linux/arch/s390/kernel/kprobes.c
<<
>>
Prefs
   1/*
   2 *  Kernel Probes (KProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2002, 2006
  19 *
  20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  21 */
  22
  23#include <linux/kprobes.h>
  24#include <linux/ptrace.h>
  25#include <linux/preempt.h>
  26#include <linux/stop_machine.h>
  27#include <linux/kdebug.h>
  28#include <linux/uaccess.h>
  29#include <asm/cacheflush.h>
  30#include <asm/sections.h>
  31#include <linux/module.h>
  32
  33DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  34DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  35
  36struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
  37
  38int __kprobes arch_prepare_kprobe(struct kprobe *p)
  39{
  40        /* Make sure the probe isn't going on a difficult instruction */
  41        if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
  42                return -EINVAL;
  43
  44        if ((unsigned long)p->addr & 0x01)
  45                return -EINVAL;
  46
  47        /* Use the get_insn_slot() facility for correctness */
  48        if (!(p->ainsn.insn = get_insn_slot()))
  49                return -ENOMEM;
  50
  51        memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
  52
  53        get_instruction_type(&p->ainsn);
  54        p->opcode = *p->addr;
  55        return 0;
  56}
  57
  58int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
  59{
  60        switch (*(__u8 *) instruction) {
  61        case 0x0c:      /* bassm */
  62        case 0x0b:      /* bsm   */
  63        case 0x83:      /* diag  */
  64        case 0x44:      /* ex    */
  65                return -EINVAL;
  66        }
  67        switch (*(__u16 *) instruction) {
  68        case 0x0101:    /* pr    */
  69        case 0xb25a:    /* bsa   */
  70        case 0xb240:    /* bakr  */
  71        case 0xb258:    /* bsg   */
  72        case 0xb218:    /* pc    */
  73        case 0xb228:    /* pt    */
  74                return -EINVAL;
  75        }
  76        return 0;
  77}
  78
  79void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
  80{
  81        /* default fixup method */
  82        ainsn->fixup = FIXUP_PSW_NORMAL;
  83
  84        /* save r1 operand */
  85        ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
  86
  87        /* save the instruction length (pop 5-5) in bytes */
  88        switch (*(__u8 *) (ainsn->insn) >> 6) {
  89        case 0:
  90                ainsn->ilen = 2;
  91                break;
  92        case 1:
  93        case 2:
  94                ainsn->ilen = 4;
  95                break;
  96        case 3:
  97                ainsn->ilen = 6;
  98                break;
  99        }
 100
 101        switch (*(__u8 *) ainsn->insn) {
 102        case 0x05:      /* balr */
 103        case 0x0d:      /* basr */
 104                ainsn->fixup = FIXUP_RETURN_REGISTER;
 105                /* if r2 = 0, no branch will be taken */
 106                if ((*ainsn->insn & 0x0f) == 0)
 107                        ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
 108                break;
 109        case 0x06:      /* bctr */
 110        case 0x07:      /* bcr  */
 111                ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
 112                break;
 113        case 0x45:      /* bal  */
 114        case 0x4d:      /* bas  */
 115                ainsn->fixup = FIXUP_RETURN_REGISTER;
 116                break;
 117        case 0x47:      /* bc   */
 118        case 0x46:      /* bct  */
 119        case 0x86:      /* bxh  */
 120        case 0x87:      /* bxle */
 121                ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
 122                break;
 123        case 0x82:      /* lpsw */
 124                ainsn->fixup = FIXUP_NOT_REQUIRED;
 125                break;
 126        case 0xb2:      /* lpswe */
 127                if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
 128                        ainsn->fixup = FIXUP_NOT_REQUIRED;
 129                }
 130                break;
 131        case 0xa7:      /* bras */
 132                if ((*ainsn->insn & 0x0f) == 0x05) {
 133                        ainsn->fixup |= FIXUP_RETURN_REGISTER;
 134                }
 135                break;
 136        case 0xc0:
 137                if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
 138                        || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
 139                ainsn->fixup |= FIXUP_RETURN_REGISTER;
 140                break;
 141        case 0xeb:
 142                if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||   /* bxhg  */
 143                        *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
 144                        ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
 145                }
 146                break;
 147        case 0xe3:      /* bctg */
 148                if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
