linux/arch/s390/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 *  include/asm-s390/pgtable.h
   3 *
   4 *  S390 version
   5 *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
   6 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   7 *               Ulrich Weigand (weigand@de.ibm.com)
   8 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   9 *
  10 *  Derived from "include/asm-i386/pgtable.h"
  11 */
  12
  13#ifndef _ASM_S390_PGTABLE_H
  14#define _ASM_S390_PGTABLE_H
  15
  16/*
  17 * The Linux memory management assumes a three-level page table setup. For
  18 * s390 31 bit we "fold" the mid level into the top-level page table, so
  19 * that we physically have the same two-level page table as the s390 mmu
  20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  21 * the hardware provides (region first and region second tables are not
  22 * used).
  23 *
  24 * The "pgd_xxx()" functions are trivial for a folded two-level
  25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
  26 * into the pgd entry)
  27 *
  28 * This file contains the functions and defines necessary to modify and use
  29 * the S390 page table tree.
  30 */
  31#ifndef __ASSEMBLY__
  32#include <linux/sched.h>
  33#include <linux/mm_types.h>
  34#include <asm/bitops.h>
  35#include <asm/bug.h>
  36#include <asm/processor.h>
  37
  38extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  39extern void paging_init(void);
  40extern void vmem_map_init(void);
  41
  42/*
  43 * The S390 doesn't have any external MMU info: the kernel page
  44 * tables contain all the necessary information.
  45 */
  46#define update_mmu_cache(vma, address, pte)     do { } while (0)
  47
  48/*
  49 * ZERO_PAGE is a global shared page that is always zero: used
  50 * for zero-mapped memory areas etc..
  51 */
  52extern char empty_zero_page[PAGE_SIZE];
  53#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  54#endif /* !__ASSEMBLY__ */
  55
  56/*
  57 * PMD_SHIFT determines the size of the area a second-level page
  58 * table can map
  59 * PGDIR_SHIFT determines what a third-level page table entry can map
  60 */
  61#ifndef __s390x__
  62# define PMD_SHIFT      20
  63# define PUD_SHIFT      20
  64# define PGDIR_SHIFT    20
  65#else /* __s390x__ */
  66# define PMD_SHIFT      20
  67# define PUD_SHIFT      31
  68# define PGDIR_SHIFT    42
  69#endif /* __s390x__ */
  70
  71#define PMD_SIZE        (1UL << PMD_SHIFT)
  72#define PMD_MASK        (~(PMD_SIZE-1))
  73#define PUD_SIZE        (1UL << PUD_SHIFT)
  74#define PUD_MASK        (~(PUD_SIZE-1))
  75#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  76#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  77
  78/*
  79 * entries per page directory level: the S390 is two-level, so
  80 * we don't really have any PMD directory physically.
  81 * for S390 segment-table entries are combined to one PGD
  82 * that leads to 1024 pte per pgd
  83 */
  84#define PTRS_PER_PTE    256
  85#ifndef __s390x__
  86#define PTRS_PER_PMD    1
  87#define PTRS_PER_PUD    1
  88#else /* __s390x__ */
  89#define PTRS_PER_PMD    2048
  90#define PTRS_PER_PUD    2048
  91#endif /* __s390x__ */
  92#define PTRS_PER_PGD    2048
  93
  94#define FIRST_USER_ADDRESS  0
  95
  96#define pte_ERROR(e) \
  97        printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  98#define pmd_ERROR(e) \
  99        printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
 100#define pud_ERROR(e) \
 101        printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
 102#define pgd_ERROR(e) \
 103        printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
 104
 105#ifndef __ASSEMBLY__
 106/*
 107 * The vmalloc area will always be on the topmost area of the kernel
 108 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
 109 * which should be enough for any sane case.
 110 * By putting vmalloc at the top, we maximise the gap between physical
 111 * memory and vmalloc to catch misplaced memory accesses. As a side
 112 * effect, this also makes sure that 64 bit module code cannot be used
 113 * as system call address.
 114 */
 115
 116extern unsigned long VMALLOC_START;
 117
 118#ifndef __s390x__
 119#define VMALLOC_SIZE    (96UL << 20)
 120#define VMALLOC_END     0x7e000000UL
 121#define VMEM_MAP_END    0x80000000UL
 122#else /* __s390x__ */
 123#define VMALLOC_SIZE    (1UL << 30)
 124#define VMALLOC_END     0x3e040000000UL
 125#define VMEM_MAP_END    0x40000000000UL
 126#endif /* __s390x__ */
 127
 128/*
 129 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
 130 * mapping. This needs to be calculated at compile time since the size of the
 131 * VMEM_MAP is static but the size of struct page can change.
