linux/arch/sparc/mm/fault_64.c
<<
>>
Prefs
   1/*
   2 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
   3 *
   4 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
   6 */
   7
   8#include <asm/head.h>
   9
  10#include <linux/string.h>
  11#include <linux/types.h>
  12#include <linux/sched.h>
  13#include <linux/ptrace.h>
  14#include <linux/mman.h>
  15#include <linux/signal.h>
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/init.h>
  19#include <linux/interrupt.h>
  20#include <linux/kprobes.h>
  21#include <linux/kdebug.h>
  22#include <linux/percpu.h>
  23
  24#include <asm/page.h>
  25#include <asm/pgtable.h>
  26#include <asm/openprom.h>
  27#include <asm/oplib.h>
  28#include <asm/uaccess.h>
  29#include <asm/asi.h>
  30#include <asm/lsu.h>
  31#include <asm/sections.h>
  32#include <asm/mmu_context.h>
  33
  34#ifdef CONFIG_KPROBES
  35static inline int notify_page_fault(struct pt_regs *regs)
  36{
  37        int ret = 0;
  38
  39        /* kprobe_running() needs smp_processor_id() */
  40        if (!user_mode(regs)) {
  41                preempt_disable();
  42                if (kprobe_running() && kprobe_fault_handler(regs, 0))
  43                        ret = 1;
  44                preempt_enable();
  45        }
  46        return ret;
  47}
  48#else
  49static inline int notify_page_fault(struct pt_regs *regs)
  50{
  51        return 0;
  52}
  53#endif
  54
  55static void __kprobes unhandled_fault(unsigned long address,
  56                                      struct task_struct *tsk,
  57                                      struct pt_regs *regs)
  58{
  59        if ((unsigned long) address < PAGE_SIZE) {
  60                printk(KERN_ALERT "Unable to handle kernel NULL "
  61                       "pointer dereference\n");
  62        } else {
  63                printk(KERN_ALERT "Unable to handle kernel paging request "
  64                       "at virtual address %016lx\n", (unsigned long)address);
  65        }
  66        printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n",
  67               (tsk->mm ?
  68                CTX_HWBITS(tsk->mm->context) :
  69                CTX_HWBITS(tsk->active_mm->context)));
  70        printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n",
  71               (tsk->mm ? (unsigned long) tsk->mm->pgd :
  72                          (unsigned long) tsk->active_mm->pgd));
  73        die_if_kernel("Oops", regs);
  74}
  75
  76static void bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr)
  77{
  78        printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n",
  79               regs->tpc);
  80        printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]);
  81        printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]);
  82        printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr);
  83        dump_stack();
  84        unhandled_fault(regs->tpc, current, regs);
  85}
  86
  87/*
  88 * We now make sure that mmap_sem is held in all paths that call 
  89 * this. Additionally, to prevent kswapd from ripping ptes from
  90 * under us, raise interrupts around the time that we look at the
  91 * pte, kswapd will have to wait to get his smp ipi response from
  92 * us. vmtruncate likewise. This saves us having to get pte lock.