 149                        ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
 150                }
 151                break;
 152        }
 153}
 154
 155static int __kprobes swap_instruction(void *aref)
 156{
 157        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 158        unsigned long status = kcb->kprobe_status;
 159        struct ins_replace_args *args = aref;
 160        int rc;
 161
 162        kcb->kprobe_status = KPROBE_SWAP_INST;
 163        rc = probe_kernel_write(args->ptr, &args->new, sizeof(args->new));
 164        kcb->kprobe_status = status;
 165        return rc;
 166}
 167
 168void __kprobes arch_arm_kprobe(struct kprobe *p)
 169{
 170        struct ins_replace_args args;
 171
 172        args.ptr = p->addr;
 173        args.old = p->opcode;
 174        args.new = BREAKPOINT_INSTRUCTION;
 175        stop_machine(swap_instruction, &args, NULL);
 176}
 177
 178void __kprobes arch_disarm_kprobe(struct kprobe *p)
 179{
 180        struct ins_replace_args args;
 181
 182        args.ptr = p->addr;
 183        args.old = BREAKPOINT_INSTRUCTION;
 184        args.new = p->opcode;
 185        stop_machine(swap_instruction, &args, NULL);
 186}
 187
 188void __kprobes arch_remove_kprobe(struct kprobe *p)
 189{
 190        if (p->ainsn.insn) {
 191                free_insn_slot(p->ainsn.insn, 0);
 192                p->ainsn.insn = NULL;
 193        }
 194}
 195
 196static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
 197{
 198        per_cr_bits kprobe_per_regs[1];
 199
 200        memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
 201        regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
 202
 203        /* Set up the per control reg info, will pass to lctl */
 204        kprobe_per_regs[0].em_instruction_fetch = 1;
 205        kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
 206        kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
 207
 208        /* Set the PER control regs, turns on single step for this address */
 209        __ctl_load(kprobe_per_regs, 9, 11);
 210        regs->psw.mask |= PSW_MASK_PER;
 211        regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
 212}
 213
 214static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 215{
 216        kcb->prev_kprobe.kp = kprobe_running();
 217        kcb->prev_kprobe.status = kcb->kprobe_status;
 218        kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
 219        memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
 220                                        sizeof(kcb->kprobe_saved_ctl));
 221}
 222
 223static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 224{
 225        __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
 226        kcb->kprobe_status = kcb->prev_kprobe.status;
 227        kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
 228        memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
 229                                        sizeof(kcb->kprobe_saved_ctl));
 230}
 231
 232static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 233                                                struct kprobe_ctlblk *kcb)
 234{
 235        __get_cpu_var(current_kprobe) = p;
 236        /* Save the interrupt and per flags */
 237        kcb->kprobe_saved_imask = regs->psw.mask &
 238            (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
 239        /* Save the control regs that govern PER */
 240        __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
 241}
 242
 243void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 244                                        struct pt_regs *regs)
 245{
 246        ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
 247
 248        /* Replace the return addr with trampoline addr */
 249        regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
 250}
 251
 252static int __kprobes kprobe_handler(struct pt_regs *regs)
 253{
 254        struct kprobe *p;
 255        int ret = 0;
 256        unsigned long *addr = (unsigned long *)
 257                ((regs->psw.addr & PSW_ADDR_INSN) - 2);
 258        struct kprobe_ctlblk *kcb;
 259
 260        /*
 261         * We don't want to be preempted for the entire
 262         * duration of kprobe processing
 263         */
 264        preempt_disable();
 265        kcb = get_kprobe_ctlblk();
 266
 267        /* Check we're not actually recursing */
 268        if (kprobe_running()) {
 269                p = get_kprobe(addr);
 270                if (p) {
 271                        if (kcb->kprobe_status == KPROBE_HIT_SS &&
 272                            *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
 273                                regs->psw.mask &= ~PSW_MASK_PER;
 274                                regs->psw.mask |= kcb->kprobe_saved_imask;
 275                                goto no_kprobe;
 276                        }
 277                        /* We have reentered the kprobe_handler(), since
 278                         * another probe was hit while within the handler.
