permission here on some processors
 304 */
 305int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
 306                          pte_t *ptep, pte_t entry, int dirty)
 307{
 308        int changed;
 309        entry = set_access_flags_filter(entry, vma, dirty);
 310        changed = !pte_same(*(ptep), entry);
 311        if (changed) {
 312                if (!(vma->vm_flags & VM_HUGETLB))
 313                        assert_pte_locked(vma->vm_mm, address);
 314                __ptep_set_access_flags(ptep, entry);
 315                flush_tlb_page_nohash(vma, address);
 316        }
 317        return changed;
 318}
 319
 320#ifdef CONFIG_DEBUG_VM
 321void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
 322{
 323        pgd_t *pgd;
 324        pud_t *pud;
 325        pmd_t *pmd;
 326
 327        if (mm == &init_mm)
 328                return;
 329        pgd = mm->pgd + pgd_index(addr);
 330        BUG_ON(pgd_none(*pgd));
 331        pud = pud_offset(pgd, addr);
 332        BUG_ON(pud_none(*pud));
 333        pmd = pmd_offset(pud, addr);
 334        BUG_ON(!pmd_present(*pmd));
 335        assert_spin_locked(pte_lockptr(mm, pmd));
 336}
 337#endif /* CONFIG_DEBUG_VM */
 338
 339