  93 */
  94static unsigned int get_user_insn(unsigned long tpc)
  95{
  96        pgd_t *pgdp = pgd_offset(current->mm, tpc);
  97        pud_t *pudp;
  98        pmd_t *pmdp;
  99        pte_t *ptep, pte;
 100        unsigned long pa;
 101        u32 insn = 0;
 102        unsigned long pstate;
 103
 104        if (pgd_none(*pgdp))
 105                goto outret;
 106        pudp = pud_offset(pgdp, tpc);
 107        if (pud_none(*pudp))
 108                goto outret;
 109        pmdp = pmd_offset(pudp, tpc);
 110        if (pmd_none(*pmdp))
 111                goto outret;
 112
 113        /* This disables preemption for us as well. */
 114        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 115        __asm__ __volatile__("wrpr %0, %1, %%pstate"
 116                                : : "r" (pstate), "i" (PSTATE_IE));
 117        ptep = pte_offset_map(pmdp, tpc);
 118        pte = *ptep;
 119        if (!pte_present(pte))
 120                goto out;
 121
 122        pa  = (pte_pfn(pte) << PAGE_SHIFT);
 123        pa += (tpc & ~PAGE_MASK);
 124
 125        /* Use phys bypass so we don't pollute dtlb/dcache. */
 126        __asm__ __volatile__("lduwa [%1] %2, %0"
 127                             : "=r" (insn)
 128                             : "r" (pa), "i" (ASI_PHYS_USE_EC));
 129
 130out:
 131        pte_unmap(ptep);
 132        __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
 133outret:
 134        return insn;
 135}
 136
 137extern unsigned long compute_effective_address(struct pt_regs *, unsigned int, unsigned int);
 138
 139static void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
 140                             unsigned int insn, int fault_code)
 141{
 142        siginfo_t info;
 143
 144        info.si_code = code;
 145        info.si_signo = sig;
 146        info.si_errno = 0;
 147        if (fault_code & FAULT_CODE_ITLB)
 148                info.si_addr = (void __user *) regs->tpc;
 149        else
 150                info.si_addr = (void __user *)
 151                        compute_effective_address(regs, insn, 0);
 152        info.si_trapno = 0;
 153        force_sig_info(sig, &info, current);
 154}
 155
 156extern int handle_ldf_stq(u32, struct pt_regs *);
 157extern int handle_ld_nf(u32, struct pt_regs *);
 158
 159static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn)
 160{
 161        if (!insn) {
 162                if (!regs->tpc || (regs->tpc & 0x3))
 163                        return 0;
 164                if (regs->tstate & TSTATE_PRIV) {
 165                        insn = *(unsigned int *) regs->tpc;
 166                } else {
 167                        insn = get_user_insn(regs->tpc);
 168                }
 169        }
 170        return insn;
 171}
 172
 173static void do_kernel_fault(struct pt_regs *regs, int si_code, int fault_code,
 174                            unsigned int insn, unsigned long address)
 175{
 176        unsigned char asi = ASI_P;
 177 
 178        if ((!insn) && (regs->tstate & TSTATE_PRIV))
 179                goto cannot_handle;
 180
 181        /* If user insn could be read (thus insn is zero), that
 182         * is fine.  We will just gun down the process with a signal
 183         * in that case.
 184         */
 185
 186        if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) &&
 187            (insn & 0xc0800000) == 0xc0800000) {
 188                if (insn & 0x2000)
 189                        asi = (regs->tstate >> 24);
 190                else
 191                        asi = (insn >> 5);
 192                if ((asi & 0xf2) == 0x82) {
 193                        if (insn & 0x1000000) {
 194                                handle_ldf_stq(insn, regs);
 195                        } else {
 196                                /* This was a non-faulting load. Just clear the
 197                                 * destination register(s) and continue with the next
 198                                 * instruction. -jj
 199                                 */
 200                                handle_ld_nf(insn, regs);
 201                        }
 202                        return;
 203                }
 204        }
 205                
 206        /* Is this in ex_table? */
 207        if (regs->tstate & TSTATE_PRIV) {
 208                const struct exception_table_entry *entry;
 209
 210                entry = search_exception_tables(regs->tpc);
 211                if (entry) {
 212                        regs->tpc = entry->fixup;
 213                        regs->tnpc = regs->tpc + 4;
 214                        return;
 215                }
 216        } else {
 217                /* The si_code was set to make clear whether
 218                 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
 219                 */
 220                do_fault_siginfo(si_code, SIGSEGV, regs, insn, fault_code);
 221                return;
 222        }
 223
 224cannot_handle:
 225        unhandled_fault (address, current, regs);
 226}
 227
 228static void noinline bogus_32bit_fault_tpc(struct pt_regs *regs)
 229{
 230        static int times;
 231
 232        if (times++ < 10)
 233                printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports "
 234                       "64-bit TPC [%lx]\n",
 235                       current->comm, current->pid,
 236                       regs->tpc);