 279                         * We here save the original kprobes variables and
 280                         * just single step on the instruction of the new probe
 281                         * without calling any user handlers.
 282                         */
 283                        save_previous_kprobe(kcb);
 284                        set_current_kprobe(p, regs, kcb);
 285                        kprobes_inc_nmissed_count(p);
 286                        prepare_singlestep(p, regs);
 287                        kcb->kprobe_status = KPROBE_REENTER;
 288                        return 1;
 289                } else {
 290                        p = __get_cpu_var(current_kprobe);
 291                        if (p->break_handler && p->break_handler(p, regs)) {
 292                                goto ss_probe;
 293                        }
 294                }
 295                goto no_kprobe;
 296        }
 297
 298        p = get_kprobe(addr);
 299        if (!p)
 300                /*
 301                 * No kprobe at this address. The fault has not been
 302                 * caused by a kprobe breakpoint. The race of breakpoint
 303                 * vs. kprobe remove does not exist because on s390 we
 304                 * use stop_machine to arm/disarm the breakpoints.
 305                 */
 306                goto no_kprobe;
 307
 308        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 309        set_current_kprobe(p, regs, kcb);
 310        if (p->pre_handler && p->pre_handler(p, regs))
 311                /* handler has already set things up, so skip ss setup */
 312                return 1;
 313
 314ss_probe:
 315        prepare_singlestep(p, regs);
 316        kcb->kprobe_status = KPROBE_HIT_SS;
 317        return 1;
 318
 319no_kprobe:
 320        preempt_enable_no_resched();
 321        return ret;
 322}
 323
 324/*
 325 * Function return probe trampoline:
 326 *      - init_kprobes() establishes a probepoint here
 327 *      - When the probed function returns, this probe
 328 *              causes the handlers to fire
 329 */
 330static void __used kretprobe_trampoline_holder(void)
 331{
 332        asm volatile(".global kretprobe_trampoline\n"
 333                     "kretprobe_trampoline: bcr 0,0\n");
 334}
 335
 336/*
 337 * Called when the probe at kretprobe trampoline is hit
 338 */
 339static int __kprobes trampoline_probe_handler(struct kprobe *p,
 340                                              struct pt_regs *regs)
 341{
 342        struct kretprobe_instance *ri = NULL;
 343        struct hlist_head *head, empty_rp;
 344        struct hlist_node *node, *tmp;
 345        unsigned long flags, orig_ret_address = 0;
 346        unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 347
 348        INIT_HLIST_HEAD(&empty_rp);
 349        kretprobe_hash_lock(current, &head, &flags);
 350
 351        /*
 352         * It is possible to have multiple instances associated with a given
 353         * task either because an multiple functions in the call path
 354         * have a return probe installed on them, and/or more than one return
 355         * return probe was registered for a target function.