 132 */
 133#define VMEM_MAX_PAGES  ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
 134#define VMEM_MAX_PFN    min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
 135#define VMEM_MAX_PHYS   ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
 136#define vmemmap         ((struct page *) VMALLOC_END)
 137
 138/*
 139 * A 31 bit pagetable entry of S390 has following format:
 140 *  |   PFRA          |    |  OS  |
 141 * 0                   0IP0
 142 * 00000000001111111111222222222233
 143 * 01234567890123456789012345678901
 144 *
 145 * I Page-Invalid Bit:    Page is not available for address-translation
 146 * P Page-Protection Bit: Store access not possible for page
 147 *
 148 * A 31 bit segmenttable entry of S390 has following format:
 149 *  |   P-table origin      |  |PTL
 150 * 0                         IC
 151 * 00000000001111111111222222222233
 152 * 01234567890123456789012345678901
 153 *
 154 * I Segment-Invalid Bit:    Segment is not available for address-translation
 155 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 156 * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
 157 *
 158 * The 31 bit segmenttable origin of S390 has following format:
 159 *
 160 *  |S-table origin   |     | STL |
 161 * X                   **GPS
 162 * 00000000001111111111222222222233
 163 * 01234567890123456789012345678901
 164 *
 165 * X Space-Switch event:
 166 * G Segment-Invalid Bit:     *
 167 * P Private-Space Bit:       Segment is not private (PoP 3-30)
 168 * S Storage-Alteration:
 169 * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
 170 *
 171 * A 64 bit pagetable entry of S390 has following format:
 172 * |                     PFRA                         |0IP0|  OS  |
 173 * 0000000000111111111122222222223333333333444444444455555555556666
 174 * 0123456789012345678901234567890123456789012345678901234567890123
 175 *
 176 * I Page-Invalid Bit:    Page is not available for address-translation
 177 * P Page-Protection Bit: Store access not possible for page
 178 *
 179 * A 64 bit segmenttable entry of S390 has following format:
 180 * |        P-table origin                              |      TT
 181 * 0000000000111111111122222222223333333333444444444455555555556666
 182 * 0123456789012345678901234567890123456789012345678901234567890123
 183 *
 184 * I Segment-Invalid Bit:    Segment is not available for address-translation
 185 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 186 * P Page-Protection Bit: Store access not possible for page
 187 * TT Type 00
 188 *
 189 * A 64 bit region table entry of S390 has following format:
 190 * |        S-table origin                             |   TF  TTTL
 191 * 0000000000111111111122222222223333333333444444444455555555556666
 192 * 0123456789012345678901234567890123456789012345678901234567890123
 193 *
 194 * I Segment-Invalid Bit:    Segment is not available for address-translation
 195 * TT Type 01
 196 * TF
 197 * TL Table length
 198 *
 199 * The 64 bit regiontable origin of S390 has following format:
 200 * |      region table origon                          |       DTTL
 201 * 0000000000111111111122222222223333333333444444444455555555556666
 202 * 0123456789012345678901234567890123456789012345678901234567890123
 203 *
 204 * X Space-Switch event:
 205 * G Segment-Invalid Bit:  
 206 * P Private-Space Bit:    
 207 * S Storage-Alteration:
 208 * R Real space
 209 * TL Table-Length:
 210 *
 211 * A storage key has the following format:
 212 * | ACC |F|R|C|0|
 213 *  0   3 4 5 6 7
 214 * ACC: access key
 215 * F  : fetch protection bit
 216 * R  : referenced bit
 217 * C  : changed bit
 218 */
 219
 220/* Hardware bits in the page table entry */
 221#define _PAGE_RO        0x200           /* HW read-only bit  */
 222#define _PAGE_INVALID   0x400           /* HW invalid bit    */
 223
 224/* Software bits in the page table entry */
 225#define _PAGE_SWT       0x001           /* SW pte type bit t */
 226#define _PAGE_SWX       0x002           /* SW pte type bit x */
 227#define _PAGE_SPECIAL   0x004           /* SW associated with special page */
 228#define __HAVE_ARCH_PTE_SPECIAL
 229
 230/* Set of bits not changed in pte_modify */
 231#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_SPECIAL)
 232
 233/* Six different types of pages. */
 234#define _PAGE_TYPE_EMPTY        0x400
 235#define _PAGE_TYPE_NONE         0x401
 236#define _PAGE_TYPE_SWAP         0x403
 237#define _PAGE_TYPE_FILE         0x601   /* bit 0x002 is used for offset !! */
 238#define _PAGE_TYPE_RO           0x200
 239#define _PAGE_TYPE_RW           0x000
 240#define _PAGE_TYPE_EX_RO        0x202
 241#define _PAGE_TYPE_EX_RW        0x002
 242
 243/*
 244 * Only four types for huge pages, using the invalid bit and protection bit
 245 * of a segment table entry.
