linux/arch/powerpc/oprofile/cell/spu_task_sync.c
<<
>>
Prefs
   1/*
   2 * Cell Broadband Engine OProfile Support
   3 *
   4 * (C) Copyright IBM Corporation 2006
   5 *
   6 * Author: Maynard Johnson <maynardj@us.ibm.com>
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License
  10 * as published by the Free Software Foundation; either version
  11 * 2 of the License, or (at your option) any later version.
  12 */
  13
  14/* The purpose of this file is to handle SPU event task switching
  15 * and to record SPU context information into the OProfile
  16 * event buffer.
  17 *
  18 * Additionally, the spu_sync_buffer function is provided as a helper
  19 * for recoding actual SPU program counter samples to the event buffer.
  20 */
  21#include <linux/dcookies.h>
  22#include <linux/kref.h>
  23#include <linux/mm.h>
  24#include <linux/fs.h>
  25#include <linux/module.h>
  26#include <linux/notifier.h>
  27#include <linux/numa.h>
  28#include <linux/oprofile.h>
  29#include <linux/spinlock.h>
  30#include "pr_util.h"
  31
  32#define RELEASE_ALL 9999
  33
  34static DEFINE_SPINLOCK(buffer_lock);
  35static DEFINE_SPINLOCK(cache_lock);
  36static int num_spu_nodes;
  37int spu_prof_num_nodes;
  38
  39struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
  40struct delayed_work spu_work;
  41static unsigned max_spu_buff;
  42
  43static void spu_buff_add(unsigned long int value, int spu)
  44{
  45        /* spu buff is a circular buffer.  Add entries to the
  46         * head.  Head is the index to store the next value.
  47         * The buffer is full when there is one available entry
  48         * in the queue, i.e. head and tail can't be equal.
  49         * That way we can tell the difference between the
  50         * buffer being full versus empty.
  51         *
  52         *  ASSUPTION: the buffer_lock is held when this function
  53         *             is called to lock the buffer, head and tail.
  54         */
  55        int full = 1;
  56
  57        if (spu_buff[spu].head >= spu_buff[spu].tail) {
  58                if ((spu_buff[spu].head - spu_buff[spu].tail)
  59                    <  (max_spu_buff - 1))
  60                        full = 0;
  61
  62        } else if (spu_buff[spu].tail > spu_buff[spu].head) {
  63                if ((spu_buff[spu].tail - spu_buff[spu].head)
  64                    > 1)
  65                        full = 0;
  66        }
  67
  68        if (!full) {
  69                spu_buff[spu].buff[spu_buff[spu].head] = value;
  70                spu_buff[spu].head++;
  71
  72                if (spu_buff[spu].head >= max_spu_buff)
  73                        spu_buff[spu].head = 0;
  74        } else {
  75                /* From the user's perspective make the SPU buffer
  76                 * size management/overflow look like we are using
  77                 * per cpu buffers.  The user uses the same
  78                 * per cpu parameter to adjust the SPU buffer size.
  79                 * Increment the sample_lost_overflow to inform
  80                 * the user the buffer size needs to be increased.
  81                 */
  82                oprofile_cpu_buffer_inc_smpl_lost();
  83        }
  84}
  85
  86/* This function copies the per SPU buffers to the
  87 * OProfile kernel buffer.
  88 */
  89void sync_spu_buff(void)
  90{
  91        int spu;
  92        unsigned long flags;
  93        int curr_head;
  94
  95        for (spu = 0; spu < num_spu_nodes; spu++) {
  96                /* In case there was an issue and the buffer didn't
  97                 * get created skip it.
  98                 */
  99                if (spu_buff[spu].buff == NULL)
 100                        continue;
 101
 102                /* Hold the lock to make sure the head/tail
 103                 * doesn't change while spu_buff_add() is
 104                 * deciding if the buffer is full or not.
 105                 * Being a little paranoid.
