linux/arch/sparc/math-emu/math_32.c
<<
>>
Prefs
   1/*
   2 * arch/sparc/math-emu/math.c
   3 *
   4 * Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk)
   5 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
   6 * Copyright (C) 1999 David S. Miller (davem@redhat.com)
   7 *
   8 * This is a good place to start if you're trying to understand the
   9 * emulation code, because it's pretty simple. What we do is
  10 * essentially analyse the instruction to work out what the operation
  11 * is and which registers are involved. We then execute the appropriate
  12 * FXXXX function. [The floating point queue introduces a minor wrinkle;
  13 * see below...]
  14 * The fxxxxx.c files each emulate a single insn. They look relatively
  15 * simple because the complexity is hidden away in an unholy tangle
  16 * of preprocessor macros.
  17 *
  18 * The first layer of macros is single.h, double.h, quad.h. Generally
  19 * these files define macros for working with floating point numbers
  20 * of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles,
  21 * for instance. These macros are usually defined as calls to more
  22 * generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number
  23 * of machine words required to store the given IEEE format is passed
  24 * as a parameter. [double.h and co check the number of bits in a word
  25 * and define FP_ADD_D & co appropriately].
  26 * The generic macros are defined in op-common.h. This is where all
  27 * the grotty stuff like handling NaNs is coded. To handle the possible
  28 * word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc()
  29 * where wc is the 'number of machine words' parameter (here 2).
  30 * These are defined in the third layer of macros: op-1.h, op-2.h
  31 * and op-4.h. These handle operations on floating point numbers composed
  32 * of 1,2 and 4 machine words respectively. [For example, on sparc64
  33 * doubles are one machine word so macros in double.h eventually use
  34 * constructs in op-1.h, but on sparc32 they use op-2.h definitions.]
  35 * soft-fp.h is on the same level as op-common.h, and defines some
  36 * macros which are independent of both word size and FP format.
  37 * Finally, sfp-machine.h is the machine dependent part of the
  38 * code: it defines the word size and what type a word is. It also
  39 * defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h
  40 * provide several possible flavours of multiply algorithm, most
  41 * of which require that you supply some form of asm or C primitive to
  42 * do the actual multiply. (such asm primitives should be defined
  43 * in sfp-machine.h too). udivmodti4.c is the same sort of thing.
  44 *
  45 * There may be some errors here because I'm working from a
  46 * SPARC architecture manual V9, and what I really want is V8...
  47 * Also, the insns which can generate exceptions seem to be a
  48 * greater subset of the FPops than for V9 (for example, FCMPED
  49 * has to be emulated on V8). So I think I'm going to have
  50 * to emulate them all just to be on the safe side...
  51 *
  52 * Emulation routines originate from soft-fp package, which is
  53 * part of glibc and has appropriate copyrights in it (allegedly).
  54 *
  55 * NB: on sparc int == long == 4 bytes, long long == 8 bytes.
  56 * Most bits of the kernel seem to go for long rather than int,
  57 * so we follow that practice...
  58 */
  59
  60/* TODO:
  61 * fpsave() saves the FP queue but fpload() doesn't reload it.
  62 * Therefore when we context switch or change FPU ownership
  63 * we have to check to see if the queue had anything in it and
  64 * emulate it if it did. This is going to be a pain.