 237        show_regs(regs);
 238}
 239
 240static void noinline bogus_32bit_fault_address(struct pt_regs *regs,
 241                                               unsigned long addr)
 242{
 243        static int times;
 244
 245        if (times++ < 10)
 246                printk(KERN_ERR "FAULT[%s:%d]: 32-bit process "
 247                       "reports 64-bit fault address [%lx]\n",
 248                       current->comm, current->pid, addr);
 249        show_regs(regs);
 250}
 251
 252asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
 253{
 254        struct mm_struct *mm = current->mm;
 255        struct vm_area_struct *vma;
 256        unsigned int insn = 0;
 257        int si_code, fault_code, fault;
 258        unsigned long address, mm_rss;
 259
 260        fault_code = get_thread_fault_code();
 261
 262        if (notify_page_fault(regs))
 263                return;
 264
 265        si_code = SEGV_MAPERR;
 266        address = current_thread_info()->fault_address;
 267
 268        if ((fault_code & FAULT_CODE_ITLB) &&
 269            (fault_code & FAULT_CODE_DTLB))
 270                BUG();
 271
 272        if (test_thread_flag(TIF_32BIT)) {
 273                if (!(regs->tstate & TSTATE_PRIV)) {
 274                        if (unlikely((regs->tpc >> 32) != 0)) {
 275                                bogus_32bit_fault_tpc(regs);
 276                                goto intr_or_no_mm;
 277                        }
 278                }
 279                if (unlikely((address >> 32) != 0)) {
 280                        bogus_32bit_fault_address(regs, address);
 281                        goto intr_or_no_mm;
 282                }
 283        }
 284
 285        if (regs->tstate & TSTATE_PRIV) {
 286                unsigned long tpc = regs->tpc;
 287
 288                /* Sanity check the PC. */
 289                if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) ||
 290                    (tpc >= MODULES_VADDR && tpc < MODULES_END)) {
 291                        /* Valid, no problems... */
 292                } else {
 293                        bad_kernel_pc(regs, address);
 294                        return;
 295                }
 296        }
 297
 298        /*
 299         * If we're in an interrupt or have no user
 300         * context, we must not take the fault..
 301         */
 302        if (in_atomic() || !mm)
 303                goto intr_or_no_mm;
 304
 305        if (!down_read_trylock(&mm->mmap_sem)) {
 306                if ((regs->tstate & TSTATE_PRIV) &&
 307                    !search_exception_tables(regs->tpc)) {
 308                        insn = get_fault_insn(regs, insn);
 309                        goto handle_kernel_fault;
 310                }
 311                down_read(&mm->mmap_sem);
 312        }
 313
 314        vma = find_vma(mm, address);
 315        if (!vma)
 316                goto bad_area;
 317
 318        /* Pure DTLB misses do not tell us whether the fault causing
 319         * load/store/atomic was a write or not, it only says that there
 320         * was no match.  So in such a case we (carefully) read the
 321         * instruction to try and figure this out.  It's an optimization
 322         * so it's ok if we can't do this.
 323         *
 324         * Special hack, window spill/fill knows the exact fault type.
 325         */
 326        if (((fault_code &
 327              (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&
 328            (vma->vm_flags & VM_WRITE) != 0) {
 329                insn = get_fault_insn(regs, 0);
 330                if (!insn)
 331                        goto continue_fault;
 332                /* All loads, stores and atomics have bits 30 and 31 both set
 333                 * in the instruction.  Bit 21 is set in all stores, but we
 334                 * have to avoid prefetches which also have bit 21 set.
 335                 */
 336                if ((insn & 0xc0200000) == 0xc0200000 &&
 337                    (insn & 0x01780000) != 0x01680000) {
 338                        /* Don't bother updating thread struct value,
 339                         * because update_mmu_cache only cares which tlb
 340                         * the access came from.
 341                         */
 342                        fault_code |= FAULT_CODE_WRITE;
 343                }
 344        }
 345continue_fault:
 346
 347        if (vma->vm_start <= address)
 348                goto good_area;
 349        if (!(vma->vm_flags & VM_GROWSDOWN))
 350                goto bad_area;
 351        if (!(fault_code & FAULT_CODE_WRITE)) {
 352                /* Non-faulting loads shouldn't expand stack. */
 353                insn = get_fault_insn(regs, insn);
 354                if ((insn & 0xc0800000) == 0xc0800000) {
 355                        unsigned char asi;
 356
 357                        if (insn & 0x2000)
 358                                asi = (regs->tstate >> 24);
 359                        else
 360                                asi = (insn >> 5);
 361                        if ((asi & 0xf2) == 0x82)
 362                                goto bad_area;
 363                }
 364        }
 365        if (expand_stack(vma, address))
 366                goto bad_area;
 367        /*
 368         * Ok, we have a good vm_area for this memory access, so
 369         * we can handle it..
