linux/arch/um/kernel/process.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
   3 * Copyright 2003 PathScale, Inc.
   4 * Licensed under the GPL
   5 */
   6
   7#include <linux/stddef.h>
   8#include <linux/err.h>
   9#include <linux/hardirq.h>
  10#include <linux/gfp.h>
  11#include <linux/mm.h>
  12#include <linux/personality.h>
  13#include <linux/proc_fs.h>
  14#include <linux/ptrace.h>
  15#include <linux/random.h>
  16#include <linux/sched.h>
  17#include <linux/tick.h>
  18#include <linux/threads.h>
  19#include <asm/current.h>
  20#include <asm/pgtable.h>
  21#include <asm/uaccess.h>
  22#include "as-layout.h"
  23#include "kern_util.h"
  24#include "os.h"
  25#include "skas.h"
  26#include "tlb.h"
  27
  28/*
  29 * This is a per-cpu array.  A processor only modifies its entry and it only
  30 * cares about its entry, so it's OK if another processor is modifying its
  31 * entry.
  32 */
  33struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
  34
  35static inline int external_pid(void)
  36{
  37        /* FIXME: Need to look up userspace_pid by cpu */
  38        return userspace_pid[0];
  39}
  40
  41int pid_to_processor_id(int pid)
  42{
  43        int i;
  44
  45        for (i = 0; i < ncpus; i++) {
  46                if (cpu_tasks[i].pid == pid)
  47                        return i;
  48        }
  49        return -1;
  50}
  51
  52void free_stack(unsigned long stack, int order)
  53{
  54        free_pages(stack, order);
  55}
  56
  57unsigned long alloc_stack(int order, int atomic)
  58{
  59        unsigned long page;
  60        gfp_t flags = GFP_KERNEL;
  61
  62        if (atomic)
  63                flags = GFP_ATOMIC;
  64        page = __get_free_pages(flags, order);
  65
  66        return page;
  67}
  68
  69int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  70{
  71        int pid;
  72
  73        current->thread.request.u.thread.proc = fn;
  74        current->thread.request.u.thread.arg = arg;
  75        pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
  76                      &current->thread.regs, 0, NULL, NULL);
  77        return pid;
  78}
  79
  80static inline void set_current(struct task_struct *task)
  81{
  82        cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
  83                { external_pid(), task });
  84}
  85
  86extern void arch_switch_to(struct task_struct *to);
  87
  88void *_switch_to(void *prev, void *next, void *last)
  89{
  90        struct task_struct *from = prev;
  91        struct task_struct *to = next;
  92
  93        to->thread.prev_sched = from;
  94        set_current(to);
  95
  96        do {
  97                current->thread.saved_task = NULL;
  98
  99                switch_threads(&from->thread.switch_buf,
 100                               &to->thread.switch_buf);
 101
 102                arch_switch_to(current);
 103
 104                if (current->thread.saved_task)
 105                        show_regs(&(current->thread.regs));
 106                to = current->thread.saved_task;
 107                from = current;
 108        } while (current->thread.saved_task);
 109
 110        return current->thread.prev_sched;
 111
 112}
 113
 114void interrupt_end(void)
 115{
 116        if (need_resched())
 117                schedule();
 118        if (test_tsk_thread_flag(current, TIF_SIGPENDING))
 119                do_signal();
 120}
 121
 122void exit_thread(void)
 123{
 124}
 125
 126void *get_current(void)
 127{
 128        return current;
 129}
 130
 131/*
 132 * This is called magically, by its address being stuffed in a jmp_buf
 133 * and being longjmp-d to.
