linux/arch/sparc/kernel/smp_64.c
<<
>>
Prefs
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/module.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/cpu.h>
  26
  27#include <asm/head.h>
  28#include <asm/ptrace.h>
  29#include <asm/atomic.h>
  30#include <asm/tlbflush.h>
  31#include <asm/mmu_context.h>
  32#include <asm/cpudata.h>
  33#include <asm/hvtramp.h>
  34#include <asm/io.h>
  35#include <asm/timer.h>
  36
  37#include <asm/irq.h>
  38#include <asm/irq_regs.h>
  39#include <asm/page.h>
  40#include <asm/pgtable.h>
  41#include <asm/oplib.h>
  42#include <asm/uaccess.h>
  43#include <asm/starfire.h>
  44#include <asm/tlb.h>
  45#include <asm/sections.h>
  46#include <asm/prom.h>
  47#include <asm/mdesc.h>
  48#include <asm/ldc.h>
  49#include <asm/hypervisor.h>
  50
  51#include "cpumap.h"
  52
  53int sparc64_multi_core __read_mostly;
  54
  55DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  56cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  57        { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  58
  59EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  60EXPORT_SYMBOL(cpu_core_map);
  61
  62static cpumask_t smp_commenced_mask;
  63
  64void smp_info(struct seq_file *m)
  65{
  66        int i;
  67        
  68        seq_printf(m, "State:\n");
  69        for_each_online_cpu(i)
  70                seq_printf(m, "CPU%d:\t\tonline\n", i);
  71}
  72
  73void smp_bogo(struct seq_file *m)
  74{
  75        int i;
  76        
  77        for_each_online_cpu(i)
  78                seq_printf(m,
  79                           "Cpu%dClkTck\t: %016lx\n",
  80                           i, cpu_data(i).clock_tick);
  81}
  82
  83extern void setup_sparc64_timer(void);
  84
  85static volatile unsigned long callin_flag = 0;
  86
  87void __cpuinit smp_callin(void)
  88{
  89        int cpuid = hard_smp_processor_id();
  90
  91        __local_per_cpu_offset = __per_cpu_offset(cpuid);
  92
  93        if (tlb_type == hypervisor)
  94                sun4v_ktsb_register();
  95
  96        __flush_tlb_all();
  97
  98        setup_sparc64_timer();
  99
 100        if (cheetah_pcache_forced_on)
 101                cheetah_enable_pcache();
 102
 103        local_irq_enable();
 104
 105        callin_flag = 1;
 106        __asm__ __volatile__("membar #Sync\n\t"
 107                             "flush  %%g6" : : : "memory");
 108
 109        /* Clear this or we will die instantly when we
 110         * schedule back to this idler...
 111         */
 112        current_thread_info()->new_child = 0;
 113
 114        /* Attach to the address space of init_task. */
 115        atomic_inc(&init_mm.mm_count);
 116        current->active_mm = &init_mm;
 117
 118        /* inform the notifiers about the new cpu */
 119        notify_cpu_starting(cpuid);
 120
 121        while (!cpu_isset(cpuid, smp_commenced_mask))
 122                rmb();
 123
 124        ipi_call_lock_irq();
 125        cpu_set(cpuid, cpu_online_map);
 126        ipi_call_unlock_irq();
 127
 128        /* idle thread is expected to have preempt disabled */
 129        preempt_disable();
 130}
 131
 132void cpu_panic(void)
 133{
 134        printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 135        panic("SMP bolixed\n");
 136}
 137
 138/* This tick register synchronization scheme is taken entirely from
 139 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 140 *
 141 * The only change I've made is to rework it so that the master
 142 * initiates the synchonization instead of the slave. -DaveM
 143 */
 144
 145#define MASTER  0
 146#define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
 147
 148#define NUM_ROUNDS      64      /* magic value */
 149#define NUM_ITERS       5       /* likewise */
 150
 151static DEFINE_SPINLOCK(itc_sync_lock);
 152static unsigned long go[SLAVE + 1];
 153
 154#define DEBUG_TICK_SYNC 0
 155
 156static inline long get_delta (long *rt, long *master)
 157{
 158        unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 159        unsigned long tcenter, t0, t1, tm;
 160        unsigned long i;
 161
 162        for (i = 0; i < NUM_ITERS; i++) {
 163                t0 = tick_ops->get_tick();
 164                go[MASTER] = 1;
 165                membar_safe("#StoreLoad");
 166                while (!(tm = go[SLAVE]))
 167                        rmb();
 168                go[SLAVE] = 0;
 169                wmb();
 170                t1 = tick_ops->get_tick();
 171
 172                if (t1 - t0 < best_t1 - best_t0)
 173                        best_t0 = t0, best_t1 = t1, best_tm = tm;
 174        }
 175
 176        *rt = best_t1 - best_t0;
 177        *master = best_tm - best_t0;
 178
 179        /* average best_t0 and best_t1 without overflow: */
 180        tcenter = (best_t0/2 + best_t1/2);
 181        if (best_t0 % 2 + best_t1 % 2 == 2)
 182                tcenter++;
 183        return tcenter - best_tm;
 184}
 185
 186void smp_synchronize_tick_client(void)
 187{
 188        long i, delta, adj, adjust_latency = 0, done = 0;
 189        unsigned long flags, rt, master_time_stamp, bound;
 190#if DEBUG_TICK_SYNC
 191        struct {
 192                long rt;        /* roundtrip time */
 193                long master;    /* master's timestamp */
 194                long diff;      /* difference between midpoint and master's timestamp */
 195                long lat;       /* estimate of itc adjustment latency */
 196        } t[NUM_ROUNDS];
 197#endif
 198
 199        go[MASTER] = 1;
 200
 201        while (go[MASTER])
 202                rmb();
 203
 204        local_irq_save(flags);
 205        {
 206                for (i = 0; i < NUM_ROUNDS; i++) {
 207                        delta = get_delta(&rt, &master_time_stamp);
 208                        if (delta == 0) {
 209                                done = 1;       /* let's lock on to this... */
 210                                bound = rt;
 211                        }
 212
 213                        if (!done) {
 214                                if (i > 0) {
 215                                        adjust_latency += -delta;
 216                                        adj = -delta + adjust_latency/4;
 217                                } else
 218                                        adj = -delta;
 219
 220                                tick_ops->add_tick(adj);
 221                        }
 222#if DEBUG_TICK_SYNC
