linux/arch/powerpc/platforms/iseries/setup.c
<<
>>
Prefs
   1/*
   2 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
   3 *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
   4 *
   5 *    Description:
   6 *      Architecture- / platform-specific boot-time initialization code for
   7 *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
   8 *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
   9 *      <dan@net4x.com>.
  10 *
  11 *      This program is free software; you can redistribute it and/or
  12 *      modify it under the terms of the GNU General Public License
  13 *      as published by the Free Software Foundation; either version
  14 *      2 of the License, or (at your option) any later version.
  15 */
  16
  17#undef DEBUG
  18
  19#include <linux/init.h>
  20#include <linux/threads.h>
  21#include <linux/smp.h>
  22#include <linux/param.h>
  23#include <linux/string.h>
  24#include <linux/seq_file.h>
  25#include <linux/kdev_t.h>
  26#include <linux/kexec.h>
  27#include <linux/major.h>
  28#include <linux/root_dev.h>
  29#include <linux/kernel.h>
  30#include <linux/hrtimer.h>
  31#include <linux/tick.h>
  32
  33#include <asm/processor.h>
  34#include <asm/machdep.h>
  35#include <asm/page.h>
  36#include <asm/mmu.h>
  37#include <asm/pgtable.h>
  38#include <asm/mmu_context.h>
  39#include <asm/cputable.h>
  40#include <asm/sections.h>
  41#include <asm/iommu.h>
  42#include <asm/firmware.h>
  43#include <asm/system.h>
  44#include <asm/time.h>
  45#include <asm/paca.h>
  46#include <asm/cache.h>
  47#include <asm/abs_addr.h>
  48#include <asm/iseries/hv_lp_config.h>
  49#include <asm/iseries/hv_call_event.h>
  50#include <asm/iseries/hv_call_xm.h>
  51#include <asm/iseries/it_lp_queue.h>
  52#include <asm/iseries/mf.h>
  53#include <asm/iseries/hv_lp_event.h>
  54#include <asm/iseries/lpar_map.h>
  55#include <asm/udbg.h>
  56#include <asm/irq.h>
  57
  58#include "naca.h"
  59#include "setup.h"
  60#include "irq.h"
  61#include "vpd_areas.h"
  62#include "processor_vpd.h"
  63#include "it_lp_naca.h"
  64#include "main_store.h"
  65#include "call_sm.h"
  66#include "call_hpt.h"
  67#include "pci.h"
  68
  69#ifdef DEBUG
  70#define DBG(fmt...) udbg_printf(fmt)
  71#else
  72#define DBG(fmt...)
  73#endif
  74
  75/* Function Prototypes */
  76static unsigned long build_iSeries_Memory_Map(void);
  77static void iseries_shared_idle(void);
  78static void iseries_dedicated_idle(void);
  79
  80
  81struct MemoryBlock {
  82        unsigned long absStart;
  83        unsigned long absEnd;
  84        unsigned long logicalStart;
  85        unsigned long logicalEnd;
  86};
  87
  88/*
  89 * Process the main store vpd to determine where the holes in memory are
  90 * and return the number of physical blocks and fill in the array of
  91 * block data.
  92 */
  93static unsigned long iSeries_process_Condor_mainstore_vpd(
  94                struct MemoryBlock *mb_array, unsigned long max_entries)
  95{
  96        unsigned long holeFirstChunk, holeSizeChunks;
  97        unsigned long numMemoryBlocks = 1;
  98        struct IoHriMainStoreSegment4 *msVpd =
  99                (struct IoHriMainStoreSegment4 *)xMsVpd;
 100        unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
 101        unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
 102        unsigned long holeSize = holeEnd - holeStart;
 103
 104        printk("Mainstore_VPD: Condor\n");
 105        /*
 106         * Determine if absolute memory has any
 107         * holes so that we can interpret the
 108         * access map we get back from the hypervisor
 109         * correctly.