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/sched.h>
  69#include <linux/mm.h>
  70#include <asm/uaccess.h>
  71
  72#include "sfp-util_32.h"
  73#include <math-emu/soft-fp.h>
  74#include <math-emu/single.h>
  75#include <math-emu/double.h>
  76#include <math-emu/quad.h>
  77
  78#define FLOATFUNC(x) extern int x(void *,void *,void *)
  79
  80/* The Vn labels indicate what version of the SPARC architecture gas thinks
  81 * each insn is. This is from the binutils source :->
  82 */
  83/* quadword instructions */
  84#define FSQRTQ  0x02b           /* v8 */
  85#define FADDQ   0x043           /* v8 */
  86#define FSUBQ   0x047           /* v8 */
  87#define FMULQ   0x04b           /* v8 */
  88#define FDIVQ   0x04f           /* v8 */
  89#define FDMULQ  0x06e           /* v8 */
  90#define FQTOS   0x0c7           /* v8 */
  91#define FQTOD   0x0cb           /* v8 */
  92#define FITOQ   0x0cc           /* v8 */
  93#define FSTOQ   0x0cd           /* v8 */
  94#define FDTOQ   0x0ce           /* v8 */
  95#define FQTOI   0x0d3           /* v8 */
  96#define FCMPQ   0x053           /* v8 */
  97#define FCMPEQ  0x057           /* v8 */
  98/* single/double instructions (subnormal): should all work */
  99#define FSQRTS  0x029           /* v7 */
 100#define FSQRTD  0x02a           /* v7 */
 101#define FADDS   0x041           /* v6 */
 102#define FADDD   0x042           /* v6 */
 103#define FSUBS   0x045           /* v6 */
 104#define FSUBD   0x046           /* v6 */
 105#define FMULS   0x049           /* v6 */
 106#define FMULD   0x04a           /* v6 */
 107#define FDIVS   0x04d           /* v6 */
 108#define FDIVD   0x04e           /* v6 */
 109#define FSMULD  0x069           /* v6 */
 110#define FDTOS   0x0c6           /* v6 */
 111#define FSTOD   0x0c9           /* v6 */
 112#define FSTOI   0x0d1           /* v6 */
 113#define FDTOI   0x0d2           /* v6 */
 114#define FABSS   0x009           /* v6 */
 115#define FCMPS   0x051           /* v6 */
 116#define FCMPES  0x055           /* v6 */
 117#define FCMPD   0x052           /* v6 */
 118#define FCMPED  0x056           /* v6 */
 119#define FMOVS   0x001           /* v6 */
 120#define FNEGS   0x005           /* v6 */
 121#define FITOS   0x0c4           /* v6 */
 122#define FITOD   0x0c8           /* v6 */
 123
 124#define FSR_TEM_SHIFT   23UL
 125#define FSR_TEM_MASK    (0x1fUL << FSR_TEM_SHIFT)
 126#define FSR_AEXC_SHIFT  5UL
 127#define FSR_AEXC_MASK   (0x1fUL << FSR_AEXC_SHIFT)
 128#define FSR_CEXC_SHIFT  0UL
 129#define FSR_CEXC_MASK   (0x1fUL << FSR_CEXC_SHIFT)
 130
 131static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs);
 132
 133/* Unlike the Sparc64 version (which has a struct fpustate), we
 134 * pass the taskstruct corresponding to the task which currently owns the
 135 * FPU. This is partly because we don't have the fpustate struct and
 136 * partly because the task owning the FPU isn't always current (as is
 137 * the case for the Sparc64 port). This is probably SMP-related...
 138 * This function returns 1 if all queued insns were emulated successfully.
 139 * The test for unimplemented FPop in kernel mode has been moved into
 140 * kernel/traps.c for simplicity.
 141 */
 142int do_mathemu(struct pt_regs *regs, struct task_struct *fpt)
 143{
 144        /* regs->pc isn't necessarily the PC at which the offending insn is sitting.
 145         * The FPU maintains a queue of FPops which cause traps.
 146         * When it hits an instruction that requires that the trapped op succeeded
 147         * (usually because it reads a reg. that the trapped op wrote) then it
 148         * causes this exception. We need to emulate all the insns on the queue
 149         * and then allow the op to proceed.
 150         * This code should also handle the case where the trap was precise,
 151         * in which case the queue length is zero and regs->pc points at the
 152         * single FPop to be emulated. (this case is untested, though :->)
 153         * You'll need this case if you want to be able to emulate all FPops
 154         * because the FPU either doesn't exist or has been software-disabled.
 155         * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it
 156         * might sound because the Ultra does funky things with a superscalar
 157         * architecture.]
 158         */
 159
 160        /* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */
 161
 162        int i;
 163        int retcode = 0;                               /* assume all succeed */
 164        unsigned long insn;
 165
 166#ifdef DEBUG_MATHEMU
 167        printk("In do_mathemu()... pc is %08lx\n", regs->pc);
 168        printk("fpqdepth is %ld\n", fpt->thread.fpqdepth);
 169        for (i = 0; i < fpt->thread.fpqdepth; i++)
 170                printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn,
 171                       (unsigned long)fpt->thread.fpqueue[i].insn_addr);
 172#endif
 173
 174        if (fpt->thread.fpqdepth == 0) {                   /* no queue, guilty insn is at regs->pc */
 175#ifdef DEBUG_MATHEMU
 176                printk("precise trap at %08lx\n", regs->pc);
 177#endif
 178                if (!get_user(insn, (u32 __user *) regs->pc)) {
 179                        retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs);
 180                        if (retcode) {
 181                                /* in this case we need to fix up PC & nPC */
 182                                regs->pc = regs->npc;
 183                                regs->npc += 4;
 184                        }
 185                }
 186                return retcode;
 187        }
 188
 189        /* Normal case: need to empty the queue... */
 190        for (i = 0; i < fpt->thread.fpqdepth; i++) {
 191                retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs);
 192                if (!retcode)                               /* insn failed, no point doing any more */
 193                        break;
 194        }
 195        /* Now empty the queue and clear the queue_not_empty flag */
 196        if (retcode)
 197                fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK);
 198        else
 199                fpt->thread.fsr &= ~0x3000;
 200        fpt->thread.fpqdepth = 0;
 201
 202        return retcode;
 203}
 204
 205/* All routines returning an exception to raise should detect
 206 * such exceptions _before_ rounding to be consistent with
 207 * the behavior of the hardware in the implemented cases
 208 * (and thus with the recommendations in the V9 architecture
 209 * manual).