 223                        t[i].rt = rt;
 224                        t[i].master = master_time_stamp;
 225                        t[i].diff = delta;
 226                        t[i].lat = adjust_latency/4;
 227#endif
 228                }
 229        }
 230        local_irq_restore(flags);
 231
 232#if DEBUG_TICK_SYNC
 233        for (i = 0; i < NUM_ROUNDS; i++)
 234                printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 235                       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 236#endif
 237
 238        printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 239               "(last diff %ld cycles, maxerr %lu cycles)\n",
 240               smp_processor_id(), delta, rt);
 241}
 242
 243static void smp_start_sync_tick_client(int cpu);
 244
 245static void smp_synchronize_one_tick(int cpu)
 246{
 247        unsigned long flags, i;
 248
 249        go[MASTER] = 0;
 250
 251        smp_start_sync_tick_client(cpu);
 252
 253        /* wait for client to be ready */
 254        while (!go[MASTER])
 255                rmb();
 256
 257        /* now let the client proceed into his loop */
 258        go[MASTER] = 0;
 259        membar_safe("#StoreLoad");
 260
 261        spin_lock_irqsave(&itc_sync_lock, flags);
 262        {
 263                for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 264                        while (!go[MASTER])
 265                                rmb();
 266                        go[MASTER] = 0;
 267                        wmb();
 268                        go[SLAVE] = tick_ops->get_tick();
 269                        membar_safe("#StoreLoad");
 270                }
 271        }
 272        spin_unlock_irqrestore(&itc_sync_lock, flags);
 273}
 274
 275#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 276/* XXX Put this in some common place. XXX */
 277static unsigned long kimage_addr_to_ra(void *p)
 278{
 279        unsigned long val = (unsigned long) p;
 280
 281        return kern_base + (val - KERNBASE);
 282}
 283
 284static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
 285{
 286        extern unsigned long sparc64_ttable_tl0;
 287        extern unsigned long kern_locked_tte_data;
 288        struct hvtramp_descr *hdesc;
 289        unsigned long trampoline_ra;
 290        struct trap_per_cpu *tb;
 291        u64 tte_vaddr, tte_data;
 292        unsigned long hv_err;
 293        int i;
 294
 295        hdesc = kzalloc(sizeof(*hdesc) +
 296                        (sizeof(struct hvtramp_mapping) *
 297                         num_kernel_image_mappings - 1),
 298                        GFP_KERNEL);
 299        if (!hdesc) {
 300                printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 301                       "hvtramp_descr.\n");
 302                return;
 303        }
 304        *descrp = hdesc;
 305
 306        hdesc->cpu = cpu;
 307        hdesc->num_mappings = num_kernel_image_mappings;
 308
 309        tb = &trap_block[cpu];
 310
 311        hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 312        hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 313
 314        hdesc->thread_reg = thread_reg;
 315
 316        tte_vaddr = (unsigned long) KERNBASE;
 317        tte_data = kern_locked_tte_data;
 318
 319        for (i = 0; i < hdesc->num_mappings; i++) {
 320                hdesc->maps[i].vaddr = tte_vaddr;
 321                hdesc->maps[i].tte   = tte_data;
 322                tte_vaddr += 0x400000;
 323                tte_data  += 0x400000;
 324        }
 325
 326        trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 327
 328        hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 329                                 kimage_addr_to_ra(&sparc64_ttable_tl0),
 330                                 __pa(hdesc));
 331        if (hv_err)
 332                printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 333                       "gives error %lu\n", hv_err);
 334}
 335#endif
 336
 337extern unsigned long sparc64_cpu_startup;
 338
 339/* The OBP cpu startup callback truncates the 3rd arg cookie to
 340 * 32-bits (I think) so to be safe we have it read the pointer
 341 * contained here so we work on >4GB machines. -DaveM
 342 */
 343static struct thread_info *cpu_new_thread = NULL;
 344
 345static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
 346{
 347        unsigned long entry =
 348                (unsigned long)(&sparc64_cpu_startup);
 349        unsigned long cookie =
 350                (unsigned long)(&cpu_new_thread);
 351        struct task_struct *p;
 352        void *descr = NULL;
 353        int timeout, ret;
 354
 355        p = fork_idle(cpu);
 356        if (IS_ERR(p))
 357                return PTR_ERR(p);
 358        callin_flag = 0;
 359        cpu_new_thread = task_thread_info(p);
 360
 361        if (tlb_type == hypervisor) {
 362#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 363                if (ldom_domaining_enabled)
 364                        ldom_startcpu_cpuid(cpu,
 365                                            (unsigned long) cpu_new_thread,
 366                                            &descr);
 367                else
 368#endif
 369                        prom_startcpu_cpuid(cpu, entry, cookie);
 370        } else {
 371                struct device_node *dp = of_find_node_by_cpuid(cpu);
 372
 373                prom_startcpu(dp->node, entry, cookie);
 374        }
 375
 376        for (timeout = 0; timeout < 50000; timeout++) {
 377                if (callin_flag)
 378                        break;
 379                udelay(100);
 380        }
 381
 382        if (callin_flag) {
 383                ret = 0;
 384        } else {
 385                printk("Processor %d is stuck.\n", cpu);
 386                ret = -ENODEV;
 387        }
 388        cpu_new_thread = NULL;
 389
 390        kfree(descr);
 391
 392        return ret;
 393}
 394
 395static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 396{
 397        u64 result, target;
 398        int stuck, tmp;
 399
 400        if (this_is_starfire) {
 401                /* map to real upaid */
 402                cpu = (((cpu & 0x3c) << 1) |
 403                        ((cpu & 0x40) >> 4) |
 404                        (cpu & 0x3));
 405        }
 406
 407        target = (cpu << 14) | 0x70;
 408again:
 409        /* Ok, this is the real Spitfire Errata #54.