 110         */
 111        mb_array[0].logicalStart = 0;
 112        mb_array[0].logicalEnd = 0x100000000UL;
 113        mb_array[0].absStart = 0;
 114        mb_array[0].absEnd = 0x100000000UL;
 115
 116        if (holeSize) {
 117                numMemoryBlocks = 2;
 118                holeStart = holeStart & 0x000fffffffffffffUL;
 119                holeStart = addr_to_chunk(holeStart);
 120                holeFirstChunk = holeStart;
 121                holeSize = addr_to_chunk(holeSize);
 122                holeSizeChunks = holeSize;
 123                printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
 124                                holeFirstChunk, holeSizeChunks );
 125                mb_array[0].logicalEnd = holeFirstChunk;
 126                mb_array[0].absEnd = holeFirstChunk;
 127                mb_array[1].logicalStart = holeFirstChunk;
 128                mb_array[1].logicalEnd = 0x100000000UL - holeSizeChunks;
 129                mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
 130                mb_array[1].absEnd = 0x100000000UL;
 131        }
 132        return numMemoryBlocks;
 133}
 134
 135#define MaxSegmentAreas                 32
 136#define MaxSegmentAdrRangeBlocks        128
 137#define MaxAreaRangeBlocks              4
 138
 139static unsigned long iSeries_process_Regatta_mainstore_vpd(
 140                struct MemoryBlock *mb_array, unsigned long max_entries)
 141{
 142        struct IoHriMainStoreSegment5 *msVpdP =
 143                (struct IoHriMainStoreSegment5 *)xMsVpd;
 144        unsigned long numSegmentBlocks = 0;
 145        u32 existsBits = msVpdP->msAreaExists;
 146        unsigned long area_num;
 147
 148        printk("Mainstore_VPD: Regatta\n");
 149
 150        for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
 151                unsigned long numAreaBlocks;
 152                struct IoHriMainStoreArea4 *currentArea;
 153
 154                if (existsBits & 0x80000000) {
 155                        unsigned long block_num;
 156
 157                        currentArea = &msVpdP->msAreaArray[area_num];
 158                        numAreaBlocks = currentArea->numAdrRangeBlocks;
 159                        printk("ms_vpd: processing area %2ld  blocks=%ld",
 160                                        area_num, numAreaBlocks);
 161                        for (block_num = 0; block_num < numAreaBlocks;
 162                                        ++block_num ) {
 163                                /* Process an address range block */
 164                                struct MemoryBlock tempBlock;
 165                                unsigned long i;
 166
 167                                tempBlock.absStart =
 168                                        (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
 169                                tempBlock.absEnd =
 170                                        (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
 171                                tempBlock.logicalStart = 0;
 172                                tempBlock.logicalEnd   = 0;
 173                                printk("\n          block %ld absStart=%016lx absEnd=%016lx",
 174                                                block_num, tempBlock.absStart,
 175                                                tempBlock.absEnd);
 176
 177                                for (i = 0; i < numSegmentBlocks; ++i) {
 178                                        if (mb_array[i].absStart ==
 179                                                        tempBlock.absStart)
 180                                                break;
 181                                }
 182                                if (i == numSegmentBlocks) {
 183                                        if (numSegmentBlocks == max_entries)
 184                                                panic("iSeries_process_mainstore_vpd: too many memory blocks");
 185                                        mb_array[numSegmentBlocks] = tempBlock;
 186                                        ++numSegmentBlocks;
 187                                } else
 188                                        printk(" (duplicate)");
 189                        }
 190                        printk("\n");
 191                }
 192                existsBits <<= 1;
 193        }
 194        /* Now sort the blocks found into ascending sequence */
 195        if (numSegmentBlocks > 1) {
 196                unsigned long m, n;
 197
 198                for (m = 0; m < numSegmentBlocks - 1; ++m) {
 199                        for (n = numSegmentBlocks - 1; m < n; --n) {
 200                                if (mb_array[n].absStart <
 201                                                mb_array[n-1].absStart) {
 202                                        struct MemoryBlock tempBlock;
 203
 204                                        tempBlock = mb_array[n];
 205                                        mb_array[n] = mb_array[n-1];
 206                                        mb_array[n-1] = tempBlock;
 207                                }
 208                        }
 209                }
 210        }
 211        /*
 212         * Assign "logical" addresses to each block.  These
 213         * addresses correspond to the hypervisor "bitmap" space.
 214         * Convert all addresses into units of 256K chunks.