 246 */
 247#define _HPAGE_TYPE_EMPTY       0x020   /* _SEGMENT_ENTRY_INV */
 248#define _HPAGE_TYPE_NONE        0x220
 249#define _HPAGE_TYPE_RO          0x200   /* _SEGMENT_ENTRY_RO  */
 250#define _HPAGE_TYPE_RW          0x000
 251
 252/*
 253 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
 254 * pte_none and pte_file to find out the pte type WITHOUT holding the page
 255 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
 256 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
 257 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
 258 * This change is done while holding the lock, but the intermediate step
 259 * of a previously valid pte with the hw invalid bit set can be observed by
 260 * handle_pte_fault. That makes it necessary that all valid pte types with
 261 * the hw invalid bit set must be distinguishable from the four pte types
 262 * empty, none, swap and file.
 263 *
 264 *                      irxt  ipte  irxt
 265 * _PAGE_TYPE_EMPTY     1000   ->   1000
 266 * _PAGE_TYPE_NONE      1001   ->   1001
 267 * _PAGE_TYPE_SWAP      1011   ->   1011
 268 * _PAGE_TYPE_FILE      11?1   ->   11?1
 269 * _PAGE_TYPE_RO        0100   ->   1100
 270 * _PAGE_TYPE_RW        0000   ->   1000
 271 * _PAGE_TYPE_EX_RO     0110   ->   1110
 272 * _PAGE_TYPE_EX_RW     0010   ->   1010
 273 *
 274 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
 275 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
 276 * pte_file is true for bits combinations 1101, 1111
 277 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
 278 */
 279
 280/* Page status table bits for virtualization */
 281#define RCP_PCL_BIT     55
 282#define RCP_HR_BIT      54
 283#define RCP_HC_BIT      53
 284#define RCP_GR_BIT      50
 285#define RCP_GC_BIT      49
 286
 287/* User dirty bit for KVM's migration feature */
 288#define KVM_UD_BIT      47
 289
 290#ifndef __s390x__
 291
 292/* Bits in the segment table address-space-control-element */
 293#define _ASCE_SPACE_SWITCH      0x80000000UL    /* space switch event       */
 294#define _ASCE_ORIGIN_MASK       0x7ffff000UL    /* segment table origin     */
 295#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 296#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 297#define _ASCE_TABLE_LENGTH      0x7f    /* 128 x 64 entries = 8k            */
 298
 299/* Bits in the segment table entry */
 300#define _SEGMENT_ENTRY_ORIGIN   0x7fffffc0UL    /* page table origin        */
 301#define _SEGMENT_ENTRY_INV      0x20    /* invalid segment table entry      */
 302#define _SEGMENT_ENTRY_COMMON   0x10    /* common segment bit               */
 303#define _SEGMENT_ENTRY_PTL      0x0f    /* page table length                */
 304
 305#define _SEGMENT_ENTRY          (_SEGMENT_ENTRY_PTL)
 306#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INV)
 307
 308#else /* __s390x__ */
 309
 310/* Bits in the segment/region table address-space-control-element */
 311#define _ASCE_ORIGIN            ~0xfffUL/* segment table origin             */
 312#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 313#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 314#define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
 315#define _ASCE_REAL_SPACE        0x20    /* real space control               */
 316#define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
 317#define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
 318#define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
 319#define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
 320#define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
 321#define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
 322
 323/* Bits in the region table entry */
 324#define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
 325#define _REGION_ENTRY_INV       0x20    /* invalid region table entry       */
 326#define _REGION_ENTRY_TYPE_MASK 0x0c    /* region/segment table type mask   */
 327#define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
 328#define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
 329#define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
 330#define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
 331
 332#define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 333#define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
 334#define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 335#define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
 336#define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 337#define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
 338
 339/* Bits in the segment table entry */
 340#define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* segment table origin             */
 341#define _SEGMENT_ENTRY_RO       0x200   /* page protection bit              */
 342#define _SEGMENT_ENTRY_INV      0x20    /* invalid segment table entry      */
 343
 344#define _SEGMENT_ENTRY          (0)
 345#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INV)
 346
 347#define _SEGMENT_ENTRY_LARGE    0x400   /* STE-format control, large page   */
 348#define _SEGMENT_ENTRY_CO       0x100   /* change-recording override   */
 349
 350#endif /* __s390x__ */
 351
 352/*
 353 * A user page table pointer has the space-switch-event bit, the
 354 * private-space-control bit and the storage-alteration-event-control
 355 * bit set. A kernel page table pointer doesn't need them.
 356 */
 357#define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 358                                 _ASCE_ALT_EVENT)
 359
 360/* Bits int the storage key */
 361#define _PAGE_CHANGED    0x02          /* HW changed bit                   */
 362#define _PAGE_REFERENCED 0x04          /* HW referenced bit                */
 363
 364/*
 365 * Page protection definitions.