 134 */
 135void new_thread_handler(void)
 136{
 137        int (*fn)(void *), n;
 138        void *arg;
 139
 140        if (current->thread.prev_sched != NULL)
 141                schedule_tail(current->thread.prev_sched);
 142        current->thread.prev_sched = NULL;
 143
 144        fn = current->thread.request.u.thread.proc;
 145        arg = current->thread.request.u.thread.arg;
 146
 147        /*
 148         * The return value is 1 if the kernel thread execs a process,
 149         * 0 if it just exits
 150         */
 151        n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
 152        if (n == 1) {
 153                /* Handle any immediate reschedules or signals */
 154                interrupt_end();
 155                userspace(&current->thread.regs.regs);
 156        }
 157        else do_exit(0);
 158}
 159
 160/* Called magically, see new_thread_handler above */
 161void fork_handler(void)
 162{
 163        force_flush_all();
 164
 165        schedule_tail(current->thread.prev_sched);
 166
 167        /*
 168         * XXX: if interrupt_end() calls schedule, this call to
 169         * arch_switch_to isn't needed. We could want to apply this to
 170         * improve performance. -bb
 171         */
 172        arch_switch_to(current);
 173
 174        current->thread.prev_sched = NULL;
 175
 176        /* Handle any immediate reschedules or signals */
 177        interrupt_end();
 178
 179        userspace(&current->thread.regs.regs);
 180}
 181
 182int copy_thread(unsigned long clone_flags, unsigned long sp,
 183                unsigned long stack_top, struct task_struct * p,
 184                struct pt_regs *regs)
 185{
 186        void (*handler)(void);
 187        int ret = 0;
 188
 189        p->thread = (struct thread_struct) INIT_THREAD;
 190
 191        if (current->thread.forking) {
 192                memcpy(&p->thread.regs.regs, &regs->regs,
 193                       sizeof(p->thread.regs.regs));
 194                REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
 195                if (sp != 0)
 196                        REGS_SP(p->thread.regs.regs.gp) = sp;
 197
 198                handler = fork_handler;
 199
 200                arch_copy_thread(&current->thread.arch, &p->thread.arch);
 201        }
 202        else {
 203                get_safe_registers(p->thread.regs.regs.gp);
 204                p->thread.request.u.thread = current->thread.request.u.thread;
 205                handler = new_thread_handler;
 206        }
 207
 208        new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
 209
 210        if (current->thread.forking) {
 211                clear_flushed_tls(p);
 212
 213                /*
 214                 * Set a new TLS for the child thread?
 215                 */
 216                if (clone_flags & CLONE_SETTLS)
 217                        ret = arch_copy_tls(p);
 218        }
 219
 220        return ret;
 221}
 222
 223void initial_thread_cb(void (*proc)(void *), void *arg)
 224{
 225        int save_kmalloc_ok = kmalloc_ok;
 226
 227        kmalloc_ok = 0;
 228        initial_thread_cb_skas(proc, arg);
 229        kmalloc_ok = save_kmalloc_ok;
 230}
 231
 232void default_idle(void)
 233{
 234        unsigned long long nsecs;
 235
 236        while (1) {
 237                /* endless idle loop with no priority at all */
 238
 239                /*
 240                 * although we are an idle CPU, we do not want to
 241                 * get into the scheduler unnecessarily.
 242                 */
 243                if (need_resched())
 244                        schedule();
 245
 246                tick_nohz_stop_sched_tick(1);
 247                nsecs = disable_timer();
 248                idle_sleep(nsecs);
 249                tick_nohz_restart_sched_tick();
 250        }
 251}
 252
 253void cpu_idle(void)
 254{
 255        cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
 256        default_idle();
 257}
 258
 259int __cant_sleep(void) {
 260        return in_atomic() || irqs_disabled() || in_interrupt();
 261        /* Is in_interrupt() really needed? */
 262}
 263
 264int user_context(unsigned long sp)
 265{
 266        unsigned long stack;
 267
 268        stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
 269        return stack != (unsigned long) current_thread_info();
 270}
 271
 272extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
 273
 274void do_uml_exitcalls(void)
 275{
 276        exitcall_t *call;
 277
 278        call = &__uml_exitcall_end;
 279        while (--call >= &__uml_exitcall_begin)
 280                (*call)();
 281}
 282
 283char *uml_strdup(const char *string)