 215         */
 216        {
 217        unsigned long i, nextBitmapAddress;
 218
 219        printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
 220        nextBitmapAddress = 0;
 221        for (i = 0; i < numSegmentBlocks; ++i) {
 222                unsigned long length = mb_array[i].absEnd -
 223                        mb_array[i].absStart;
 224
 225                mb_array[i].logicalStart = nextBitmapAddress;
 226                mb_array[i].logicalEnd = nextBitmapAddress + length;
 227                nextBitmapAddress += length;
 228                printk("          Bitmap range: %016lx - %016lx\n"
 229                                "        Absolute range: %016lx - %016lx\n",
 230                                mb_array[i].logicalStart,
 231                                mb_array[i].logicalEnd,
 232                                mb_array[i].absStart, mb_array[i].absEnd);
 233                mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
 234                                0x000fffffffffffffUL);
 235                mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
 236                                0x000fffffffffffffUL);
 237                mb_array[i].logicalStart =
 238                        addr_to_chunk(mb_array[i].logicalStart);
 239                mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
 240        }
 241        }
 242
 243        return numSegmentBlocks;
 244}
 245
 246static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
 247                unsigned long max_entries)
 248{
 249        unsigned long i;
 250        unsigned long mem_blocks = 0;
 251
 252        if (cpu_has_feature(CPU_FTR_SLB))
 253                mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
 254                                max_entries);
 255        else
 256                mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
 257                                max_entries);
 258
 259        printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
 260        for (i = 0; i < mem_blocks; ++i) {
 261                printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
 262                       "                             abs chunks %016lx - %016lx\n",
 263                        i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
 264                        mb_array[i].absStart, mb_array[i].absEnd);
 265        }
 266        return mem_blocks;
 267}
 268
 269static void __init iSeries_get_cmdline(void)
 270{
 271        char *p, *q;
 272
 273        /* copy the command line parameter from the primary VSP  */
 274        HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
 275                        HvLpDma_Direction_RemoteToLocal);
 276
 277        p = cmd_line;
 278        q = cmd_line + 255;
 279        while(p < q) {
 280                if (!*p || *p == '\n')
 281                        break;
 282                ++p;
 283        }
 284        *p = 0;
 285}
 286
 287static void __init iSeries_init_early(void)
 288{
 289        DBG(" -> iSeries_init_early()\n");
 290
 291        /* Snapshot the timebase, for use in later recalibration */
 292        iSeries_time_init_early();
 293
 294        /*
 295         * Initialize the DMA/TCE management
 296         */
 297        iommu_init_early_iSeries();
 298
 299        /* Initialize machine-dependency vectors */
 300#ifdef CONFIG_SMP
 301        smp_init_iSeries();
 302#endif
 303
 304        /* Associate Lp Event Queue 0 with processor 0 */
 305        HvCallEvent_setLpEventQueueInterruptProc(0, 0);
 306
 307        mf_init();
 308
 309        DBG(" <- iSeries_init_early()\n");
 310}
 311
 312struct mschunks_map mschunks_map = {
 313        /* XXX We don't use these, but Piranha might need them. */
 314        .chunk_size  = MSCHUNKS_CHUNK_SIZE,
 315        .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
 316        .chunk_mask  = MSCHUNKS_OFFSET_MASK,
 317};
 318EXPORT_SYMBOL(mschunks_map);
 319
 320static void mschunks_alloc(unsigned long num_chunks)
 321{
 322        klimit = _ALIGN(klimit, sizeof(u32));
 323        mschunks_map.mapping = (u32 *)klimit;
 324        klimit += num_chunks * sizeof(u32);
 325        mschunks_map.num_chunks = num_chunks;
 326}
 327
 328/*
 329 * The iSeries may have very large memories ( > 128 GB ) and a partition
 330 * may get memory in "chunks" that may be anywhere in the 2**52 real
 331 * address space.  The chunks are 256K in size.  To map this to the
 332 * memory model Linux expects, the AS/400 specific code builds a
 333 * translation table to translate what Linux thinks are "physical"
 334 * addresses to the actual real addresses.  This allows us to make
 335 * it appear to Linux that we have contiguous memory starting at
 336 * physical address zero while in fact this could be far from the truth.
 337 * To avoid confusion, I'll let the words physical and/or real address
 338 * apply to the Linux addresses while I'll use "absolute address" to
 339 * refer to the actual hardware real address.