 410         * One must read back from a UDB internal register
 411         * after writes to the UDB interrupt dispatch, but
 412         * before the membar Sync for that write.
 413         * So we use the high UDB control register (ASI 0x7f,
 414         * ADDR 0x20) for the dummy read. -DaveM
 415         */
 416        tmp = 0x40;
 417        __asm__ __volatile__(
 418        "wrpr   %1, %2, %%pstate\n\t"
 419        "stxa   %4, [%0] %3\n\t"
 420        "stxa   %5, [%0+%8] %3\n\t"
 421        "add    %0, %8, %0\n\t"
 422        "stxa   %6, [%0+%8] %3\n\t"
 423        "membar #Sync\n\t"
 424        "stxa   %%g0, [%7] %3\n\t"
 425        "membar #Sync\n\t"
 426        "mov    0x20, %%g1\n\t"
 427        "ldxa   [%%g1] 0x7f, %%g0\n\t"
 428        "membar #Sync"
 429        : "=r" (tmp)
 430        : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 431          "r" (data0), "r" (data1), "r" (data2), "r" (target),
 432          "r" (0x10), "0" (tmp)
 433        : "g1");
 434
 435        /* NOTE: PSTATE_IE is still clear. */
 436        stuck = 100000;
 437        do {
 438                __asm__ __volatile__("ldxa [%%g0] %1, %0"
 439                        : "=r" (result)
 440                        : "i" (ASI_INTR_DISPATCH_STAT));
 441                if (result == 0) {
 442                        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 443                                             : : "r" (pstate));
 444                        return;
 445                }
 446                stuck -= 1;
 447                if (stuck == 0)
 448                        break;
 449        } while (result & 0x1);
 450        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 451                             : : "r" (pstate));
 452        if (stuck == 0) {
 453                printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 454                       smp_processor_id(), result);
 455        } else {
 456                udelay(2);
 457                goto again;
 458        }
 459}
 460
 461static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 462{
 463        u64 *mondo, data0, data1, data2;
 464        u16 *cpu_list;
 465        u64 pstate;
 466        int i;
 467
 468        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 469        cpu_list = __va(tb->cpu_list_pa);
 470        mondo = __va(tb->cpu_mondo_block_pa);
 471        data0 = mondo[0];
 472        data1 = mondo[1];
 473        data2 = mondo[2];
 474        for (i = 0; i < cnt; i++)
 475                spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 476}
 477
 478/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 479 * packet, but we have no use for that.  However we do take advantage of
 480 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 481 */
 482static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 483{
 484        int nack_busy_id, is_jbus, need_more;
 485        u64 *mondo, pstate, ver, busy_mask;
 486        u16 *cpu_list;
 487
 488        cpu_list = __va(tb->cpu_list_pa);
 489        mondo = __va(tb->cpu_mondo_block_pa);
 490
 491        /* Unfortunately, someone at Sun had the brilliant idea to make the
 492         * busy/nack fields hard-coded by ITID number for this Ultra-III
 493         * derivative processor.
 494         */
 495        __asm__ ("rdpr %%ver, %0" : "=r" (ver));
 496        is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 497                   (ver >> 32) == __SERRANO_ID);
 498
 499        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 500
 501retry:
 502        need_more = 0;
 503        __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 504                             : : "r" (pstate), "i" (PSTATE_IE));
 505
 506        /* Setup the dispatch data registers. */
 507        __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
 508                             "stxa      %1, [%4] %6\n\t"
 509                             "stxa      %2, [%5] %6\n\t"
 510                             "membar    #Sync\n\t"
 511                             : /* no outputs */
 512                             : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 513                               "r" (0x40), "r" (0x50), "r" (0x60),
 514                               "i" (ASI_INTR_W));
 515
 516        nack_busy_id = 0;
 517        busy_mask = 0;
 518        {
 519                int i;
 520
 521                for (i = 0; i < cnt; i++) {
 522                        u64 target, nr;
 523
 524                        nr = cpu_list[i];
 525                        if (nr == 0xffff)
 526                                continue;
 527
 528                        target = (nr << 14) | 0x70;
 529                        if (is_jbus) {
 530                                busy_mask |= (0x1UL << (nr * 2));
 531                        } else {
 532                                target |= (nack_busy_id << 24);
 533                                busy_mask |= (0x1UL <<
 534                                              (nack_busy_id * 2));
 535                        }
 536                        __asm__ __volatile__(
 537                                "stxa   %%g0, [%0] %1\n\t"
 538                                "membar #Sync\n\t"
 539                                : /* no outputs */
 540                                : "r" (target), "i" (ASI_INTR_W));
 541                        nack_busy_id++;
 542                        if (nack_busy_id == 32) {
 543                                need_more = 1;
 544                                break;
 545                        }
 546                }
 547        }
 548
 549        /* Now, poll for completion. */
 550        {
 551                u64 dispatch_stat, nack_mask;
 552                long stuck;
 553
 554                stuck = 100000 * nack_busy_id;
 555                nack_mask = busy_mask << 1;
 556                do {
 557                        __asm__ __volatile__("ldxa      [%%g0] %1, %0"
 558                                             : "=r" (dispatch_stat)
 559                                             : "i" (ASI_INTR_DISPATCH_STAT));
 560                        if (!(dispatch_stat & (busy_mask | nack_mask))) {
 561                                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 562                                                     : : "r" (pstate));
 563                                if (unlikely(need_more)) {
 564                                        int i, this_cnt = 0;
 565                                        for (i = 0; i < cnt; i++) {
 566                                                if (cpu_list[i] == 0xffff)
 567                                                        continue;
 568                                                cpu_list[i] = 0xffff;
 569                                                this_cnt++;
 570                                                if (this_cnt == 32)
 571                                                        break;
 572                                        }
 573                                        goto retry;
 574                                }
 575                                return;
 576                        }
 577                        if (!--stuck)
 578                                break;
 579                } while (dispatch_stat & busy_mask);
 580
 581                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 582                                     : : "r" (pstate));
 583
 584                if (dispatch_stat & busy_mask) {
 585                        /* Busy bits will not clear, continue instead
 586                         * of freezing up on this cpu.