 210 *
 211 * We return 0 if a SIGFPE should be sent, 1 otherwise.
 212 */
 213static inline int record_exception(unsigned long *pfsr, int eflag)
 214{
 215        unsigned long fsr = *pfsr;
 216        int would_trap;
 217
 218        /* Determine if this exception would have generated a trap. */
 219        would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
 220
 221        /* If trapping, we only want to signal one bit. */
 222        if (would_trap != 0) {
 223                eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
 224                if ((eflag & (eflag - 1)) != 0) {
 225                        if (eflag & FP_EX_INVALID)
 226                                eflag = FP_EX_INVALID;
 227                        else if (eflag & FP_EX_OVERFLOW)
 228                                eflag = FP_EX_OVERFLOW;
 229                        else if (eflag & FP_EX_UNDERFLOW)
 230                                eflag = FP_EX_UNDERFLOW;
 231                        else if (eflag & FP_EX_DIVZERO)
 232                                eflag = FP_EX_DIVZERO;
 233                        else if (eflag & FP_EX_INEXACT)
 234                                eflag = FP_EX_INEXACT;
 235                }
 236        }
 237
 238        /* Set CEXC, here is the rule:
 239         *
 240         *    In general all FPU ops will set one and only one
 241         *    bit in the CEXC field, this is always the case
 242         *    when the IEEE exception trap is enabled in TEM.
 243         */
 244        fsr &= ~(FSR_CEXC_MASK);
 245        fsr |= ((long)eflag << FSR_CEXC_SHIFT);
 246
 247        /* Set the AEXC field, rule is:
 248         *
 249         *    If a trap would not be generated, the
 250         *    CEXC just generated is OR'd into the
 251         *    existing value of AEXC.
 252         */
 253        if (would_trap == 0)
 254                fsr |= ((long)eflag << FSR_AEXC_SHIFT);
 255
 256        /* If trapping, indicate fault trap type IEEE. */
 257        if (would_trap != 0)
 258                fsr |= (1UL << 14);
 259
 260        *pfsr = fsr;
 261
 262        return (would_trap ? 0 : 1);
 263}
 264
 265typedef union {
 266        u32 s;
 267        u64 d;
 268        u64 q[2];
 269} *argp;
 270
 271static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs)
 272{
 273        /* Emulate the given insn, updating fsr and fregs appropriately. */
 274        int type = 0;
 275        /* r is rd, b is rs2 and a is rs1. The *u arg tells
 276           whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
 277           non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
 278#define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6)
 279        int freg;
 280        argp rs1 = NULL, rs2 = NULL, rd = NULL;
 281        FP_DECL_EX;
 282        FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
 283        FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
 284        FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
 285        int IR;
 286        long fsr;
 287
 288#ifdef DEBUG_MATHEMU
 289        printk("In do_mathemu(), emulating %08lx\n", insn);
 290#endif
 291
 292        if ((insn & 0xc1f80000) == 0x81a00000)  /* FPOP1 */ {
 293                switch ((insn >> 5) & 0x1ff) {
 294                case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
 295                case FADDQ:
 296                case FSUBQ:
 297                case FMULQ:
 298                case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
 299                case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
 300                case FQTOS: TYPE(3,1,1,3,1,0,0); break;
 301                case FQTOD: TYPE(3,2,1,3,1,0,0); break;
 302                case FITOQ: TYPE(3,3,1,1,0,0,0); break;
 303                case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
 304                case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
 305                case FQTOI: TYPE(3,1,0,3,1,0,0); break;
 306                case FSQRTS: TYPE(2,1,1,1,1,0,0); break;
 307                case FSQRTD: TYPE(2,2,1,2,1,0,0); break;
 308                case FADDD:
 309                case FSUBD:
 310                case FMULD:
 311                case FDIVD: TYPE(2,2,1,2,1,2,1); break;
 312                case FADDS:
 313                case FSUBS:
 314                case FMULS:
 315                case FDIVS: TYPE(2,1,1,1,1,1,1); break;
 316                case FSMULD: TYPE(2,2,1,1,1,1,1); break;
 317                case FDTOS: TYPE(2,1,1,2,1,0,0); break;
 318                case FSTOD: TYPE(2,2,1,1,1,0,0); break;
 319                case FSTOI: TYPE(2,1,0,1,1,0,0); break;
