linux/arch/x86/include/asm/i387.h
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1994 Linus Torvalds
   3 *
   4 * Pentium III FXSR, SSE support
   5 * General FPU state handling cleanups
   6 *      Gareth Hughes <gareth@valinux.com>, May 2000
   7 * x86-64 work by Andi Kleen 2002
   8 */
   9
  10#ifndef _ASM_X86_I387_H
  11#define _ASM_X86_I387_H
  12
  13#include <linux/sched.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/regset.h>
  16#include <linux/hardirq.h>
  17#include <asm/asm.h>
  18#include <asm/processor.h>
  19#include <asm/sigcontext.h>
  20#include <asm/user.h>
  21#include <asm/uaccess.h>
  22#include <asm/xsave.h>
  23
  24extern unsigned int sig_xstate_size;
  25extern void fpu_init(void);
  26extern void mxcsr_feature_mask_init(void);
  27extern int init_fpu(struct task_struct *child);
  28extern asmlinkage void math_state_restore(void);
  29extern void __math_state_restore(void);
  30extern void init_thread_xstate(void);
  31extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
  32
  33extern user_regset_active_fn fpregs_active, xfpregs_active;
  34extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get;
  35extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set;
  36
  37extern struct _fpx_sw_bytes fx_sw_reserved;
  38#ifdef CONFIG_IA32_EMULATION
  39extern unsigned int sig_xstate_ia32_size;
  40extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
  41struct _fpstate_ia32;
  42struct _xstate_ia32;
  43extern int save_i387_xstate_ia32(void __user *buf);
  44extern int restore_i387_xstate_ia32(void __user *buf);
  45#endif
  46
  47#define X87_FSW_ES (1 << 7)     /* Exception Summary */
  48
  49#ifdef CONFIG_X86_64
  50
  51/* Ignore delayed exceptions from user space */
  52static inline void tolerant_fwait(void)
  53{
  54        asm volatile("1: fwait\n"
  55                     "2:\n"
  56                     _ASM_EXTABLE(1b, 2b));
  57}
  58
  59static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
  60{
  61        int err;
  62
  63        asm volatile("1:  rex64/fxrstor (%[fx])\n\t"
  64                     "2:\n"
  65                     ".section .fixup,\"ax\"\n"
  66                     "3:  movl $-1,%[err]\n"
  67                     "    jmp  2b\n"
  68                     ".previous\n"
  69                     _ASM_EXTABLE(1b, 3b)
  70                     : [err] "=r" (err)
  71#if 0 /* See comment in fxsave() below. */
  72                     : [fx] "r" (fx), "m" (*fx), "0" (0));
  73#else
  74                     : [fx] "cdaSDb" (fx), "m" (*fx), "0" (0));
  75#endif
  76        return err;
  77}
  78
  79/* AMD CPUs don't save/restore FDP/FIP/FOP unless an exception
  80   is pending. Clear the x87 state here by setting it to fixed
  81   values. The kernel data segment can be sometimes 0 and sometimes
  82   new user value. Both should be ok.
  83   Use the PDA as safe address because it should be already in L1. */
  84static inline void clear_fpu_state(struct task_struct *tsk)
  85{
  86        struct xsave_struct *xstate = &tsk->thread.xstate->xsave;
  87        struct i387_fxsave_struct *fx = &tsk->thread.xstate->fxsave;
  88
  89        /*
  90         * xsave header may indicate the init state of the FP.
  91         */
  92        if ((task_thread_info(tsk)->status & TS_XSAVE) &&
  93            !(xstate->xsave_hdr.xstate_bv & XSTATE_FP))
  94                return;
  95
  96        if (unlikely(fx->swd & X87_FSW_ES))
  97                asm volatile("fnclex");
  98        alternative_input(ASM_NOP8 ASM_NOP2,
  99                          "    emms\n"          /* clear stack tags */
 100                          "    fildl %%gs:0",   /* load to clear state */
 101                          X86_FEATURE_FXSAVE_LEAK);
 102}
 103
 104static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
 105{
 106        int err;
 107
 108        asm volatile("1:  rex64/fxsave (%[fx])\n\t"
 109                     "2:\n"
 110                     ".section .fixup,\"ax\"\n"
 111                     "3:  movl $-1,%[err]\n"
 112                     "    jmp  2b\n"
 113                     ".previous\n"
 114                     _ASM_EXTABLE(1b, 3b)
 115                     : [err] "=r" (err), "=m" (*fx)
 116#if 0 /* See comment in fxsave() below. */
 117                     : [fx] "r" (fx), "0" (0));
 118#else
 119                     : [fx] "cdaSDb" (fx), "0" (0));
 120#endif
 121        if (unlikely(err) &&
 122            __clear_user(fx, sizeof(struct i387_fxsave_struct)))
 123                err = -EFAULT;
 124        /* No need to clear here because the caller clears USED_MATH */
 125        return err;
 126}
 127
 128static inline void fxsave(struct task_struct *tsk)
 129{
 130        /* Using "rex64; fxsave %0" is broken because, if the memory operand
 131           uses any extended registers for addressing, a second REX prefix
 132           will be generated (to the assembler, rex64 followed by semicolon