 587                         */
 588                        printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 589                               smp_processor_id(), dispatch_stat);
 590                } else {
 591                        int i, this_busy_nack = 0;
 592
 593                        /* Delay some random time with interrupts enabled
 594                         * to prevent deadlock.
 595                         */
 596                        udelay(2 * nack_busy_id);
 597
 598                        /* Clear out the mask bits for cpus which did not
 599                         * NACK us.
 600                         */
 601                        for (i = 0; i < cnt; i++) {
 602                                u64 check_mask, nr;
 603
 604                                nr = cpu_list[i];
 605                                if (nr == 0xffff)
 606                                        continue;
 607
 608                                if (is_jbus)
 609                                        check_mask = (0x2UL << (2*nr));
 610                                else
 611                                        check_mask = (0x2UL <<
 612                                                      this_busy_nack);
 613                                if ((dispatch_stat & check_mask) == 0)
 614                                        cpu_list[i] = 0xffff;
 615                                this_busy_nack += 2;
 616                                if (this_busy_nack == 64)
 617                                        break;
 618                        }
 619
 620                        goto retry;
 621                }
 622        }
 623}
 624
 625/* Multi-cpu list version.  */
 626static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 627{
 628        int retries, this_cpu, prev_sent, i, saw_cpu_error;
 629        unsigned long status;
 630        u16 *cpu_list;
 631
 632        this_cpu = smp_processor_id();
 633
 634        cpu_list = __va(tb->cpu_list_pa);
 635
 636        saw_cpu_error = 0;
 637        retries = 0;
 638        prev_sent = 0;
 639        do {
 640                int forward_progress, n_sent;
 641
 642                status = sun4v_cpu_mondo_send(cnt,
 643                                              tb->cpu_list_pa,
 644                                              tb->cpu_mondo_block_pa);
 645
 646                /* HV_EOK means all cpus received the xcall, we're done.  */
 647                if (likely(status == HV_EOK))
 648                        break;
 649
 650                /* First, see if we made any forward progress.
 651                 *
 652                 * The hypervisor indicates successful sends by setting
 653                 * cpu list entries to the value 0xffff.
 654                 */
 655                n_sent = 0;
 656                for (i = 0; i < cnt; i++) {
 657                        if (likely(cpu_list[i] == 0xffff))
 658                                n_sent++;
 659                }
 660
 661                forward_progress = 0;
 662                if (n_sent > prev_sent)
 663                        forward_progress = 1;
 664
 665                prev_sent = n_sent;
 666
 667                /* If we get a HV_ECPUERROR, then one or more of the cpus
 668                 * in the list are in error state.  Use the cpu_state()
 669                 * hypervisor call to find out which cpus are in error state.
 670                 */
 671                if (unlikely(status == HV_ECPUERROR)) {
 672                        for (i = 0; i < cnt; i++) {
 673                                long err;
 674                                u16 cpu;
 675
 676                                cpu = cpu_list[i];
 677                                if (cpu == 0xffff)
 678                                        continue;
 679
 680                                err = sun4v_cpu_state(cpu);
 681                                if (err == HV_CPU_STATE_ERROR) {
 682                                        saw_cpu_error = (cpu + 1);
 683                                        cpu_list[i] = 0xffff;
 684                                }
 685                        }
 686                } else if (unlikely(status != HV_EWOULDBLOCK))
 687                        goto fatal_mondo_error;
 688
 689                /* Don't bother rewriting the CPU list, just leave the
 690                 * 0xffff and non-0xffff entries in there and the
 691                 * hypervisor will do the right thing.
 692                 *
 693                 * Only advance timeout state if we didn't make any
 694                 * forward progress.
 695                 */
 696                if (unlikely(!forward_progress)) {
 697                        if (unlikely(++retries > 10000))
 698                                goto fatal_mondo_timeout;
 699
 700                        /* Delay a little bit to let other cpus catch up
 701                         * on their cpu mondo queue work.
 702                         */
 703                        udelay(2 * cnt);
 704                }
 705        } while (1);
 706
 707        if (unlikely(saw_cpu_error))
 708                goto fatal_mondo_cpu_error;
 709
 710        return;
 711
 712fatal_mondo_cpu_error:
 713        printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 714               "(including %d) were in error state\n",
 715               this_cpu, saw_cpu_error - 1);
 716        return;
 717
 718fatal_mondo_timeout:
 719        printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 720               " progress after %d retries.\n",
 721               this_cpu, retries);
 722        goto dump_cpu_list_and_out;
 723
 724fatal_mondo_error:
 725        printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 726               this_cpu, status);
 727        printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 728               "mondo_block_pa(%lx)\n",
 729               this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 730
 731dump_cpu_list_and_out:
 732        printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 733        for (i = 0; i < cnt; i++)
 734                printk("%u ", cpu_list[i]);
 735        printk("]\n");
 736}
 737
 738static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 739
 740static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 741{
 742        struct trap_per_cpu *tb;
 743        int this_cpu, i, cnt;
 744        unsigned long flags;
 745        u16 *cpu_list;
 746        u64 *mondo;
 747
 748        /* We have to do this whole thing with interrupts fully disabled.