 106                 */
 107                spin_lock_irqsave(&buffer_lock, flags);
 108                curr_head = spu_buff[spu].head;
 109                spin_unlock_irqrestore(&buffer_lock, flags);
 110
 111                /* Transfer the current contents to the kernel buffer.
 112                 * data can still be added to the head of the buffer.
 113                 */
 114                oprofile_put_buff(spu_buff[spu].buff,
 115                                  spu_buff[spu].tail,
 116                                  curr_head, max_spu_buff);
 117
 118                spin_lock_irqsave(&buffer_lock, flags);
 119                spu_buff[spu].tail = curr_head;
 120                spin_unlock_irqrestore(&buffer_lock, flags);
 121        }
 122
 123}
 124
 125static void wq_sync_spu_buff(struct work_struct *work)
 126{
 127        /* move data from spu buffers to kernel buffer */
 128        sync_spu_buff();
 129
 130        /* only reschedule if profiling is not done */
 131        if (spu_prof_running)
 132                schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
 133}
 134
 135/* Container for caching information about an active SPU task. */
 136struct cached_info {
 137        struct vma_to_fileoffset_map *map;
 138        struct spu *the_spu;    /* needed to access pointer to local_store */
 139        struct kref cache_ref;
 140};
 141
 142static struct cached_info *spu_info[MAX_NUMNODES * 8];
 143
 144static void destroy_cached_info(struct kref *kref)
 145{
 146        struct cached_info *info;
 147
 148        info = container_of(kref, struct cached_info, cache_ref);
 149        vma_map_free(info->map);
 150        kfree(info);
 151        module_put(THIS_MODULE);
 152}
 153
 154/* Return the cached_info for the passed SPU number.
 155 * ATTENTION:  Callers are responsible for obtaining the
 156 *             cache_lock if needed prior to invoking this function.
 157 */
 158static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
 159{
 160        struct kref *ref;
 161        struct cached_info *ret_info;
 162
 163        if (spu_num >= num_spu_nodes) {
 164                printk(KERN_ERR "SPU_PROF: "
 165                       "%s, line %d: Invalid index %d into spu info cache\n",
 166                       __func__, __LINE__, spu_num);
 167                ret_info = NULL;
 168                goto out;
 169        }
 170        if (!spu_info[spu_num] && the_spu) {
 171                ref = spu_get_profile_private_kref(the_spu->ctx);
 172                if (ref) {
 173                        spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
 174                        kref_get(&spu_info[spu_num]->cache_ref);
 175                }
 176        }
 177
 178        ret_info = spu_info[spu_num];
 179 out:
 180        return ret_info;
 181}
 182
 183
 184/* Looks for cached info for the passed spu.  If not found, the
 185 * cached info is created for the passed spu.
 186 * Returns 0 for success; otherwise, -1 for error.
 187 */
 188static int
 189prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
 190{
 191        unsigned long flags;
 192        struct vma_to_fileoffset_map *new_map;
 193        int retval = 0;
 194        struct cached_info *info;
 195
 196        /* We won't bother getting cache_lock here since
 197         * don't do anything with the cached_info that's returned.
 198         */
 199        info = get_cached_info(spu, spu->number);
 200
 201        if (info) {
 202                pr_debug("Found cached SPU info.\n");
 203                goto out;
 204        }
 205
 206        /* Create cached_info and set spu_info[spu->number] to point to it.
 207         * spu->number is a system-wide value, not a per-node value.