 133           is a separate instruction), and hence the 64-bitness is lost. */
 134#if 0
 135        /* Using "fxsaveq %0" would be the ideal choice, but is only supported
 136           starting with gas 2.16. */
 137        __asm__ __volatile__("fxsaveq %0"
 138                             : "=m" (tsk->thread.xstate->fxsave));
 139#elif 0
 140        /* Using, as a workaround, the properly prefixed form below isn't
 141           accepted by any binutils version so far released, complaining that
 142           the same type of prefix is used twice if an extended register is
 143           needed for addressing (fix submitted to mainline 2005-11-21). */
 144        __asm__ __volatile__("rex64/fxsave %0"
 145                             : "=m" (tsk->thread.xstate->fxsave));
 146#else
 147        /* This, however, we can work around by forcing the compiler to select
 148           an addressing mode that doesn't require extended registers. */
 149        __asm__ __volatile__("rex64/fxsave (%1)"
 150                             : "=m" (tsk->thread.xstate->fxsave)
 151                             : "cdaSDb" (&tsk->thread.xstate->fxsave));
 152#endif
 153}
 154
 155static inline void __save_init_fpu(struct task_struct *tsk)
 156{
 157        if (task_thread_info(tsk)->status & TS_XSAVE)
 158                xsave(tsk);
 159        else
 160                fxsave(tsk);
 161
 162        clear_fpu_state(tsk);
 163        task_thread_info(tsk)->status &= ~TS_USEDFPU;
 164}
 165
 166#else  /* CONFIG_X86_32 */
 167
 168#ifdef CONFIG_MATH_EMULATION
 169extern void finit_task(struct task_struct *tsk);
 170#else
 171static inline void finit_task(struct task_struct *tsk)
 172{
 173}
 174#endif
 175
 176static inline void tolerant_fwait(void)
 177{
 178        asm volatile("fnclex ; fwait");
 179}
 180
 181/* perform fxrstor iff the processor has extended states, otherwise frstor */
 182static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
 183{
 184        /*
 185         * The "nop" is needed to make the instructions the same
 186         * length.
 187         */
 188        alternative_input(
 189                "nop ; frstor %1",
 190                "fxrstor %1",
 191                X86_FEATURE_FXSR,
 192                "m" (*fx));
 193
 194        return 0;
 195}
 196
 197/* We need a safe address that is cheap to find and that is already
 198   in L1 during context switch. The best choices are unfortunately
 199   different for UP and SMP */
 200#ifdef CONFIG_SMP
 201#define safe_address (__per_cpu_offset[0])
 202#else
 203#define safe_address (kstat_cpu(0).cpustat.user)
 204#endif
 205
 206/*
 207 * These must be called with preempt disabled
 208 */
 209static inline void __save_init_fpu(struct task_struct *tsk)
 210{
 211        if (task_thread_info(tsk)->status & TS_XSAVE) {
 212                struct xsave_struct *xstate = &tsk->thread.xstate->xsave;
 213                struct i387_fxsave_struct *fx = &tsk->thread.xstate->fxsave;
 214
 215                xsave(tsk);
 216
 217                /*
 218                 * xsave header may indicate the init state of the FP.
 219                 */
 220                if (!(xstate->xsave_hdr.xstate_bv & XSTATE_FP))
 221                        goto end;
 222
 223                if (unlikely(fx->swd & X87_FSW_ES))
 224                        asm volatile("fnclex");
 225
 226                /*
 227                 * we can do a simple return here or be paranoid :)
 228                 */
 229                goto clear_state;
 230        }
 231
 232        /* Use more nops than strictly needed in case the compiler
 233           varies code */
 234        alternative_input(
 235                "fnsave %[fx] ;fwait;" GENERIC_NOP8 GENERIC_NOP4,
 236                "fxsave %[fx]\n"
 237                "bt $7,%[fsw] ; jnc 1f ; fnclex\n1:",
 238                X86_FEATURE_FXSR,
 239                [fx] "m" (tsk->thread.xstate->fxsave),
 240                [fsw] "m" (tsk->thread.xstate->fxsave.swd) : "memory");
 241clear_state:
 242        /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
 243           is pending.  Clear the x87 state here by setting it to fixed
 244           values. safe_address is a random variable that should be in L1 */
 245        alternative_input(
 246                GENERIC_NOP8 GENERIC_NOP2,
 247                "emms\n\t"              /* clear stack tags */
 248                "fildl %[addr]",        /* set F?P to defined value */
 249                X86_FEATURE_FXSAVE_LEAK,
 250                [addr] "m" (safe_address));
 251end:
 252        task_thread_info(tsk)->status &= ~TS_USEDFPU;
 253}
 254
 255#endif  /* CONFIG_X86_64 */
 256
 257static inline int restore_fpu_checking(struct task_struct *tsk)
 258{
 259        if (task_thread_info(tsk)->status & TS_XSAVE)
 260                return xrstor_checking(&tsk->thread.xstate->xsave);
 261        else
 262                return fxrstor_checking(&tsk->thread.xstate->fxsave);
 263}
 264
 265/*
 266 * Signal frame handlers...