 366 */
 367#define PAGE_NONE       __pgprot(_PAGE_TYPE_NONE)
 368#define PAGE_RO         __pgprot(_PAGE_TYPE_RO)
 369#define PAGE_RW         __pgprot(_PAGE_TYPE_RW)
 370#define PAGE_EX_RO      __pgprot(_PAGE_TYPE_EX_RO)
 371#define PAGE_EX_RW      __pgprot(_PAGE_TYPE_EX_RW)
 372
 373#define PAGE_KERNEL     PAGE_RW
 374#define PAGE_COPY       PAGE_RO
 375
 376/*
 377 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
 378 * Write permission always implies read permission. In theory with a
 379 * primary/secondary page table execute only can be implemented but
 380 * it would cost an additional bit in the pte to distinguish all the
 381 * different pte types. To avoid that execute permission currently
 382 * implies read permission as well.
 383 */
 384         /*xwr*/
 385#define __P000  PAGE_NONE
 386#define __P001  PAGE_RO
 387#define __P010  PAGE_RO
 388#define __P011  PAGE_RO
 389#define __P100  PAGE_EX_RO
 390#define __P101  PAGE_EX_RO
 391#define __P110  PAGE_EX_RO
 392#define __P111  PAGE_EX_RO
 393
 394#define __S000  PAGE_NONE
 395#define __S001  PAGE_RO
 396#define __S010  PAGE_RW
 397#define __S011  PAGE_RW
 398#define __S100  PAGE_EX_RO
 399#define __S101  PAGE_EX_RO
 400#define __S110  PAGE_EX_RW
 401#define __S111  PAGE_EX_RW
 402
 403#ifndef __s390x__
 404# define PxD_SHADOW_SHIFT       1
 405#else /* __s390x__ */
 406# define PxD_SHADOW_SHIFT       2
 407#endif /* __s390x__ */
 408
 409static inline void *get_shadow_table(void *table)
 410{
 411        unsigned long addr, offset;
 412        struct page *page;
 413
 414        addr = (unsigned long) table;
 415        offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
 416        page = virt_to_page((void *)(addr ^ offset));
 417        return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
 418}
 419
 420/*
 421 * Certain architectures need to do special things when PTEs
 422 * within a page table are directly modified.  Thus, the following
 423 * hook is made available.
 424 */
 425static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 426                              pte_t *ptep, pte_t entry)
 427{
 428        *ptep = entry;
 429        if (mm->context.noexec) {
 430                if (!(pte_val(entry) & _PAGE_INVALID) &&
 431                    (pte_val(entry) & _PAGE_SWX))
 432                        pte_val(entry) |= _PAGE_RO;
 433                else
 434                        pte_val(entry) = _PAGE_TYPE_EMPTY;
 435                ptep[PTRS_PER_PTE] = entry;
 436        }
 437}
 438
 439/*
 440 * pgd/pmd/pte query functions
 441 */
 442#ifndef __s390x__
 443
 444static inline int pgd_present(pgd_t pgd) { return 1; }
 445static inline int pgd_none(pgd_t pgd)    { return 0; }
 446static inline int pgd_bad(pgd_t pgd)     { return 0; }
 447
 448static inline int pud_present(pud_t pud) { return 1; }
 449static inline int pud_none(pud_t pud)    { return 0; }
 450static inline int pud_bad(pud_t pud)     { return 0; }
 451
 452#else /* __s390x__ */
 453
 454static inline int pgd_present(pgd_t pgd)
 455{
 456        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 457                return 1;
 458        return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 459}
 460
 461static inline int pgd_none(pgd_t pgd)
 462{
 463        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 464                return 0;
 465        return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
 466}
 467
 468static inline int pgd_bad(pgd_t pgd)
 469{
 470        /*
 471         * With dynamic page table levels the pgd can be a region table
 472         * entry or a segment table entry. Check for the bit that are
 473         * invalid for either table entry.
 474         */
 475        unsigned long mask =
 476                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
 477                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 478        return (pgd_val(pgd) & mask) != 0;
 479}
 480
 481static inline int pud_present(pud_t pud)
 482{
 483        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 484                return 1;
 485        return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 486}
 487
 488static inline int pud_none(pud_t pud)
 489{
 490        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 491                return 0;
 492        return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
 493}
 494
 495static inline int pud_bad(pud_t pud)
 496{
 497        /*
 498         * With dynamic page table levels the pud can be a region table
 499         * entry or a segment table entry. Check for the bit that are
 500         * invalid for either table entry.