 356         *
 357         * We can handle this because:
 358         *     - instances are always inserted at the head of the list
 359         *     - when multiple return probes are registered for the same
 360         *       function, the first instance's ret_addr will point to the
 361         *       real return address, and all the rest will point to
 362         *       kretprobe_trampoline
 363         */
 364        hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 365                if (ri->task != current)
 366                        /* another task is sharing our hash bucket */
 367                        continue;
 368
 369                if (ri->rp && ri->rp->handler)
 370                        ri->rp->handler(ri, regs);
 371
 372                orig_ret_address = (unsigned long)ri->ret_addr;
 373                recycle_rp_inst(ri, &empty_rp);
 374
 375                if (orig_ret_address != trampoline_address) {
 376                        /*
 377                         * This is the real return address. Any other
 378                         * instances associated with this task are for
 379                         * other calls deeper on the call stack
 380                         */
 381                        break;
 382                }
 383        }
 384        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 385        regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
 386
 387        reset_current_kprobe();
 388        kretprobe_hash_unlock(current, &flags);
 389        preempt_enable_no_resched();
 390
 391        hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
 392                hlist_del(&ri->hlist);
 393                kfree(ri);
 394        }
 395        /*
 396         * By returning a non-zero value, we are telling
 397         * kprobe_handler() that we don't want the post_handler
 398         * to run (and have re-enabled preemption)
 399         */
 400        return 1;
 401}
 402
 403/*
 404 * Called after single-stepping.  p->addr is the address of the
 405 * instruction whose first byte has been replaced by the "breakpoint"
 406 * instruction.  To avoid the SMP problems that can occur when we
 407 * temporarily put back the original opcode to single-step, we
 408 * single-stepped a copy of the instruction.  The address of this
 409 * copy is p->ainsn.insn.
 410 */
 411static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
 412{
 413        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 414
 415        regs->psw.addr &= PSW_ADDR_INSN;
 416
 417        if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
 418                regs->psw.addr = (unsigned long)p->addr +
 419                                ((unsigned long)regs->psw.addr -
 420                                 (unsigned long)p->ainsn.insn);
 421
 422        if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
 423                if ((unsigned long)regs->psw.addr -
 424                    (unsigned long)p->ainsn.insn == p->ainsn.ilen)
 425                        regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
 426
 427        if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
 428                regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
 429                                                (regs->gprs[p->ainsn.reg] -
 430                                                (unsigned long)p->ainsn.insn))
 431                                                | PSW_ADDR_AMODE;
 432
 433        regs->psw.addr |= PSW_ADDR_AMODE;
 434        /* turn off PER mode */
 435        regs->psw.mask &= ~PSW_MASK_PER;
 436        /* Restore the original per control regs */
 437        __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
 438        regs->psw.mask |= kcb->kprobe_saved_imask;
 439}
 440
 441static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 442{
 443        struct kprobe *cur = kprobe_running();
 444        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 445
 446        if (!cur)
 447                return 0;
 448
 449        if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 450                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 451                cur->post_handler(cur, regs, 0);
 452        }
 453
 454        resume_execution(cur, regs);
 455
 456        /*Restore back the original saved kprobes variables and continue. */
 457        if (kcb->kprobe_status == KPROBE_REENTER) {
 458                restore_previous_kprobe(kcb);
 459                goto out;
 460        }
 461        reset_current_kprobe();
 462out:
 463        preempt_enable_no_resched();
 464
 465        /*
 466         * if somebody else is singlestepping across a probe point, psw mask
 467         * will have PER set, in which case, continue the remaining processing
 468         * of do_single_step, as if this is not a probe hit.
 469         */
 470        if (regs->psw.mask & PSW_MASK_PER) {
 471                return 0;
 472        }
 473
 474        return 1;
 475}
 476
 477int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 478{
 479        struct kprobe *cur = kprobe_running();
 480        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 481        const struct exception_table_entry *entry;
 482
 483        switch(kcb->kprobe_status) {
 484        case KPROBE_SWAP_INST:
 485                /* We are here because the instruction replacement failed */
 486                return 0;
 487        case KPROBE_HIT_SS:
 488        case KPROBE_REENTER:
 489                /*
 490                 * We are here because the instruction being single
 491                 * stepped caused a page fault. We reset the current
 492                 * kprobe and the nip points back to the probe address
 493                 * and allow the page fault handler to continue as a
 494                 * normal page fault.