 340 *
 341 * build_iSeries_Memory_Map gets information from the Hypervisor and
 342 * looks at the Main Store VPD to determine the absolute addresses
 343 * of the memory that has been assigned to our partition and builds
 344 * a table used to translate Linux's physical addresses to these
 345 * absolute addresses.  Absolute addresses are needed when
 346 * communicating with the hypervisor (e.g. to build HPT entries)
 347 *
 348 * Returns the physical memory size
 349 */
 350
 351static unsigned long __init build_iSeries_Memory_Map(void)
 352{
 353        u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
 354        u32 nextPhysChunk;
 355        u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
 356        u32 totalChunks,moreChunks;
 357        u32 currChunk, thisChunk, absChunk;
 358        u32 currDword;
 359        u32 chunkBit;
 360        u64 map;
 361        struct MemoryBlock mb[32];
 362        unsigned long numMemoryBlocks, curBlock;
 363
 364        /* Chunk size on iSeries is 256K bytes */
 365        totalChunks = (u32)HvLpConfig_getMsChunks();
 366        mschunks_alloc(totalChunks);
 367
 368        /*
 369         * Get absolute address of our load area
 370         * and map it to physical address 0
 371         * This guarantees that the loadarea ends up at physical 0
 372         * otherwise, it might not be returned by PLIC as the first
 373         * chunks
 374         */
 375
 376        loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
 377        loadAreaSize =  itLpNaca.xLoadAreaChunks;
 378
 379        /*
 380         * Only add the pages already mapped here.
 381         * Otherwise we might add the hpt pages
 382         * The rest of the pages of the load area
 383         * aren't in the HPT yet and can still
 384         * be assigned an arbitrary physical address
 385         */
 386        if ((loadAreaSize * 64) > HvPagesToMap)
 387                loadAreaSize = HvPagesToMap / 64;
 388
 389        loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
 390
 391        /*
 392         * TODO Do we need to do something if the HPT is in the 64MB load area?
 393         * This would be required if the itLpNaca.xLoadAreaChunks includes
 394         * the HPT size
 395         */
 396
 397        printk("Mapping load area - physical addr = 0000000000000000\n"
 398                "                    absolute addr = %016lx\n",
 399                chunk_to_addr(loadAreaFirstChunk));
 400        printk("Load area size %dK\n", loadAreaSize * 256);
 401
 402        for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
 403                mschunks_map.mapping[nextPhysChunk] =
 404                        loadAreaFirstChunk + nextPhysChunk;
 405
 406        /*
 407         * Get absolute address of our HPT and remember it so
 408         * we won't map it to any physical address
 409         */
 410        hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
 411        hptSizePages = (u32)HvCallHpt_getHptPages();
 412        hptSizeChunks = hptSizePages >>
 413                (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
 414        hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
 415
 416        printk("HPT absolute addr = %016lx, size = %dK\n",
 417                        chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
 418
 419        /*
 420         * Determine if absolute memory has any
 421         * holes so that we can interpret the
 422         * access map we get back from the hypervisor
 423         * correctly.
 424         */
 425        numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
 426
 427        /*
 428         * Process the main store access map from the hypervisor
 429         * to build up our physical -> absolute translation table
 430         */
 431        curBlock = 0;
 432        currChunk = 0;
 433        currDword = 0;
 434        moreChunks = totalChunks;
 435
 436        while (moreChunks) {
 437                map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
 438                                currDword);
 439                thisChunk = currChunk;
 440                while (map) {
 441                        chunkBit = map >> 63;
 442                        map <<= 1;
 443                        if (chunkBit) {
 444                                --moreChunks;
 445                                while (thisChunk >= mb[curBlock].logicalEnd) {
 446                                        ++curBlock;
 447                                        if (curBlock >= numMemoryBlocks)
 448                                                panic("out of memory blocks");
 449                                }
 450                                if (thisChunk < mb[curBlock].logicalStart)
 451                                        panic("memory block error");
 452
 453                                absChunk = mb[curBlock].absStart +
 454                                        (thisChunk - mb[curBlock].logicalStart);
 455                                if (((absChunk < hptFirstChunk) ||
 456                                     (absChunk > hptLastChunk)) &&
 457                                    ((absChunk < loadAreaFirstChunk) ||
 458                                     (absChunk > loadAreaLastChunk))) {
 459                                        mschunks_map.mapping[nextPhysChunk] =
 460                                                absChunk;
 461                                        ++nextPhysChunk;
 462                                }
 463                        }
 464                        ++thisChunk;
 465                }
 466                ++currDword;
 467                currChunk += 64;
 468        }
 469
 470        /*
 471         * main store size (in chunks) is
 472         *   totalChunks - hptSizeChunks
 473         * which should be equal to
 474         *   nextPhysChunk
 475         */
 476        return chunk_to_addr(nextPhysChunk);
 477}
 478
 479/*
 480 * Document me.