 320                case FDTOI: TYPE(2,1,0,2,1,0,0); break;
 321                case FITOS: TYPE(2,1,1,1,0,0,0); break;
 322                case FITOD: TYPE(2,2,1,1,0,0,0); break;
 323                case FMOVS:
 324                case FABSS:
 325                case FNEGS: TYPE(2,1,0,1,0,0,0); break;
 326                }
 327        } else if ((insn & 0xc1f80000) == 0x81a80000)   /* FPOP2 */ {
 328                switch ((insn >> 5) & 0x1ff) {
 329                case FCMPS: TYPE(3,0,0,1,1,1,1); break;
 330                case FCMPES: TYPE(3,0,0,1,1,1,1); break;
 331                case FCMPD: TYPE(3,0,0,2,1,2,1); break;
 332                case FCMPED: TYPE(3,0,0,2,1,2,1); break;
 333                case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
 334                case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
 335                }
 336        }
 337
 338        if (!type) {    /* oops, didn't recognise that FPop */
 339#ifdef DEBUG_MATHEMU
 340                printk("attempt to emulate unrecognised FPop!\n");
 341#endif
 342                return 0;
 343        }
 344
 345        /* Decode the registers to be used */
 346        freg = (*pfsr >> 14) & 0xf;
 347
 348        *pfsr &= ~0x1c000;                              /* clear the traptype bits */
 349        
 350        freg = ((insn >> 14) & 0x1f);
 351        switch (type & 0x3) {                           /* is rs1 single, double or quad? */
 352        case 3:
 353                if (freg & 3) {                         /* quadwords must have bits 4&5 of the */
 354                                                        /* encoded reg. number set to zero. */
 355                        *pfsr |= (6 << 14);
 356                        return 0;                       /* simulate invalid_fp_register exception */
 357                }
 358        /* fall through */
 359        case 2:
 360                if (freg & 1) {                         /* doublewords must have bit 5 zeroed */
 361                        *pfsr |= (6 << 14);
 362                        return 0;
 363                }
 364        }
 365        rs1 = (argp)&fregs[freg];
 366        switch (type & 0x7) {
 367        case 7: FP_UNPACK_QP (QA, rs1); break;
 368        case 6: FP_UNPACK_DP (DA, rs1); break;
 369        case 5: FP_UNPACK_SP (SA, rs1); break;
 370        }
 371        freg = (insn & 0x1f);
 372        switch ((type >> 3) & 0x3) {                    /* same again for rs2 */
 373        case 3:
 374                if (freg & 3) {                         /* quadwords must have bits 4&5 of the */
 375                                                        /* encoded reg. number set to zero. */
 376                        *pfsr |= (6 << 14);
 377                        return 0;                       /* simulate invalid_fp_register exception */
 378                }
 379        /* fall through */
 380        case 2:
 381                if (freg & 1) {                         /* doublewords must have bit 5 zeroed */
 382                        *pfsr |= (6 << 14);
 383                        return 0;
 384                }
 385        }
 386        rs2 = (argp)&fregs[freg];
 387        switch ((type >> 3) & 0x7) {
 388        case 7: FP_UNPACK_QP (QB, rs2); break;
 389        case 6: FP_UNPACK_DP (DB, rs2); break;
 390        case 5: FP_UNPACK_SP (SB, rs2); break;
 391        }
 392        freg = ((insn >> 25) & 0x1f);
 393        switch ((type >> 6) & 0x3) {                    /* and finally rd. This one's a bit different */
 394        case 0:                                         /* dest is fcc. (this must be FCMPQ or FCMPEQ) */
 395                if (freg) {                             /* V8 has only one set of condition codes, so */
 396                                                        /* anything but 0 in the rd field is an error */
 397                        *pfsr |= (6 << 14);             /* (should probably flag as invalid opcode */
 398                        return 0;                       /* but SIGFPE will do :-> ) */
 399                }
 400                break;
 401        case 3:
 402                if (freg & 3) {                         /* quadwords must have bits 4&5 of the */
 403                                                        /* encoded reg. number set to zero. */
 404                        *pfsr |= (6 << 14);
 405                        return 0;                       /* simulate invalid_fp_register exception */
 406                }
 407        /* fall through */
 408        case 2:
 409                if (freg & 1) {                         /* doublewords must have bit 5 zeroed */