 208         */
 209        info = kzalloc(sizeof(struct cached_info), GFP_KERNEL);
 210        if (!info) {
 211                printk(KERN_ERR "SPU_PROF: "
 212                       "%s, line %d: create vma_map failed\n",
 213                       __func__, __LINE__);
 214                retval = -ENOMEM;
 215                goto err_alloc;
 216        }
 217        new_map = create_vma_map(spu, objectId);
 218        if (!new_map) {
 219                printk(KERN_ERR "SPU_PROF: "
 220                       "%s, line %d: create vma_map failed\n",
 221                       __func__, __LINE__);
 222                retval = -ENOMEM;
 223                goto err_alloc;
 224        }
 225
 226        pr_debug("Created vma_map\n");
 227        info->map = new_map;
 228        info->the_spu = spu;
 229        kref_init(&info->cache_ref);
 230        spin_lock_irqsave(&cache_lock, flags);
 231        spu_info[spu->number] = info;
 232        /* Increment count before passing off ref to SPUFS. */
 233        kref_get(&info->cache_ref);
 234
 235        /* We increment the module refcount here since SPUFS is
 236         * responsible for the final destruction of the cached_info,
 237         * and it must be able to access the destroy_cached_info()
 238         * function defined in the OProfile module.  We decrement
 239         * the module refcount in destroy_cached_info.
 240         */
 241        try_module_get(THIS_MODULE);
 242        spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
 243                                destroy_cached_info);
 244        spin_unlock_irqrestore(&cache_lock, flags);
 245        goto out;
 246
 247err_alloc:
 248        kfree(info);
 249out:
 250        return retval;
 251}
 252
 253/*
 254 * NOTE:  The caller is responsible for locking the
 255 *        cache_lock prior to calling this function.
 256 */
 257static int release_cached_info(int spu_index)
 258{
 259        int index, end;
 260
 261        if (spu_index == RELEASE_ALL) {
 262                end = num_spu_nodes;
 263                index = 0;
 264        } else {
 265                if (spu_index >= num_spu_nodes) {
 266                        printk(KERN_ERR "SPU_PROF: "
 267                                "%s, line %d: "
 268                                "Invalid index %d into spu info cache\n",
 269                                __func__, __LINE__, spu_index);
 270                        goto out;
 271                }
 272                end = spu_index + 1;
 273                index = spu_index;
 274        }
 275        for (; index < end; index++) {
 276                if (spu_info[index]) {
 277                        kref_put(&spu_info[index]->cache_ref,
 278                                 destroy_cached_info);
 279                        spu_info[index] = NULL;
 280                }
 281        }
 282
 283out:
 284        return 0;
 285}
 286
 287/* The source code for fast_get_dcookie was "borrowed"
 288 * from drivers/oprofile/buffer_sync.c.
 289 */
 290
 291/* Optimisation. We can manage without taking the dcookie sem
 292 * because we cannot reach this code without at least one
 293 * dcookie user still being registered (namely, the reader
 294 * of the event buffer).
 295 */
 296static inline unsigned long fast_get_dcookie(struct path *path)
 297{
 298        unsigned long cookie;
 299
 300        if (path->dentry->d_flags & DCACHE_COOKIE)
 301                return (unsigned long)path->dentry;
 302        get_dcookie(path, &cookie);
 303        return cookie;
 304}
 305
 306/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
 307 * which corresponds loosely to "application name". Also, determine
 308 * the offset for the SPU ELF object.  If computed offset is
 309 * non-zero, it implies an embedded SPU object; otherwise, it's a
 310 * separate SPU binary, in which case we retrieve it's dcookie.
 311 * For the embedded case, we must determine if SPU ELF is embedded
 312 * in the executable application or another file (i.e., shared lib).
 313 * If embedded in a shared lib, we must get the dcookie and return
 314 * that to the caller.