 501         */
 502        unsigned long mask =
 503                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
 504                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 505        return (pud_val(pud) & mask) != 0;
 506}
 507
 508#endif /* __s390x__ */
 509
 510static inline int pmd_present(pmd_t pmd)
 511{
 512        return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
 513}
 514
 515static inline int pmd_none(pmd_t pmd)
 516{
 517        return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
 518}
 519
 520static inline int pmd_bad(pmd_t pmd)
 521{
 522        unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
 523        return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
 524}
 525
 526static inline int pte_none(pte_t pte)
 527{
 528        return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
 529}
 530
 531static inline int pte_present(pte_t pte)
 532{
 533        unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
 534        return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
 535                (!(pte_val(pte) & _PAGE_INVALID) &&
 536                 !(pte_val(pte) & _PAGE_SWT));
 537}
 538
 539static inline int pte_file(pte_t pte)
 540{
 541        unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
 542        return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
 543}
 544
 545static inline int pte_special(pte_t pte)
 546{
 547        return (pte_val(pte) & _PAGE_SPECIAL);
 548}
 549
 550#define __HAVE_ARCH_PTE_SAME
 551#define pte_same(a,b)  (pte_val(a) == pte_val(b))
 552
 553static inline void rcp_lock(pte_t *ptep)
 554{
 555#ifdef CONFIG_PGSTE
 556        unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
 557        preempt_disable();
 558        while (test_and_set_bit(RCP_PCL_BIT, pgste))
 559                ;
 560#endif
 561}
 562
 563static inline void rcp_unlock(pte_t *ptep)
 564{
 565#ifdef CONFIG_PGSTE
 566        unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
 567        clear_bit(RCP_PCL_BIT, pgste);
 568        preempt_enable();
 569#endif
 570}
 571
 572/* forward declaration for SetPageUptodate in page-flags.h*/
 573static inline void page_clear_dirty(struct page *page);
 574#include <linux/page-flags.h>
 575
 576static inline void ptep_rcp_copy(pte_t *ptep)
 577{
 578#ifdef CONFIG_PGSTE
 579        struct page *page = virt_to_page(pte_val(*ptep));
 580        unsigned int skey;
 581        unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
 582
 583        skey = page_get_storage_key(page_to_phys(page));
 584        if (skey & _PAGE_CHANGED) {
 585                set_bit_simple(RCP_GC_BIT, pgste);
 586                set_bit_simple(KVM_UD_BIT, pgste);
 587        }
 588        if (skey & _PAGE_REFERENCED)
 589                set_bit_simple(RCP_GR_BIT, pgste);
 590        if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
 591                SetPageDirty(page);
 592                set_bit_simple(KVM_UD_BIT, pgste);
 593        }
 594        if (test_and_clear_bit_simple(RCP_HR_BIT, pgste))
 595                SetPageReferenced(page);
 596#endif
 597}
 598
 599/*
 600 * query functions pte_write/pte_dirty/pte_young only work if
 601 * pte_present() is true. Undefined behaviour if not..
 602 */
 603static inline int pte_write(pte_t pte)
 604{
 605        return (pte_val(pte) & _PAGE_RO) == 0;
 606}
 607
 608static inline int pte_dirty(pte_t pte)
 609{
 610        /* A pte is neither clean nor dirty on s/390. The dirty bit
 611         * is in the storage key. See page_test_and_clear_dirty for
 612         * details.
 613         */
 614        return 0;
 615}
 616
 617static inline int pte_young(pte_t pte)
 618{
 619        /* A pte is neither young nor old on s/390. The young bit
 620         * is in the storage key. See page_test_and_clear_young for
 621         * details.
 622         */
 623        return 0;
 624}
 625
 626/*
 627 * pgd/pmd/pte modification functions
 628 */
 629
 630#ifndef __s390x__
 631
 632#define pgd_clear(pgd)          do { } while (0)
 633#define pud_clear(pud)          do { } while (0)
 634
 635#else /* __s390x__ */
 636
 637static inline void pgd_clear_kernel(pgd_t * pgd)
 638{
 639        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 640                pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
 641}
 642
 643static inline void pgd_clear(pgd_t * pgd)
 644{
 645        pgd_t *shadow = get_shadow_table(pgd);
 646
 647        pgd_clear_kernel(pgd);
 648        if (shadow)
 649                pgd_clear_kernel(shadow);
 650}
 651
 652static inline void pud_clear_kernel(pud_t *pud)
 653{
 654        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 655                pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 656}
 657
 658static inline void pud_clear(pud_t *pud)
 659{
 660        pud_t *shadow = get_shadow_table(pud);
 661
 662        pud_clear_kernel(pud);
 663        if (shadow)
 664                pud_clear_kernel(shadow);
 665}
 666
 667#endif /* __s390x__ */
 668
 669static inline void pmd_clear_kernel(pmd_t * pmdp)
 670{
 671        pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
 672}
 673
 674static inline void pmd_clear(pmd_t *pmd)
 675{
 676        pmd_t *shadow = get_shadow_table(pmd);
 677
 678        pmd_clear_kernel(pmd);
 679        if (shadow)
 680                pmd_clear_kernel(shadow);
 681}
 682
 683static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 684{
 685        pte_val(*ptep) = _PAGE_TYPE_EMPTY;
 686        if (mm->context.noexec)
 687                pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
 688}
 689
 690/*
 691 * The following pte modification functions only work if
 692 * pte_present() is true. Undefined behaviour if not..