 749         * Otherwise if we send an xcall from interrupt context it will
 750         * corrupt both our mondo block and cpu list state.
 751         *
 752         * One consequence of this is that we cannot use timeout mechanisms
 753         * that depend upon interrupts being delivered locally.  So, for
 754         * example, we cannot sample jiffies and expect it to advance.
 755         *
 756         * Fortunately, udelay() uses %stick/%tick so we can use that.
 757         */
 758        local_irq_save(flags);
 759
 760        this_cpu = smp_processor_id();
 761        tb = &trap_block[this_cpu];
 762
 763        mondo = __va(tb->cpu_mondo_block_pa);
 764        mondo[0] = data0;
 765        mondo[1] = data1;
 766        mondo[2] = data2;
 767        wmb();
 768
 769        cpu_list = __va(tb->cpu_list_pa);
 770
 771        /* Setup the initial cpu list.  */
 772        cnt = 0;
 773        for_each_cpu(i, mask) {
 774                if (i == this_cpu || !cpu_online(i))
 775                        continue;
 776                cpu_list[cnt++] = i;
 777        }
 778
 779        if (cnt)
 780                xcall_deliver_impl(tb, cnt);
 781
 782        local_irq_restore(flags);
 783}
 784
 785/* Send cross call to all processors mentioned in MASK_P
 786 * except self.  Really, there are only two cases currently,
 787 * "&cpu_online_map" and "&mm->cpu_vm_mask".
 788 */
 789static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 790{
 791        u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 792
 793        xcall_deliver(data0, data1, data2, mask);
 794}
 795
 796/* Send cross call to all processors except self. */
 797static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 798{
 799        smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
 800}
 801
 802extern unsigned long xcall_sync_tick;
 803
 804static void smp_start_sync_tick_client(int cpu)
 805{
 806        xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 807                      &cpumask_of_cpu(cpu));
 808}
 809
 810extern unsigned long xcall_call_function;
 811
 812void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 813{
 814        xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 815}
 816
 817extern unsigned long xcall_call_function_single;
 818
 819void arch_send_call_function_single_ipi(int cpu)
 820{
 821        xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 822                      &cpumask_of_cpu(cpu));
 823}
 824
 825void smp_call_function_client(int irq, struct pt_regs *regs)
 826{
 827        clear_softint(1 << irq);
 828        generic_smp_call_function_interrupt();
 829}
 830
 831void smp_call_function_single_client(int irq, struct pt_regs *regs)
 832{
 833        clear_softint(1 << irq);
 834        generic_smp_call_function_single_interrupt();
 835}
 836
 837static void tsb_sync(void *info)
 838{
 839        struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 840        struct mm_struct *mm = info;
 841
 842        /* It is not valid to test "currrent->active_mm == mm" here.
 843         *
 844         * The value of "current" is not changed atomically with
 845         * switch_mm().  But that's OK, we just need to check the
 846         * current cpu's trap block PGD physical address.
 847         */
 848        if (tp->pgd_paddr == __pa(mm->pgd))
 849                tsb_context_switch(mm);
 850}
 851
 852void smp_tsb_sync(struct mm_struct *mm)
 853{
 854        smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 855}
 856
 857extern unsigned long xcall_flush_tlb_mm;
 858extern unsigned long xcall_flush_tlb_pending;
 859extern unsigned long xcall_flush_tlb_kernel_range;
 860extern unsigned long xcall_fetch_glob_regs;
 861extern unsigned long xcall_receive_signal;
 862extern unsigned long xcall_new_mmu_context_version;
 863#ifdef CONFIG_KGDB
 864extern unsigned long xcall_kgdb_capture;
 865#endif
 866
 867#ifdef DCACHE_ALIASING_POSSIBLE
 868extern unsigned long xcall_flush_dcache_page_cheetah;
 869#endif
 870extern unsigned long xcall_flush_dcache_page_spitfire;
 871
 872#ifdef CONFIG_DEBUG_DCFLUSH
 873extern atomic_t dcpage_flushes;
 874extern atomic_t dcpage_flushes_xcall;
 875#endif
 876
 877static inline void __local_flush_dcache_page(struct page *page)
 878{
 879#ifdef DCACHE_ALIASING_POSSIBLE
 880        __flush_dcache_page(page_address(page),
 881                            ((tlb_type == spitfire) &&
 882                             page_mapping(page) != NULL));
 883#else
 884        if (page_mapping(page) != NULL &&
 885            tlb_type == spitfire)
 886                __flush_icache_page(__pa(page_address(page)));
 887#endif
 888}
 889
 890void smp_flush_dcache_page_impl(struct page *page, int cpu)
 891{
 892        int this_cpu;
 893
 894        if (tlb_type == hypervisor)
 895                return;
 896
 897#ifdef CONFIG_DEBUG_DCFLUSH
 898        atomic_inc(&dcpage_flushes);
 899#endif
 900
 901        this_cpu = get_cpu();
 902
 903        if (cpu == this_cpu) {
 904                __local_flush_dcache_page(page);
 905        } else if (cpu_online(cpu)) {
 906                void *pg_addr = page_address(page);
 907                u64 data0 = 0;
 908
 909                if (tlb_type == spitfire) {
 910                        data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 911                        if (page_mapping(page) != NULL)
 912                                data0 |= ((u64)1 << 32);
 913                } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 914#ifdef DCACHE_ALIASING_POSSIBLE
 915                        data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 916#endif
 917                }
 918                if (data0) {
 919                        xcall_deliver(data0, __pa(pg_addr),
 920                                      (u64) pg_addr, &cpumask_of_cpu(cpu));
 921#ifdef CONFIG_DEBUG_DCFLUSH
 922                        atomic_inc(&dcpage_flushes_xcall);
 923#endif
 924                }
 925        }
 926
 927        put_cpu();
 928}
 929
 930void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 931{
 932        void *pg_addr;
 933        int this_cpu;
 934        u64 data0;
 935
 936        if (tlb_type == hypervisor)
 937                return;
 938
 939        this_cpu = get_cpu();
 940
 941#ifdef CONFIG_DEBUG_DCFLUSH
 942        atomic_inc(&dcpage_flushes);
 943#endif
 944        data0 = 0;
 945        pg_addr = page_address(page);
 946        if (tlb_type == spitfire) {
 947                data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 948                if (page_mapping(page) != NULL)
 949                        data0 |= ((u64)1 << 32);
 950        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 951#ifdef DCACHE_ALIASING_POSSIBLE
 952                data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 953#endif
 954        }
 955        if (data0) {
 956                xcall_deliver(data0, __pa(pg_addr),
 957                              (u64) pg_addr, &cpu_online_map);
 958#ifdef CONFIG_DEBUG_DCFLUSH
 959                atomic_inc(&dcpage_flushes_xcall);
 960#endif
 961        }
 962        __local_flush_dcache_page(page);
 963
 964        put_cpu();
 965}
 966
 967void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 968{
 969        struct mm_struct *mm;
 970        unsigned long flags;
 971
 972        clear_softint(1 << irq);
 973
 974        /* See if we need to allocate a new TLB context because
 975         * the version of the one we are using is now out of date.