 370         */
 371good_area:
 372        si_code = SEGV_ACCERR;
 373
 374        /* If we took a ITLB miss on a non-executable page, catch
 375         * that here.
 376         */
 377        if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {
 378                BUG_ON(address != regs->tpc);
 379                BUG_ON(regs->tstate & TSTATE_PRIV);
 380                goto bad_area;
 381        }
 382
 383        if (fault_code & FAULT_CODE_WRITE) {
 384                if (!(vma->vm_flags & VM_WRITE))
 385                        goto bad_area;
 386
 387                /* Spitfire has an icache which does not snoop
 388                 * processor stores.  Later processors do...
 389                 */
 390                if (tlb_type == spitfire &&
 391                    (vma->vm_flags & VM_EXEC) != 0 &&
 392                    vma->vm_file != NULL)
 393                        set_thread_fault_code(fault_code |
 394                                              FAULT_CODE_BLKCOMMIT);
 395        } else {
 396                /* Allow reads even for write-only mappings */
 397                if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
 398                        goto bad_area;
 399        }
 400
 401        fault = handle_mm_fault(mm, vma, address, (fault_code & FAULT_CODE_WRITE) ? FAULT_FLAG_WRITE : 0);
 402        if (unlikely(fault & VM_FAULT_ERROR)) {
 403                if (fault & VM_FAULT_OOM)
 404                        goto out_of_memory;
 405                else if (fault & VM_FAULT_SIGBUS)
 406                        goto do_sigbus;
 407                BUG();
 408        }
 409        if (fault & VM_FAULT_MAJOR)
 410                current->maj_flt++;
 411        else
 412                current->min_flt++;
 413
 414        up_read(&mm->mmap_sem);
 415
 416        mm_rss = get_mm_rss(mm);
 417#ifdef CONFIG_HUGETLB_PAGE
 418        mm_rss -= (mm->context.huge_pte_count * (HPAGE_SIZE / PAGE_SIZE));
 419#endif
 420        if (unlikely(mm_rss >
 421                     mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))
 422                tsb_grow(mm, MM_TSB_BASE, mm_rss);
 423#ifdef CONFIG_HUGETLB_PAGE
 424        mm_rss = mm->context.huge_pte_count;
 425        if (unlikely(mm_rss >
 426                     mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit))
 427                tsb_grow(mm, MM_TSB_HUGE, mm_rss);
 428#endif
 429        return;
 430
 431        /*
 432         * Something tried to access memory that isn't in our memory map..
 433         * Fix it, but check if it's kernel or user first..
 434         */
 435bad_area:
 436        insn = get_fault_insn(regs, insn);
 437        up_read(&mm->mmap_sem);
 438
 439handle_kernel_fault:
 440        do_kernel_fault(regs, si_code, fault_code, insn, address);
 441        return;
 442
 443/*
 444 * We ran out of memory, or some other thing happened to us that made
 445 * us unable to handle the page fault gracefully.
 446 */
 447out_of_memory:
 448        insn = get_fault_insn(regs, insn);
 449        up_read(&mm->mmap_sem);
 450        if (!(regs->tstate & TSTATE_PRIV)) {
 451                pagefault_out_of_memory();
 452                return;
 453        }
 454        goto handle_kernel_fault;
 455
 456intr_or_no_mm:
 457        insn = get_fault_insn(regs, 0);
 458        goto handle_kernel_fault;
 459
 460do_sigbus:
 461        insn = get_fault_insn(regs, insn);
 462        up_read(&mm->mmap_sem);
 463
 464        /*
 465         * Send a sigbus, regardless of whether we were in kernel
 466         * or user mode.
 467         */
 468        do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, insn, fault_code);
 469
 470        /* Kernel mode? Handle exceptions or die */
 471        if (regs->tstate & TSTATE_PRIV)
 472                goto handle_kernel_fault;
 473}
 474