 410                        *pfsr |= (6 << 14);
 411                        return 0;
 412                }
 413        /* fall through */
 414        case 1:
 415                rd = (void *)&fregs[freg];
 416                break;
 417        }
 418#ifdef DEBUG_MATHEMU
 419        printk("executing insn...\n");
 420#endif
 421        /* do the Right Thing */
 422        switch ((insn >> 5) & 0x1ff) {
 423        /* + */
 424        case FADDS: FP_ADD_S (SR, SA, SB); break;
 425        case FADDD: FP_ADD_D (DR, DA, DB); break;
 426        case FADDQ: FP_ADD_Q (QR, QA, QB); break;
 427        /* - */
 428        case FSUBS: FP_SUB_S (SR, SA, SB); break;
 429        case FSUBD: FP_SUB_D (DR, DA, DB); break;
 430        case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
 431        /* * */
 432        case FMULS: FP_MUL_S (SR, SA, SB); break;
 433        case FSMULD: FP_CONV (D, S, 2, 1, DA, SA);
 434                     FP_CONV (D, S, 2, 1, DB, SB);
 435        case FMULD: FP_MUL_D (DR, DA, DB); break;
 436        case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA);
 437                     FP_CONV (Q, D, 4, 2, QB, DB);
 438        case FMULQ: FP_MUL_Q (QR, QA, QB); break;
 439        /* / */
 440        case FDIVS: FP_DIV_S (SR, SA, SB); break;
 441        case FDIVD: FP_DIV_D (DR, DA, DB); break;
 442        case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
 443        /* sqrt */
 444        case FSQRTS: FP_SQRT_S (SR, SB); break;
 445        case FSQRTD: FP_SQRT_D (DR, DB); break;
 446        case FSQRTQ: FP_SQRT_Q (QR, QB); break;
 447        /* mov */
 448        case FMOVS: rd->s = rs2->s; break;
 449        case FABSS: rd->s = rs2->s & 0x7fffffff; break;
 450        case FNEGS: rd->s = rs2->s ^ 0x80000000; break;
 451        /* float to int */
 452        case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
 453        case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
 454        case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
 455        /* int to float */
 456        case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
 457        case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
 458        case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
 459        /* float to float */
 460        case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break;
 461        case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break;
 462        case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break;
 463        case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break;
 464        case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break;
 465        case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break;
 466        /* comparison */
 467        case FCMPS:
 468        case FCMPES:
 469                FP_CMP_S(IR, SB, SA, 3);
 470                if (IR == 3 &&
 471                    (((insn >> 5) & 0x1ff) == FCMPES ||
 472                     FP_ISSIGNAN_S(SA) ||
 473                     FP_ISSIGNAN_S(SB)))
 474                        FP_SET_EXCEPTION (FP_EX_INVALID);
 475                break;
 476        case FCMPD:
 477        case FCMPED:
 478                FP_CMP_D(IR, DB, DA, 3);
 479                if (IR == 3 &&
 480                    (((insn >> 5) & 0x1ff) == FCMPED ||
 481                     FP_ISSIGNAN_D(DA) ||
 482                     FP_ISSIGNAN_D(DB)))
 483                        FP_SET_EXCEPTION (FP_EX_INVALID);
 484                break;
 485        case FCMPQ:
 486        case FCMPEQ:
 487                FP_CMP_Q(IR, QB, QA, 3);
 488                if (IR == 3 &&
 489                    (((insn >> 5) & 0x1ff) == FCMPEQ ||
 490                     FP_ISSIGNAN_Q(QA) ||
 491                     FP_ISSIGNAN_Q(QB)))
 492                        FP_SET_EXCEPTION (FP_EX_INVALID);
 493        }
 494        if (!FP_INHIBIT_RESULTS) {
 495                switch ((type >> 6) & 0x7) {
 496                case 0: fsr = *pfsr;
 497                        if (IR == -1) IR = 2;
 498                        /* fcc is always fcc0 */
 499                        fsr &= ~0xc00; fsr |= (IR << 10); break;
 500                        *pfsr = fsr;
 501                        break;
 502                case 1: rd->s = IR; break;
 503                case 5: FP_PACK_SP (rd, SR); break;
 504                case 6: FP_PACK_DP (rd, DR); break;
 505                case 7: FP_PACK_QP (rd, QR); break;
 506                }
 507        }
 508        if (_fex == 0)
 509                return 1;                               /* success! */
 510        return record_exception(pfsr, _fex);
 511}
 512