 315 */
 316static unsigned long
 317get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
 318                            unsigned long *spu_bin_dcookie,
 319                            unsigned long spu_ref)
 320{
 321        unsigned long app_cookie = 0;
 322        unsigned int my_offset = 0;
 323        struct file *app = NULL;
 324        struct vm_area_struct *vma;
 325        struct mm_struct *mm = spu->mm;
 326
 327        if (!mm)
 328                goto out;
 329
 330        down_read(&mm->mmap_sem);
 331
 332        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 333                if (!vma->vm_file)
 334                        continue;
 335                if (!(vma->vm_flags & VM_EXECUTABLE))
 336                        continue;
 337                app_cookie = fast_get_dcookie(&vma->vm_file->f_path);
 338                pr_debug("got dcookie for %s\n",
 339                         vma->vm_file->f_dentry->d_name.name);
 340                app = vma->vm_file;
 341                break;
 342        }
 343
 344        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 345                if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
 346                        continue;
 347                my_offset = spu_ref - vma->vm_start;
 348                if (!vma->vm_file)
 349                        goto fail_no_image_cookie;
 350
 351                pr_debug("Found spu ELF at %X(object-id:%lx) for file %s\n",
 352                         my_offset, spu_ref,
 353                         vma->vm_file->f_dentry->d_name.name);
 354                *offsetp = my_offset;
 355                break;
 356        }
 357
 358        *spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
 359        pr_debug("got dcookie for %s\n", vma->vm_file->f_dentry->d_name.name);
 360
 361        up_read(&mm->mmap_sem);
 362
 363out:
 364        return app_cookie;
 365
 366fail_no_image_cookie:
 367        up_read(&mm->mmap_sem);
 368
 369        printk(KERN_ERR "SPU_PROF: "
 370                "%s, line %d: Cannot find dcookie for SPU binary\n",
 371                __func__, __LINE__);
 372        goto out;
 373}
 374
 375
 376
 377/* This function finds or creates cached context information for the
 378 * passed SPU and records SPU context information into the OProfile
 379 * event buffer.
 380 */
 381static int process_context_switch(struct spu *spu, unsigned long objectId)
 382{
 383        unsigned long flags;
 384        int retval;
 385        unsigned int offset = 0;
 386        unsigned long spu_cookie = 0, app_dcookie;
 387
 388        retval = prepare_cached_spu_info(spu, objectId);
 389        if (retval)
 390                goto out;
 391
 392        /* Get dcookie first because a mutex_lock is taken in that
 393         * code path, so interrupts must not be disabled.
 394         */
 395        app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
 396        if (!app_dcookie || !spu_cookie) {
 397                retval  = -ENOENT;
 398                goto out;
 399        }
 400
 401        /* Record context info in event buffer */
 402        spin_lock_irqsave(&buffer_lock, flags);
 403        spu_buff_add(ESCAPE_CODE, spu->number);
 404        spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
 405        spu_buff_add(spu->number, spu->number);
 406        spu_buff_add(spu->pid, spu->number);
 407        spu_buff_add(spu->tgid, spu->number);
 408        spu_buff_add(app_dcookie, spu->number);
 409        spu_buff_add(spu_cookie, spu->number);
 410        spu_buff_add(offset, spu->number);
 411
 412        /* Set flag to indicate SPU PC data can now be written out.  If
 413         * the SPU program counter data is seen before an SPU context
 414         * record is seen, the postprocessing will fail.
 415         */
 416        spu_buff[spu->number].ctx_sw_seen = 1;
 417
 418        spin_unlock_irqrestore(&buffer_lock, flags);
 419        smp_wmb();      /* insure spu event buffer updates are written */
 420                        /* don't want entries intermingled... */
 421out:
 422        return retval;
 423}
 424
 425/*
 426 * This function is invoked on either a bind_context or unbind_context.
 427 * If called for an unbind_context, the val arg is 0; otherwise,
 428 * it is the object-id value for the spu context.
 429 * The data arg is of type 'struct spu *'.