 693 */
 694static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 695{
 696        pte_val(pte) &= _PAGE_CHG_MASK;
 697        pte_val(pte) |= pgprot_val(newprot);
 698        return pte;
 699}
 700
 701static inline pte_t pte_wrprotect(pte_t pte)
 702{
 703        /* Do not clobber _PAGE_TYPE_NONE pages!  */
 704        if (!(pte_val(pte) & _PAGE_INVALID))
 705                pte_val(pte) |= _PAGE_RO;
 706        return pte;
 707}
 708
 709static inline pte_t pte_mkwrite(pte_t pte)
 710{
 711        pte_val(pte) &= ~_PAGE_RO;
 712        return pte;
 713}
 714
 715static inline pte_t pte_mkclean(pte_t pte)
 716{
 717        /* The only user of pte_mkclean is the fork() code.
 718           We must *not* clear the *physical* page dirty bit
 719           just because fork() wants to clear the dirty bit in
 720           *one* of the page's mappings.  So we just do nothing. */
 721        return pte;
 722}
 723
 724static inline pte_t pte_mkdirty(pte_t pte)
 725{
 726        /* We do not explicitly set the dirty bit because the
 727         * sske instruction is slow. It is faster to let the
 728         * next instruction set the dirty bit.
 729         */
 730        return pte;
 731}
 732
 733static inline pte_t pte_mkold(pte_t pte)
 734{
 735        /* S/390 doesn't keep its dirty/referenced bit in the pte.
 736         * There is no point in clearing the real referenced bit.
 737         */
 738        return pte;
 739}
 740
 741static inline pte_t pte_mkyoung(pte_t pte)
 742{
 743        /* S/390 doesn't keep its dirty/referenced bit in the pte.
 744         * There is no point in setting the real referenced bit.
 745         */
 746        return pte;
 747}
 748
 749static inline pte_t pte_mkspecial(pte_t pte)
 750{
 751        pte_val(pte) |= _PAGE_SPECIAL;
 752        return pte;
 753}
 754
 755#ifdef CONFIG_PGSTE
 756/*
 757 * Get (and clear) the user dirty bit for a PTE.
 758 */
 759static inline int kvm_s390_test_and_clear_page_dirty(struct mm_struct *mm,
 760                                                     pte_t *ptep)
 761{
 762        int dirty;
 763        unsigned long *pgste;
 764        struct page *page;
 765        unsigned int skey;
 766
 767        if (!mm->context.has_pgste)
 768                return -EINVAL;
 769        rcp_lock(ptep);
 770        pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
 771        page = virt_to_page(pte_val(*ptep));
 772        skey = page_get_storage_key(page_to_phys(page));
 773        if (skey & _PAGE_CHANGED) {
 774                set_bit_simple(RCP_GC_BIT, pgste);
 775                set_bit_simple(KVM_UD_BIT, pgste);
 776        }
 777        if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
 778                SetPageDirty(page);
 779                set_bit_simple(KVM_UD_BIT, pgste);
 780        }
 781        dirty = test_and_clear_bit_simple(KVM_UD_BIT, pgste);
 782        if (skey & _PAGE_CHANGED)
 783                page_clear_dirty(page);
 784        rcp_unlock(ptep);
 785        return dirty;
 786}
 787#endif
 788
 789#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 790static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 791                                            unsigned long addr, pte_t *ptep)
 792{
 793#ifdef CONFIG_PGSTE
 794        unsigned long physpage;
 795        int young;
 796        unsigned long *pgste;
 797
 798        if (!vma->vm_mm->context.has_pgste)
 799                return 0;
 800        physpage = pte_val(*ptep) & PAGE_MASK;
 801        pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
 802
 803        young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0);
 804        rcp_lock(ptep);
 805        if (young)
 806                set_bit_simple(RCP_GR_BIT, pgste);
 807        young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste);
 808        rcp_unlock(ptep);
 809        return young;
 810#endif
 811        return 0;
 812}
 813
 814#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 815static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
 816                                         unsigned long address, pte_t *ptep)
 817{
 818        /* No need to flush TLB
 819         * On s390 reference bits are in storage key and never in TLB
 820         * With virtualization we handle the reference bit, without we
 821         * we can simply return */
 822#ifdef CONFIG_PGSTE
 823        return ptep_test_and_clear_young(vma, address, ptep);
 824#endif
 825        return 0;
 826}
 827
 828static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
 829{
 830        if (!(pte_val(*ptep) & _PAGE_INVALID)) {
 831#ifndef __s390x__
 832                /* pto must point to the start of the segment table */
 833                pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
 834#else
 835                /* ipte in zarch mode can do the math */
 836                pte_t *pto = ptep;
 837#endif
 838                asm volatile(
 839                        "       ipte    %2,%3"
 840                        : "=m" (*ptep) : "m" (*ptep),
 841                          "a" (pto), "a" (address));
 842        }
 843}
 844
 845static inline void ptep_invalidate(struct mm_struct *mm,
 846                                   unsigned long address, pte_t *ptep)
 847{
 848        if (mm->context.has_pgste) {
 849                rcp_lock(ptep);
 850                __ptep_ipte(address, ptep);
 851                ptep_rcp_copy(ptep);
 852                pte_val(*ptep) = _PAGE_TYPE_EMPTY;
 853                rcp_unlock(ptep);
 854                return;
 855        }