 481 */
 482static void __init iSeries_setup_arch(void)
 483{
 484        if (get_lppaca()->shared_proc) {
 485                ppc_md.idle_loop = iseries_shared_idle;
 486                printk(KERN_DEBUG "Using shared processor idle loop\n");
 487        } else {
 488                ppc_md.idle_loop = iseries_dedicated_idle;
 489                printk(KERN_DEBUG "Using dedicated idle loop\n");
 490        }
 491
 492        /* Setup the Lp Event Queue */
 493        setup_hvlpevent_queue();
 494
 495        printk("Max  logical processors = %d\n",
 496                        itVpdAreas.xSlicMaxLogicalProcs);
 497        printk("Max physical processors = %d\n",
 498                        itVpdAreas.xSlicMaxPhysicalProcs);
 499
 500        iSeries_pcibios_init();
 501}
 502
 503static void iSeries_show_cpuinfo(struct seq_file *m)
 504{
 505        seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
 506}
 507
 508static void __init iSeries_progress(char * st, unsigned short code)
 509{
 510        printk("Progress: [%04x] - %s\n", (unsigned)code, st);
 511        mf_display_progress(code);
 512}
 513
 514static void __init iSeries_fixup_klimit(void)
 515{
 516        /*
 517         * Change klimit to take into account any ram disk
 518         * that may be included
 519         */
 520        if (naca.xRamDisk)
 521                klimit = KERNELBASE + (u64)naca.xRamDisk +
 522                        (naca.xRamDiskSize * HW_PAGE_SIZE);
 523}
 524
 525static int __init iSeries_src_init(void)
 526{
 527        /* clear the progress line */
 528        if (firmware_has_feature(FW_FEATURE_ISERIES))
 529                ppc_md.progress(" ", 0xffff);
 530        return 0;
 531}
 532
 533late_initcall(iSeries_src_init);
 534
 535static inline void process_iSeries_events(void)
 536{
 537        asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
 538}
 539
 540static void yield_shared_processor(void)
 541{
 542        unsigned long tb;
 543
 544        HvCall_setEnabledInterrupts(HvCall_MaskIPI |
 545                                    HvCall_MaskLpEvent |
 546                                    HvCall_MaskLpProd |
 547                                    HvCall_MaskTimeout);
 548
 549        tb = get_tb();
 550        /* Compute future tb value when yield should expire */
 551        HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
 552
 553        /*
 554         * The decrementer stops during the yield.  Force a fake decrementer
 555         * here and let the timer_interrupt code sort out the actual time.