 495                 */
 496                regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
 497                regs->psw.mask &= ~PSW_MASK_PER;
 498                regs->psw.mask |= kcb->kprobe_saved_imask;
 499                if (kcb->kprobe_status == KPROBE_REENTER)
 500                        restore_previous_kprobe(kcb);
 501                else
 502                        reset_current_kprobe();
 503                preempt_enable_no_resched();
 504                break;
 505        case KPROBE_HIT_ACTIVE:
 506        case KPROBE_HIT_SSDONE:
 507                /*
 508                 * We increment the nmissed count for accounting,
 509                 * we can also use npre/npostfault count for accouting
 510                 * these specific fault cases.
 511                 */
 512                kprobes_inc_nmissed_count(cur);
 513
 514                /*
 515                 * We come here because instructions in the pre/post
 516                 * handler caused the page_fault, this could happen
 517                 * if handler tries to access user space by
 518                 * copy_from_user(), get_user() etc. Let the
 519                 * user-specified handler try to fix it first.
 520                 */
 521                if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 522                        return 1;
 523
 524                /*
 525                 * In case the user-specified fault handler returned
 526                 * zero, try to fix up.
 527                 */
 528                entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
 529                if (entry) {
 530                        regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
 531                        return 1;
 532                }
 533
 534                /*
 535                 * fixup_exception() could not handle it,
 536                 * Let do_page_fault() fix it.
 537                 */
 538                break;
 539        default:
 540                break;
 541        }
 542        return 0;
 543}
 544
 545/*
 546 * Wrapper routine to for handling exceptions.
 547 */
 548int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 549                                       unsigned long val, void *data)
 550{
 551        struct die_args *args = (struct die_args *)data;
 552        int ret = NOTIFY_DONE;
 553
 554        switch (val) {
 555        case DIE_BPT:
 556                if (kprobe_handler(args->regs))
 557                        ret = NOTIFY_STOP;
 558                break;
 559        case DIE_SSTEP:
 560                if (post_kprobe_handler(args->regs))
 561                        ret = NOTIFY_STOP;
 562                break;
 563        case DIE_TRAP:
 564                /* kprobe_running() needs smp_processor_id() */
 565                preempt_disable();
 566                if (kprobe_running() &&
 567                    kprobe_fault_handler(args->regs, args->trapnr))
 568                        ret = NOTIFY_STOP;
 569                preempt_enable();
 570                break;
 571        default:
 572                break;
 573        }
 574        return ret;
 575}
 576
 577int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 578{
 579        struct jprobe *jp = container_of(p, struct jprobe, kp);
 580        unsigned long addr;
 581        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 582
 583        memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
 584
 585        /* setup return addr to the jprobe handler routine */
 586        regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
 587
 588        /* r14 is the function return address */
 589        kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
 590        /* r15 is the stack pointer */
 591        kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
 592        addr = (unsigned long)kcb->jprobe_saved_r15;
 593
 594        memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
 595               MIN_STACK_SIZE(addr));
 596        return 1;
 597}
 598
 599void __kprobes jprobe_return(void)
 600{
 601        asm volatile(".word 0x0002");
 602}
 603
 604void __kprobes jprobe_return_end(void)
 605{
 606        asm volatile("bcr 0,0");
 607}
 608
 609int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 610{
 611        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 612        unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
 613
 614        /* Put the regs back */
 615        memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
 616        /* put the stack back */
 617        memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
 618               MIN_STACK_SIZE(stack_addr));
 619        preempt_enable_no_resched();
 620        return 1;
 621}
 622
 623static struct kprobe trampoline_p = {
 624        .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
 625        .pre_handler = trampoline_probe_handler
 626};
 627
 628int __init arch_init_kprobes(void)
 629{
 630        return register_kprobe(&trampoline_p);
 631}
 632
 633int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 634{
 635        if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
 636                return 1;
 637        return 0;
 638}
 639