 856        __ptep_ipte(address, ptep);
 857        pte_val(*ptep) = _PAGE_TYPE_EMPTY;
 858        if (mm->context.noexec) {
 859                __ptep_ipte(address, ptep + PTRS_PER_PTE);
 860                pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY;
 861        }
 862}
 863
 864/*
 865 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
 866 * both clear the TLB for the unmapped pte. The reason is that
 867 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
 868 * to modify an active pte. The sequence is
 869 *   1) ptep_get_and_clear
 870 *   2) set_pte_at
 871 *   3) flush_tlb_range
 872 * On s390 the tlb needs to get flushed with the modification of the pte
 873 * if the pte is active. The only way how this can be implemented is to
 874 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
 875 * is a nop.
 876 */
 877#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 878#define ptep_get_and_clear(__mm, __address, __ptep)                     \
 879({                                                                      \
 880        pte_t __pte = *(__ptep);                                        \
 881        if (atomic_read(&(__mm)->mm_users) > 1 ||                       \
 882            (__mm) != current->active_mm)                               \
 883                ptep_invalidate(__mm, __address, __ptep);               \
 884        else                                                            \
 885                pte_clear((__mm), (__address), (__ptep));               \
 886        __pte;                                                          \
 887})
 888
 889#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
 890static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
 891                                     unsigned long address, pte_t *ptep)
 892{
 893        pte_t pte = *ptep;
 894        ptep_invalidate(vma->vm_mm, address, ptep);
 895        return pte;
 896}
 897
 898/*
 899 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
 900 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
 901 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
 902 * cannot be accessed while the batched unmap is running. In this case
 903 * full==1 and a simple pte_clear is enough. See tlb.h.
 904 */
 905#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 906static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 907                                            unsigned long addr,
 908                                            pte_t *ptep, int full)
 909{
 910        pte_t pte = *ptep;
 911
 912        if (full)
 913                pte_clear(mm, addr, ptep);
 914        else
 915                ptep_invalidate(mm, addr, ptep);
 916        return pte;
 917}
 918
 919#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 920#define ptep_set_wrprotect(__mm, __addr, __ptep)                        \
 921({                                                                      \
 922        pte_t __pte = *(__ptep);                                        \
 923        if (pte_write(__pte)) {                                         \
 924                if (atomic_read(&(__mm)->mm_users) > 1 ||               \
 925                    (__mm) != current->active_mm)                       \
 926                        ptep_invalidate(__mm, __addr, __ptep);          \
 927                set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
 928        }                                                               \
 929})
 930
 931#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 932#define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty)  \
 933({                                                                      \
 934        int __changed = !pte_same(*(__ptep), __entry);                  \
 935        if (__changed) {                                                \
 936                ptep_invalidate((__vma)->vm_mm, __addr, __ptep);        \
 937                set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry);    \
 938        }                                                               \
 939        __changed;                                                      \
 940})
 941
 942/*
 943 * Test and clear dirty bit in storage key.
 944 * We can't clear the changed bit atomically. This is a potential
 945 * race against modification of the referenced bit. This function
 946 * should therefore only be called if it is not mapped in any
 947 * address space.
 948 */
 949#define __HAVE_ARCH_PAGE_TEST_DIRTY
 950static inline int page_test_dirty(struct page *page)
 951{
 952        return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
 953}
 954
 955#define __HAVE_ARCH_PAGE_CLEAR_DIRTY
 956static inline void page_clear_dirty(struct page *page)
 957{
 958        page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
 959}
 960
 961/*
 962 * Test and clear referenced bit in storage key.
 963 */
 964#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
 965static inline int page_test_and_clear_young(struct page *page)
 966{
 967        unsigned long physpage = page_to_phys(page);
 968        int ccode;
 969
 970        asm volatile(
 971                "       rrbe    0,%1\n"
 972                "       ipm     %0\n"
 973                "       srl     %0,28\n"
 974                : "=d" (ccode) : "a" (physpage) : "cc" );
 975        return ccode & 2;
 976}
 977
 978/*
 979 * Conversion functions: convert a page and protection to a page entry,
 980 * and a page entry and page directory to the page they refer to.