 556         */
 557        get_lppaca()->int_dword.fields.decr_int = 1;
 558        ppc64_runlatch_on();
 559        process_iSeries_events();
 560}
 561
 562static void iseries_shared_idle(void)
 563{
 564        while (1) {
 565                tick_nohz_stop_sched_tick(1);
 566                while (!need_resched() && !hvlpevent_is_pending()) {
 567                        local_irq_disable();
 568                        ppc64_runlatch_off();
 569
 570                        /* Recheck with irqs off */
 571                        if (!need_resched() && !hvlpevent_is_pending())
 572                                yield_shared_processor();
 573
 574                        HMT_medium();
 575                        local_irq_enable();
 576                }
 577
 578                ppc64_runlatch_on();
 579                tick_nohz_restart_sched_tick();
 580
 581                if (hvlpevent_is_pending())
 582                        process_iSeries_events();
 583
 584                preempt_enable_no_resched();
 585                schedule();
 586                preempt_disable();
 587        }
 588}
 589
 590static void iseries_dedicated_idle(void)
 591{
 592        set_thread_flag(TIF_POLLING_NRFLAG);
 593
 594        while (1) {
 595                tick_nohz_stop_sched_tick(1);
 596                if (!need_resched()) {
 597                        while (!need_resched()) {
 598                                ppc64_runlatch_off();
 599                                HMT_low();
 600
 601                                if (hvlpevent_is_pending()) {
 602                                        HMT_medium();
 603                                        ppc64_runlatch_on();
 604                                        process_iSeries_events();
 605                                }
 606                        }
 607
 608                        HMT_medium();
 609                }
 610
 611                ppc64_runlatch_on();
 612                tick_nohz_restart_sched_tick();
 613                preempt_enable_no_resched();
 614                schedule();
 615                preempt_disable();
 616        }
 617}
 618
 619static void __iomem *iseries_ioremap(phys_addr_t address, unsigned long size,
 620                                     unsigned long flags, void *caller)
 621{
 622        return (void __iomem *)address;
 623}
 624
 625static void iseries_iounmap(volatile void __iomem *token)
 626{
 627}
 628
 629static int __init iseries_probe(void)
 630{
 631        unsigned long root = of_get_flat_dt_root();
 632        if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
 633                return 0;
 634
 635        hpte_init_iSeries();
 636        /* iSeries does not support 16M pages */
 637        cur_cpu_spec->cpu_features &= ~CPU_FTR_16M_PAGE;
 638
 639        return 1;
 640}
 641
 642#ifdef CONFIG_KEXEC
 643static int iseries_kexec_prepare(struct kimage *image)
 644{
 645        return -ENOSYS;
 646}
 647#endif
 648
 649define_machine(iseries) {
 650        .name                   = "iSeries",
 651        .setup_arch             = iSeries_setup_arch,
 652        .show_cpuinfo           = iSeries_show_cpuinfo,
 653        .init_IRQ               = iSeries_init_IRQ,
 654        .get_irq                = iSeries_get_irq,
 655        .init_early             = iSeries_init_early,
 656        .pcibios_fixup          = iSeries_pci_final_fixup,
 657        .pcibios_fixup_resources= iSeries_pcibios_fixup_resources,
 658        .restart                = mf_reboot,
 659        .power_off              = mf_power_off,
 660        .halt                   = mf_power_off,
 661        .get_boot_time          = iSeries_get_boot_time,
 662        .set_rtc_time           = iSeries_set_rtc_time,
 663        .get_rtc_time           = iSeries_get_rtc_time,
 664        .calibrate_decr         = generic_calibrate_decr,
 665        .progress               = iSeries_progress,
 666        .probe                  = iseries_probe,
 667        .ioremap                = iseries_ioremap,
 668        .iounmap                = iseries_iounmap,
 669#ifdef CONFIG_KEXEC
 670        .machine_kexec_prepare  = iseries_kexec_prepare,
 671#endif
 672        /* XXX Implement enable_pmcs for iSeries */
 673};
 674
 675void * __init iSeries_early_setup(void)
 676{
 677        unsigned long phys_mem_size;
 678
 679        /* Identify CPU type. This is done again by the common code later
 680         * on but calling this function multiple times is fine.
 681         */
 682        identify_cpu(0, mfspr(SPRN_PVR));
 683
 684        powerpc_firmware_features |= FW_FEATURE_ISERIES;
 685        powerpc_firmware_features |= FW_FEATURE_LPAR;
 686
 687        iSeries_fixup_klimit();
 688
 689        /*
 690         * Initialize the table which translate Linux physical addresses to
 691         * AS/400 absolute addresses
 692         */
 693        phys_mem_size = build_iSeries_Memory_Map();
 694
 695        iSeries_get_cmdline();
 696
 697        return (void *) __pa(build_flat_dt(phys_mem_size));
 698}
 699
 700static void hvputc(char c)
 701{
 702        if (c == '\n')
 703                hvputc('\r');
 704
 705        HvCall_writeLogBuffer(&c, 1);
 706}
 707
 708void __init udbg_init_iseries(void)
 709{
 710        udbg_putc = hvputc;
 711}
 712