 976         */
 977        mm = current->active_mm;
 978        if (unlikely(!mm || (mm == &init_mm)))
 979                return;
 980
 981        spin_lock_irqsave(&mm->context.lock, flags);
 982
 983        if (unlikely(!CTX_VALID(mm->context)))
 984                get_new_mmu_context(mm);
 985
 986        spin_unlock_irqrestore(&mm->context.lock, flags);
 987
 988        load_secondary_context(mm);
 989        __flush_tlb_mm(CTX_HWBITS(mm->context),
 990                       SECONDARY_CONTEXT);
 991}
 992
 993void smp_new_mmu_context_version(void)
 994{
 995        smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 996}
 997
 998#ifdef CONFIG_KGDB
 999void kgdb_roundup_cpus(unsigned long flags)
1000{
1001        smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1002}
1003#endif
1004
1005void smp_fetch_global_regs(void)
1006{
1007        smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1008}
1009
1010/* We know that the window frames of the user have been flushed
1011 * to the stack before we get here because all callers of us
1012 * are flush_tlb_*() routines, and these run after flush_cache_*()
1013 * which performs the flushw.
1014 *
1015 * The SMP TLB coherency scheme we use works as follows:
1016 *
1017 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1018 *    space has (potentially) executed on, this is the heuristic
1019 *    we use to avoid doing cross calls.
1020 *
1021 *    Also, for flushing from kswapd and also for clones, we
1022 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1023 *
1024 * 2) TLB context numbers are shared globally across all processors
1025 *    in the system, this allows us to play several games to avoid
1026 *    cross calls.
1027 *
1028 *    One invariant is that when a cpu switches to a process, and
1029 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1030 *    current cpu's bit set, that tlb context is flushed locally.
1031 *
1032 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1033 *    cross calls when we want to flush the currently running process's
1034 *    tlb state.  This is done by clearing all cpu bits except the current
1035 *    processor's in current->mm->cpu_vm_mask and performing the
1036 *    flush locally only.  This will force any subsequent cpus which run
1037 *    this task to flush the context from the local tlb if the process
1038 *    migrates to another cpu (again).
1039 *
1040 * 3) For shared address spaces (threads) and swapping we bite the
1041 *    bullet for most cases and perform the cross call (but only to
1042 *    the cpus listed in cpu_vm_mask).
1043 *
1044 *    The performance gain from "optimizing" away the cross call for threads is
1045 *    questionable (in theory the big win for threads is the massive sharing of
1046 *    address space state across processors).
1047 */
1048
1049/* This currently is only used by the hugetlb arch pre-fault
1050 * hook on UltraSPARC-III+ and later when changing the pagesize
1051 * bits of the context register for an address space.
1052 */
1053void smp_flush_tlb_mm(struct mm_struct *mm)
1054{
1055        u32 ctx = CTX_HWBITS(mm->context);
1056        int cpu = get_cpu();
1057
1058        if (atomic_read(&mm->mm_users) == 1) {
1059                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1060                goto local_flush_and_out;
1061        }
1062
1063        smp_cross_call_masked(&xcall_flush_tlb_mm,
1064                              ctx, 0, 0,
1065                              mm_cpumask(mm));
1066
1067local_flush_and_out:
1068        __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1069
1070        put_cpu();
1071}
1072
1073void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1074{
1075        u32 ctx = CTX_HWBITS(mm->context);
1076        int cpu = get_cpu();
1077
1078        if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1079                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1080        else
1081                smp_cross_call_masked(&xcall_flush_tlb_pending,
1082                                      ctx, nr, (unsigned long) vaddrs,
1083                                      mm_cpumask(mm));
1084
1085        __flush_tlb_pending(ctx, nr, vaddrs);
1086
1087        put_cpu();
1088}
1089
1090void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1091{
1092        start &= PAGE_MASK;
1093        end    = PAGE_ALIGN(end);
1094        if (start != end) {
1095                smp_cross_call(&xcall_flush_tlb_kernel_range,
1096                               0, start, end);
1097
1098                __flush_tlb_kernel_range(start, end);
1099        }
1100}
1101
1102/* CPU capture. */
1103/* #define CAPTURE_DEBUG */
1104extern unsigned long xcall_capture;
1105
1106static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1107static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1108static unsigned long penguins_are_doing_time;
1109
1110void smp_capture(void)
1111{
1112        int result = atomic_add_ret(1, &smp_capture_depth);
1113
1114        if (result == 1) {
1115                int ncpus = num_online_cpus();
1116
1117#ifdef CAPTURE_DEBUG
1118                printk("CPU[%d]: Sending penguins to jail...",
1119                       smp_processor_id());
1120#endif
1121                penguins_are_doing_time = 1;
1122                atomic_inc(&smp_capture_registry);
1123                smp_cross_call(&xcall_capture, 0, 0, 0);
1124                while (atomic_read(&smp_capture_registry) != ncpus)
1125                        rmb();
1126#ifdef CAPTURE_DEBUG
1127                printk("done\n");
1128#endif
1129        }
1130}
1131
1132void smp_release(void)
1133{
1134        if (atomic_dec_and_test(&smp_capture_depth)) {
1135#ifdef CAPTURE_DEBUG
1136                printk("CPU[%d]: Giving pardon to "
1137                       "imprisoned penguins\n",
1138                       smp_processor_id());
1139#endif
1140                penguins_are_doing_time = 0;
1141                membar_safe("#StoreLoad");
1142                atomic_dec(&smp_capture_registry);
1143        }
1144}
1145
1146/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1147 * set, so they can service tlb flush xcalls...