 267 */
 268extern int save_i387_xstate(void __user *buf);
 269extern int restore_i387_xstate(void __user *buf);
 270
 271static inline void __unlazy_fpu(struct task_struct *tsk)
 272{
 273        if (task_thread_info(tsk)->status & TS_USEDFPU) {
 274                __save_init_fpu(tsk);
 275                stts();
 276        } else
 277                tsk->fpu_counter = 0;
 278}
 279
 280static inline void __clear_fpu(struct task_struct *tsk)
 281{
 282        if (task_thread_info(tsk)->status & TS_USEDFPU) {
 283                tolerant_fwait();
 284                task_thread_info(tsk)->status &= ~TS_USEDFPU;
 285                stts();
 286        }
 287}
 288
 289static inline void kernel_fpu_begin(void)
 290{
 291        struct thread_info *me = current_thread_info();
 292        preempt_disable();
 293        if (me->status & TS_USEDFPU)
 294                __save_init_fpu(me->task);
 295        else
 296                clts();
 297}
 298
 299static inline void kernel_fpu_end(void)
 300{
 301        stts();
 302        preempt_enable();
 303}
 304
 305static inline bool irq_fpu_usable(void)
 306{
 307        struct pt_regs *regs;
 308
 309        return !in_interrupt() || !(regs = get_irq_regs()) || \
 310                user_mode(regs) || (read_cr0() & X86_CR0_TS);
 311}
 312
 313/*
 314 * Some instructions like VIA's padlock instructions generate a spurious
 315 * DNA fault but don't modify SSE registers. And these instructions
 316 * get used from interrupt context as well. To prevent these kernel instructions
 317 * in interrupt context interacting wrongly with other user/kernel fpu usage, we
 318 * should use them only in the context of irq_ts_save/restore()
 319 */
 320static inline int irq_ts_save(void)
 321{
 322        /*
 323         * If in process context and not atomic, we can take a spurious DNA fault.
 324         * Otherwise, doing clts() in process context requires disabling preemption
 325         * or some heavy lifting like kernel_fpu_begin()
 326         */
 327        if (!in_atomic())
 328                return 0;
 329
 330        if (read_cr0() & X86_CR0_TS) {
 331                clts();
 332                return 1;
 333        }
 334
 335        return 0;
 336}
 337
 338static inline void irq_ts_restore(int TS_state)
 339{
 340        if (TS_state)
 341                stts();
 342}
 343
 344#ifdef CONFIG_X86_64
 345
 346static inline void save_init_fpu(struct task_struct *tsk)
 347{
 348        __save_init_fpu(tsk);
 349        stts();
 350}
 351
 352#define unlazy_fpu      __unlazy_fpu
 353#define clear_fpu       __clear_fpu
 354
 355#else  /* CONFIG_X86_32 */
 356
 357/*
 358 * These disable preemption on their own and are safe
 359 */
 360static inline void save_init_fpu(struct task_struct *tsk)
 361{
 362        preempt_disable();
 363        __save_init_fpu(tsk);
 364        stts();
 365        preempt_enable();
 366}
 367
 368static inline void unlazy_fpu(struct task_struct *tsk)
 369{
 370        preempt_disable();
 371        __unlazy_fpu(tsk);
 372        preempt_enable();
 373}
 374
 375static inline void clear_fpu(struct task_struct *tsk)
 376{
 377        preempt_disable();
 378        __clear_fpu(tsk);
 379        preempt_enable();
 380}
 381
 382#endif  /* CONFIG_X86_64 */
 383
 384/*
 385 * i387 state interaction
 386 */
 387static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
 388{
 389        if (cpu_has_fxsr) {
 390                return tsk->thread.xstate->fxsave.cwd;
 391        } else {
 392                return (unsigned short)tsk->thread.xstate->fsave.cwd;
 393        }
 394}
 395
 396static inline unsigned short get_fpu_swd(struct task_struct *tsk)
 397{
 398        if (cpu_has_fxsr) {
 399                return tsk->thread.xstate->fxsave.swd;
 400        } else {
 401                return (unsigned short)tsk->thread.xstate->fsave.swd;
 402        }
 403}
 404
 405static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
 406{
 407        if (cpu_has_xmm) {
 408                return tsk->thread.xstate->fxsave.mxcsr;
 409        } else {
 410                return MXCSR_DEFAULT;
 411        }
 412}
 413
 414#endif /* _ASM_X86_I387_H */
 415