 430 */
 431static int spu_active_notify(struct notifier_block *self, unsigned long val,
 432                                void *data)
 433{
 434        int retval;
 435        unsigned long flags;
 436        struct spu *the_spu = data;
 437
 438        pr_debug("SPU event notification arrived\n");
 439        if (!val) {
 440                spin_lock_irqsave(&cache_lock, flags);
 441                retval = release_cached_info(the_spu->number);
 442                spin_unlock_irqrestore(&cache_lock, flags);
 443        } else {
 444                retval = process_context_switch(the_spu, val);
 445        }
 446        return retval;
 447}
 448
 449static struct notifier_block spu_active = {
 450        .notifier_call = spu_active_notify,
 451};
 452
 453static int number_of_online_nodes(void)
 454{
 455        u32 cpu; u32 tmp;
 456        int nodes = 0;
 457        for_each_online_cpu(cpu) {
 458                tmp = cbe_cpu_to_node(cpu) + 1;
 459                if (tmp > nodes)
 460                        nodes++;
 461        }
 462        return nodes;
 463}
 464
 465static int oprofile_spu_buff_create(void)
 466{
 467        int spu;
 468
 469        max_spu_buff = oprofile_get_cpu_buffer_size();
 470
 471        for (spu = 0; spu < num_spu_nodes; spu++) {
 472                /* create circular buffers to store the data in.
 473                 * use locks to manage accessing the buffers
 474                 */
 475                spu_buff[spu].head = 0;
 476                spu_buff[spu].tail = 0;
 477
 478                /*
 479                 * Create a buffer for each SPU.  Can't reliably
 480                 * create a single buffer for all spus due to not
 481                 * enough contiguous kernel memory.
 482                 */
 483
 484                spu_buff[spu].buff = kzalloc((max_spu_buff
 485                                              * sizeof(unsigned long)),
 486                                             GFP_KERNEL);
 487
 488                if (!spu_buff[spu].buff) {
 489                        printk(KERN_ERR "SPU_PROF: "
 490                               "%s, line %d:  oprofile_spu_buff_create "
 491                       "failed to allocate spu buffer %d.\n",
 492                               __func__, __LINE__, spu);
 493
 494                        /* release the spu buffers that have been allocated */
 495                        while (spu >= 0) {
 496                                kfree(spu_buff[spu].buff);
 497                                spu_buff[spu].buff = 0;
 498                                spu--;
 499                        }
 500                        return -ENOMEM;
 501                }
 502        }
 503        return 0;
 504}
 505
 506/* The main purpose of this function is to synchronize
 507 * OProfile with SPUFS by registering to be notified of
 508 * SPU task switches.
 509 *
 510 * NOTE: When profiling SPUs, we must ensure that only
 511 * spu_sync_start is invoked and not the generic sync_start
 512 * in drivers/oprofile/oprof.c.  A return value of
 513 * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
 514 * accomplish this.
 515 */
 516int spu_sync_start(void)
 517{
 518        int spu;
 519        int ret = SKIP_GENERIC_SYNC;
 520        int register_ret;
 521        unsigned long flags = 0;
 522
 523        spu_prof_num_nodes = number_of_online_nodes();
 524        num_spu_nodes = spu_prof_num_nodes * 8;
 525        INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
 526
 527        /* create buffer for storing the SPU data to put in
 528         * the kernel buffer.
 529         */
 530        ret = oprofile_spu_buff_create();
 531        if (ret)
 532                goto out;
 533
 534        spin_lock_irqsave(&buffer_lock, flags);
 535        for (spu = 0; spu < num_spu_nodes; spu++) {
 536                spu_buff_add(ESCAPE_CODE, spu);
 537                spu_buff_add(SPU_PROFILING_CODE, spu);
 538                spu_buff_add(num_spu_nodes, spu);
 539        }
 540        spin_unlock_irqrestore(&buffer_lock, flags);
 541
 542        for (spu = 0; spu < num_spu_nodes; spu++) {
 543                spu_buff[spu].ctx_sw_seen = 0;
 544                spu_buff[spu].last_guard_val = 0;
 545        }
 546
 547        /* Register for SPU events  */
 548        register_ret = spu_switch_event_register(&spu_active);
 549        if (register_ret) {
 550                ret = SYNC_START_ERROR;
 551                goto out;
 552        }
 553
 554        pr_debug("spu_sync_start -- running.\n");
 555out:
 556        return ret;
 557}
 558
 559/* Record SPU program counter samples to the oprofile event buffer. */
 560void spu_sync_buffer(int spu_num, unsigned int *samples,
 561                     int num_samples)
 562{
 563        unsigned long long file_offset;
 564        unsigned long flags;
 565        int i;
 566        struct vma_to_fileoffset_map *map;
 567        struct spu *the_spu;
 568        unsigned long long spu_num_ll = spu_num;
 569        unsigned long long spu_num_shifted = spu_num_ll << 32;
 570        struct cached_info *c_info;
 571
 572        /* We need to obtain the cache_lock here because it's
 573         * possible that after getting the cached_info, the SPU job
 574         * corresponding to this cached_info may end, thus resulting
 575         * in the destruction of the cached_info.