1148 */
1149extern void prom_world(int);
1150
1151void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1152{
1153        clear_softint(1 << irq);
1154
1155        preempt_disable();
1156
1157        __asm__ __volatile__("flushw");
1158        prom_world(1);
1159        atomic_inc(&smp_capture_registry);
1160        membar_safe("#StoreLoad");
1161        while (penguins_are_doing_time)
1162                rmb();
1163        atomic_dec(&smp_capture_registry);
1164        prom_world(0);
1165
1166        preempt_enable();
1167}
1168
1169/* /proc/profile writes can call this, don't __init it please. */
1170int setup_profiling_timer(unsigned int multiplier)
1171{
1172        return -EINVAL;
1173}
1174
1175void __init smp_prepare_cpus(unsigned int max_cpus)
1176{
1177}
1178
1179void __devinit smp_prepare_boot_cpu(void)
1180{
1181}
1182
1183void __init smp_setup_processor_id(void)
1184{
1185        if (tlb_type == spitfire)
1186                xcall_deliver_impl = spitfire_xcall_deliver;
1187        else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1188                xcall_deliver_impl = cheetah_xcall_deliver;
1189        else
1190                xcall_deliver_impl = hypervisor_xcall_deliver;
1191}
1192
1193void __devinit smp_fill_in_sib_core_maps(void)
1194{
1195        unsigned int i;
1196
1197        for_each_present_cpu(i) {
1198                unsigned int j;
1199
1200                cpus_clear(cpu_core_map[i]);
1201                if (cpu_data(i).core_id == 0) {
1202                        cpu_set(i, cpu_core_map[i]);
1203                        continue;
1204                }
1205
1206                for_each_present_cpu(j) {
1207                        if (cpu_data(i).core_id ==
1208                            cpu_data(j).core_id)
1209                                cpu_set(j, cpu_core_map[i]);
1210                }
1211        }
1212
1213        for_each_present_cpu(i) {
1214                unsigned int j;
1215
1216                cpus_clear(per_cpu(cpu_sibling_map, i));
1217                if (cpu_data(i).proc_id == -1) {
1218                        cpu_set(i, per_cpu(cpu_sibling_map, i));
1219                        continue;
1220                }
1221
1222                for_each_present_cpu(j) {
1223                        if (cpu_data(i).proc_id ==
1224                            cpu_data(j).proc_id)
1225                                cpu_set(j, per_cpu(cpu_sibling_map, i));
1226                }
1227        }
1228}
1229
1230int __cpuinit __cpu_up(unsigned int cpu)
1231{
1232        int ret = smp_boot_one_cpu(cpu);
1233
1234        if (!ret) {
1235                cpu_set(cpu, smp_commenced_mask);
1236                while (!cpu_isset(cpu, cpu_online_map))
1237                        mb();
1238                if (!cpu_isset(cpu, cpu_online_map)) {
1239                        ret = -ENODEV;
1240                } else {
1241                        /* On SUN4V, writes to %tick and %stick are
1242                         * not allowed.