 981 */
 982static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
 983{
 984        pte_t __pte;
 985        pte_val(__pte) = physpage + pgprot_val(pgprot);
 986        return __pte;
 987}
 988
 989static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
 990{
 991        unsigned long physpage = page_to_phys(page);
 992
 993        return mk_pte_phys(physpage, pgprot);
 994}
 995
 996#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 997#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
 998#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 999#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1000
1001#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1002#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1003
1004#ifndef __s390x__
1005
1006#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1007#define pud_deref(pmd) ({ BUG(); 0UL; })
1008#define pgd_deref(pmd) ({ BUG(); 0UL; })
1009
1010#define pud_offset(pgd, address) ((pud_t *) pgd)
1011#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1012
1013#else /* __s390x__ */
1014
1015#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1016#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1017#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1018
1019static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1020{
1021        pud_t *pud = (pud_t *) pgd;
1022        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1023                pud = (pud_t *) pgd_deref(*pgd);
1024        return pud  + pud_index(address);
1025}
1026
1027static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1028{
1029        pmd_t *pmd = (pmd_t *) pud;
1030        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1031                pmd = (pmd_t *) pud_deref(*pud);
1032        return pmd + pmd_index(address);
1033}
1034
1035#endif /* __s390x__ */
1036
1037#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1038#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1039#define pte_page(x) pfn_to_page(pte_pfn(x))
1040
1041#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1042
1043/* Find an entry in the lowest level page table.. */
1044#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1045#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1046#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1047#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
1048#define pte_unmap(pte) do { } while (0)
1049#define pte_unmap_nested(pte) do { } while (0)
1050
1051/*
1052 * 31 bit swap entry format:
1053 * A page-table entry has some bits we have to treat in a special way.
1054 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1055 * exception will occur instead of a page translation exception. The
1056 * specifiation exception has the bad habit not to store necessary
1057 * information in the lowcore.
1058 * Bit 21 and bit 22 are the page invalid bit and the page protection
1059 * bit. We set both to indicate a swapped page.
1060 * Bit 30 and 31 are used to distinguish the different page types. For
1061 * a swapped page these bits need to be zero.
1062 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1063 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1064 * plus 24 for the offset.
1065 * 0|     offset        |0110|o|type |00|
1066 * 0 0000000001111111111 2222 2 22222 33
1067 * 0 1234567890123456789 0123 4 56789 01
1068 *
1069 * 64 bit swap entry format:
1070 * A page-table entry has some bits we have to treat in a special way.
1071 * Bits 52 and bit 55 have to be zero, otherwise an specification
1072 * exception will occur instead of a page translation exception. The
1073 * specifiation exception has the bad habit not to store necessary
1074 * information in the lowcore.
1075 * Bit 53 and bit 54 are the page invalid bit and the page protection
1076 * bit. We set both to indicate a swapped page.
1077 * Bit 62 and 63 are used to distinguish the different page types. For
1078 * a swapped page these bits need to be zero.
1079 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1080 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1081 * plus 56 for the offset.
1082 * |                      offset                        |0110|o|type |00|
1083 *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1084 *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1085 */
1086#ifndef __s390x__
1087#define __SWP_OFFSET_MASK (~0UL >> 12)
1088#else
1089#define __SWP_OFFSET_MASK (~0UL >> 11)
1090#endif
1091static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1092{
1093        pte_t pte;
1094        offset &= __SWP_OFFSET_MASK;
1095        pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1096                ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1097        return pte;
1098}
1099
1100#define __swp_type(entry)       (((entry).val >> 2) & 0x1f)
1101#define __swp_offset(entry)     (((entry).val >> 11) | (((entry).val >> 7) & 1))
1102#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1103
1104#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1105#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
1106
1107#ifndef __s390x__
1108# define PTE_FILE_MAX_BITS      26
1109#else /* __s390x__ */
1110# define PTE_FILE_MAX_BITS      59
1111#endif /* __s390x__ */
1112
1113#define pte_to_pgoff(__pte) \
1114        ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1115
1116#define pgoff_to_pte(__off) \
1117        ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1118                   | _PAGE_TYPE_FILE })
1119
1120#endif /* !__ASSEMBLY__ */
1121
1122#define kern_addr_valid(addr)   (1)
1123
1124extern int vmem_add_mapping(unsigned long start, unsigned long size);
1125extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1126extern int s390_enable_sie(void);
1127
1128/*
1129 * No page table caches to initialise
1130 */
1131#define pgtable_cache_init()    do { } while (0)
1132
1133#include <asm-generic/pgtable.h>
1134
1135#endif /* _S390_PAGE_H */
1136