 576         */
 577        spin_lock_irqsave(&cache_lock, flags);
 578        c_info = get_cached_info(NULL, spu_num);
 579        if (!c_info) {
 580                /* This legitimately happens when the SPU task ends before all
 581                 * samples are recorded.
 582                 * No big deal -- so we just drop a few samples.
 583                 */
 584                pr_debug("SPU_PROF: No cached SPU contex "
 585                          "for SPU #%d. Dropping samples.\n", spu_num);
 586                goto out;
 587        }
 588
 589        map = c_info->map;
 590        the_spu = c_info->the_spu;
 591        spin_lock(&buffer_lock);
 592        for (i = 0; i < num_samples; i++) {
 593                unsigned int sample = *(samples+i);
 594                int grd_val = 0;
 595                file_offset = 0;
 596                if (sample == 0)
 597                        continue;
 598                file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
 599
 600                /* If overlays are used by this SPU application, the guard
 601                 * value is non-zero, indicating which overlay section is in
 602                 * use.  We need to discard samples taken during the time
 603                 * period which an overlay occurs (i.e., guard value changes).
 604                 */
 605                if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
 606                        spu_buff[spu_num].last_guard_val = grd_val;
 607                        /* Drop the rest of the samples. */
 608                        break;
 609                }
 610
 611                /* We must ensure that the SPU context switch has been written
 612                 * out before samples for the SPU.  Otherwise, the SPU context
 613                 * information is not available and the postprocessing of the
 614                 * SPU PC will fail with no available anonymous map information.
 615                 */
 616                if (spu_buff[spu_num].ctx_sw_seen)
 617                        spu_buff_add((file_offset | spu_num_shifted),
 618                                         spu_num);
 619        }
 620        spin_unlock(&buffer_lock);
 621out:
 622        spin_unlock_irqrestore(&cache_lock, flags);
 623}
 624
 625
 626int spu_sync_stop(void)
 627{
 628        unsigned long flags = 0;
 629        int ret;
 630        int k;
 631
 632        ret = spu_switch_event_unregister(&spu_active);
 633
 634        if (ret)
 635                printk(KERN_ERR "SPU_PROF: "
 636                       "%s, line %d: spu_switch_event_unregister "      \
 637                       "returned %d\n",
 638                       __func__, __LINE__, ret);
 639
 640        /* flush any remaining data in the per SPU buffers */
 641        sync_spu_buff();
 642
 643        spin_lock_irqsave(&cache_lock, flags);
 644        ret = release_cached_info(RELEASE_ALL);
 645        spin_unlock_irqrestore(&cache_lock, flags);
 646
 647        /* remove scheduled work queue item rather then waiting
 648         * for every queued entry to execute.  Then flush pending
 649         * system wide buffer to event buffer.
 650         */
 651        cancel_delayed_work(&spu_work);
 652
 653        for (k = 0; k < num_spu_nodes; k++) {
 654                spu_buff[k].ctx_sw_seen = 0;
 655
 656                /*
 657                 * spu_sys_buff will be null if there was a problem
 658                 * allocating the buffer.  Only delete if it exists.
 659                 */
 660                kfree(spu_buff[k].buff);
 661                spu_buff[k].buff = 0;
 662        }
 663        pr_debug("spu_sync_stop -- done.\n");
 664        return ret;
 665}
 666
 667