 284{
 285        return kstrdup(string, GFP_KERNEL);
 286}
 287
 288int copy_to_user_proc(void __user *to, void *from, int size)
 289{
 290        return copy_to_user(to, from, size);
 291}
 292
 293int copy_from_user_proc(void *to, void __user *from, int size)
 294{
 295        return copy_from_user(to, from, size);
 296}
 297
 298int clear_user_proc(void __user *buf, int size)
 299{
 300        return clear_user(buf, size);
 301}
 302
 303int strlen_user_proc(char __user *str)
 304{
 305        return strlen_user(str);
 306}
 307
 308int smp_sigio_handler(void)
 309{
 310#ifdef CONFIG_SMP
 311        int cpu = current_thread_info()->cpu;
 312        IPI_handler(cpu);
 313        if (cpu != 0)
 314                return 1;
 315#endif
 316        return 0;
 317}
 318
 319int cpu(void)
 320{
 321        return current_thread_info()->cpu;
 322}
 323
 324static atomic_t using_sysemu = ATOMIC_INIT(0);
 325int sysemu_supported;
 326
 327void set_using_sysemu(int value)
 328{
 329        if (value > sysemu_supported)
 330                return;
 331        atomic_set(&using_sysemu, value);
 332}
 333
 334int get_using_sysemu(void)
 335{
 336        return atomic_read(&using_sysemu);
 337}
 338
 339static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
 340{
 341        if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size)
 342                /* No overflow */
 343                *eof = 1;
 344
 345        return strlen(buf);
 346}
 347
 348static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
 349{
 350        char tmp[2];
 351
 352        if (copy_from_user(tmp, buf, 1))
 353                return -EFAULT;
 354
 355        if (tmp[0] >= '0' && tmp[0] <= '2')
 356                set_using_sysemu(tmp[0] - '0');
 357        /* We use the first char, but pretend to write everything */
 358        return count;
 359}
 360
 361int __init make_proc_sysemu(void)
 362{
 363        struct proc_dir_entry *ent;
 364        if (!sysemu_supported)
 365                return 0;
 366
 367        ent = create_proc_entry("sysemu", 0600, NULL);
 368
 369        if (ent == NULL)
 370        {
 371                printk(KERN_WARNING "Failed to register /proc/sysemu\n");
 372                return 0;
 373        }
 374
 375        ent->read_proc  = proc_read_sysemu;
 376        ent->write_proc = proc_write_sysemu;
 377
 378        return 0;
 379}
 380
 381late_initcall(make_proc_sysemu);
 382
 383int singlestepping(void * t)
 384{
 385        struct task_struct *task = t ? t : current;
 386
 387        if (!(task->ptrace & PT_DTRACE))
 388                return 0;
 389
 390        if (task->thread.singlestep_syscall)
 391                return 1;
 392
 393        return 2;
 394}
 395
 396/*
 397 * Only x86 and x86_64 have an arch_align_stack().
 398 * All other arches have "#define arch_align_stack(x) (x)"
 399 * in their asm/system.h
 400 * As this is included in UML from asm-um/system-generic.h,
 401 * we can use it to behave as the subarch does.
 402 */
 403#ifndef arch_align_stack
 404unsigned long arch_align_stack(unsigned long sp)
 405{
 406        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 407                sp -= get_random_int() % 8192;
 408        return sp & ~0xf;
 409}
 410#endif
 411
 412unsigned long get_wchan(struct task_struct *p)
 413{
 414        unsigned long stack_page, sp, ip;
 415        bool seen_sched = 0;
 416
 417        if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
 418                return 0;
 419
 420        stack_page = (unsigned long) task_stack_page(p);
 421        /* Bail if the process has no kernel stack for some reason */
 422        if (stack_page == 0)
 423                return 0;
 424
 425        sp = p->thread.switch_buf->JB_SP;
 426        /*
 427         * Bail if the stack pointer is below the bottom of the kernel
 428         * stack for some reason
 429         */
 430        if (sp < stack_page)
 431                return 0;
 432
 433        while (sp < stack_page + THREAD_SIZE) {
 434                ip = *((unsigned long *) sp);
 435                if (in_sched_functions(ip))
 436                        /* Ignore everything until we're above the scheduler */
 437                        seen_sched = 1;
 438                else if (kernel_text_address(ip) && seen_sched)
 439                        return ip;
 440
 441                sp += sizeof(unsigned long);
 442        }
 443
 444        return 0;
 445}
 446
 447int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
 448{
 449        int cpu = current_thread_info()->cpu;
 450
 451        return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
 452}
 453
 454