1243                         */
1244                        if (tlb_type != hypervisor)
1245                                smp_synchronize_one_tick(cpu);
1246                }
1247        }
1248        return ret;
1249}
1250
1251#ifdef CONFIG_HOTPLUG_CPU
1252void cpu_play_dead(void)
1253{
1254        int cpu = smp_processor_id();
1255        unsigned long pstate;
1256
1257        idle_task_exit();
1258
1259        if (tlb_type == hypervisor) {
1260                struct trap_per_cpu *tb = &trap_block[cpu];
1261
1262                sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1263                                tb->cpu_mondo_pa, 0);
1264                sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1265                                tb->dev_mondo_pa, 0);
1266                sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1267                                tb->resum_mondo_pa, 0);
1268                sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1269                                tb->nonresum_mondo_pa, 0);
1270        }
1271
1272        cpu_clear(cpu, smp_commenced_mask);
1273        membar_safe("#Sync");
1274
1275        local_irq_disable();
1276
1277        __asm__ __volatile__(
1278                "rdpr   %%pstate, %0\n\t"
1279                "wrpr   %0, %1, %%pstate"
1280                : "=r" (pstate)
1281                : "i" (PSTATE_IE));
1282
1283        while (1)
1284                barrier();
1285}
1286
1287int __cpu_disable(void)
1288{
1289        int cpu = smp_processor_id();
1290        cpuinfo_sparc *c;
1291        int i;
1292
1293        for_each_cpu_mask(i, cpu_core_map[cpu])
1294                cpu_clear(cpu, cpu_core_map[i]);
1295        cpus_clear(cpu_core_map[cpu]);
1296
1297        for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1298                cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1299        cpus_clear(per_cpu(cpu_sibling_map, cpu));
1300
1301        c = &cpu_data(cpu);
1302
1303        c->core_id = 0;
1304        c->proc_id = -1;
1305
1306        smp_wmb();
1307
1308        /* Make sure no interrupts point to this cpu.  */
1309        fixup_irqs();
1310
1311        local_irq_enable();
1312        mdelay(1);
1313        local_irq_disable();
1314
1315        ipi_call_lock();
1316        cpu_clear(cpu, cpu_online_map);
1317        ipi_call_unlock();
1318
1319        cpu_map_rebuild();
1320
1321        return 0;
1322}
1323
1324void __cpu_die(unsigned int cpu)
1325{
1326        int i;
1327
1328        for (i = 0; i < 100; i++) {
1329                smp_rmb();
1330                if (!cpu_isset(cpu, smp_commenced_mask))
1331                        break;
1332                msleep(100);
1333        }
1334        if (cpu_isset(cpu, smp_commenced_mask)) {
1335                printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1336        } else {
1337#if defined(CONFIG_SUN_LDOMS)
1338                unsigned long hv_err;
1339                int limit = 100;
1340
1341                do {
1342                        hv_err = sun4v_cpu_stop(cpu);
1343                        if (hv_err == HV_EOK) {
1344                                cpu_clear(cpu, cpu_present_map);
1345                                break;
1346                        }
1347                } while (--limit > 0);
1348                if (limit <= 0) {
1349                        printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1350                               hv_err);
1351                }
1352#endif
1353        }
1354}
1355#endif
1356
1357void __init smp_cpus_done(unsigned int max_cpus)
1358{
1359}
1360
1361void smp_send_reschedule(int cpu)
1362{
1363        xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1364                      &cpumask_of_cpu(cpu));
1365}
1366
1367void smp_receive_signal_client(int irq, struct pt_regs *regs)
1368{
1369        clear_softint(1 << irq);
1370}
1371
1372/* This is a nop because we capture all other cpus
1373 * anyways when making the PROM active.
1374 */
1375void smp_send_stop(void)
1376{
1377}
1378
1379/**
1380 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1381 * @cpu: cpu to allocate for
1382 * @size: size allocation in bytes
1383 * @align: alignment
1384 *
1385 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1386 * does the right thing for NUMA regardless of the current
1387 * configuration.
1388 *
1389 * RETURNS:
1390 * Pointer to the allocated area on success, NULL on failure.
1391 */
1392static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1393                                        size_t align)
1394{
1395        const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1396#ifdef CONFIG_NEED_MULTIPLE_NODES
1397        int node = cpu_to_node(cpu);
1398        void *ptr;
1399
1400        if (!node_online(node) || !NODE_DATA(node)) {
1401                ptr = __alloc_bootmem(size, align, goal);
1402                pr_info("cpu %d has no node %d or node-local memory\n",
1403                        cpu, node);
1404                pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1405                         cpu, size, __pa(ptr));
1406        } else {
1407                ptr = __alloc_bootmem_node(NODE_DATA(node),
1408                                           size, align, goal);
1409                pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1410                         "%016lx\n", cpu, size, node, __pa(ptr));
1411        }
1412        return ptr;
1413#else
1414        return __alloc_bootmem(size, align, goal);
1415#endif
1416}
1417
1418static void __init pcpu_free_bootmem(void *ptr, size_t size)
1419{
1420        free_bootmem(__pa(ptr), size);
1421}
1422
1423static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1424{
1425        if (cpu_to_node(from) == cpu_to_node(to))
1426                return LOCAL_DISTANCE;
1427        else
1428                return REMOTE_DISTANCE;
1429}
1430
1431static void __init pcpu_populate_pte(unsigned long addr)
1432{
1433        pgd_t *pgd = pgd_offset_k(addr);
1434        pud_t *pud;
1435        pmd_t *pmd;
1436
1437        pud = pud_offset(pgd, addr);
1438        if (pud_none(*pud)) {
1439                pmd_t *new;
1440
1441                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1442                pud_populate(&init_mm, pud, new);
1443        }
1444
1445        pmd = pmd_offset(pud, addr);
1446        if (!pmd_present(*pmd)) {
1447                pte_t *new;
1448
1449                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1450                pmd_populate_kernel(&init_mm, pmd, new);
1451        }
1452}
1453
1454void __init setup_per_cpu_areas(void)
1455{
1456        unsigned long delta;
1457        unsigned int cpu;
1458        int rc = -EINVAL;
1459
1460        if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1461                rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1462                                            PERCPU_DYNAMIC_RESERVE, 4 << 20,
1463                                            pcpu_cpu_distance,
1464                                            pcpu_alloc_bootmem,
1465                                            pcpu_free_bootmem);
1466                if (rc)
1467                        pr_warning("PERCPU: %s allocator failed (%d), "
1468                                   "falling back to page size\n",
1469                                   pcpu_fc_names[pcpu_chosen_fc], rc);
1470        }
1471        if (rc < 0)
1472                rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1473                                           pcpu_alloc_bootmem,
1474                                           pcpu_free_bootmem,
1475                                           pcpu_populate_pte);
1476        if (rc < 0)
1477                panic("cannot initialize percpu area (err=%d)", rc);
1478
1479        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1480        for_each_possible_cpu(cpu)
1481                __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1482
1483        /* Setup %g5 for the boot cpu.  */
1484        __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1485
1486        of_fill_in_cpu_data();
1487        if (tlb_type == hypervisor)
1488                mdesc_fill_in_cpu_data(cpu_all_mask);
1489}
1490