linux/arch/x86/kernel/e820.c
<<
>>
Prefs
   1/*
   2 * Handle the memory map.
   3 * The functions here do the job until bootmem takes over.
   4 *
   5 *  Getting sanitize_e820_map() in sync with i386 version by applying change:
   6 *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
   7 *     Alex Achenbach <xela@slit.de>, December 2002.
   8 *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   9 *
  10 */
  11#include <linux/kernel.h>
  12#include <linux/types.h>
  13#include <linux/init.h>
  14#include <linux/bootmem.h>
  15#include <linux/ioport.h>
  16#include <linux/string.h>
  17#include <linux/kexec.h>
  18#include <linux/module.h>
  19#include <linux/mm.h>
  20#include <linux/pfn.h>
  21#include <linux/suspend.h>
  22#include <linux/firmware-map.h>
  23
  24#include <asm/pgtable.h>
  25#include <asm/page.h>
  26#include <asm/e820.h>
  27#include <asm/proto.h>
  28#include <asm/setup.h>
  29#include <asm/trampoline.h>
  30
  31/*
  32 * The e820 map is the map that gets modified e.g. with command line parameters
  33 * and that is also registered with modifications in the kernel resource tree
  34 * with the iomem_resource as parent.
  35 *
  36 * The e820_saved is directly saved after the BIOS-provided memory map is
  37 * copied. It doesn't get modified afterwards. It's registered for the
  38 * /sys/firmware/memmap interface.
  39 *
  40 * That memory map is not modified and is used as base for kexec. The kexec'd
  41 * kernel should get the same memory map as the firmware provides. Then the
  42 * user can e.g. boot the original kernel with mem=1G while still booting the
  43 * next kernel with full memory.
  44 */
  45struct e820map e820;
  46struct e820map e820_saved;
  47
  48/* For PCI or other memory-mapped resources */
  49unsigned long pci_mem_start = 0xaeedbabe;
  50#ifdef CONFIG_PCI
  51EXPORT_SYMBOL(pci_mem_start);
  52#endif
  53
  54/*
  55 * This function checks if any part of the range <start,end> is mapped
  56 * with type.
  57 */
  58int
  59e820_any_mapped(u64 start, u64 end, unsigned type)
  60{
  61        int i;
  62
  63        for (i = 0; i < e820.nr_map; i++) {
  64                struct e820entry *ei = &e820.map[i];
  65
  66                if (type && ei->type != type)
  67                        continue;
  68                if (ei->addr >= end || ei->addr + ei->size <= start)
  69                        continue;
  70                return 1;
  71        }
  72        return 0;
  73}
  74EXPORT_SYMBOL_GPL(e820_any_mapped);
  75
  76/*
  77 * This function checks if the entire range <start,end> is mapped with type.
  78 *
  79 * Note: this function only works correct if the e820 table is sorted and
  80 * not-overlapping, which is the case
  81 */
  82int __init e820_all_mapped(u64 start, u64 end, unsigned type)
  83{
  84        int i;
  85
  86        for (i = 0; i < e820.nr_map; i++) {
  87                struct e820entry *ei = &e820.map[i];
  88
  89                if (type && ei->type != type)
  90                        continue;
  91                /* is the region (part) in overlap with the current region ?*/
  92                if (ei->addr >= end || ei->addr + ei->size <= start)
  93                        continue;
  94
  95                /* if the region is at the beginning of <start,end> we move
  96                 * start to the end of the region since it's ok until there
  97                 */
  98                if (ei->addr <= start)
  99                        start = ei->addr + ei->size;
 100                /*
 101                 * if start is now at or beyond end, we're done, full
 102                 * coverage
 103                 */
 104                if (start >= end)
 105                        return 1;
 106        }
 107        return 0;
 108}
 109
 110/*
 111 * Add a memory region to the kernel e820 map.
 112 */
 113static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
 114                                         int type)
 115{
 116        int x = e820x->nr_map;
 117
 118        if (x >= ARRAY_SIZE(e820x->map)) {
 119                printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
 120                return;
 121        }
 122
 123        e820x->map[x].addr = start;
 124        e820x->map[x].size = size;
 125        e820x->map[x].type = type;
 126        e820x->nr_map++;
 127}
 128
 129void __init e820_add_region(u64 start, u64 size, int type)
 130{
 131        __e820_add_region(&e820, start, size, type);
 132}
 133
 134static void __init e820_print_type(u32 type)
 135{
 136        switch (type) {
 137        case E820_RAM:
 138        case E820_RESERVED_KERN:
 139                printk(KERN_CONT "(usable)");
 140                break;
 141        case E820_RESERVED:
 142                printk(KERN_CONT "(reserved)");
 143                break;
 144        case E820_ACPI:
 145                printk(KERN_CONT "(ACPI data)");
 146                break;
 147        case E820_NVS:
 148                printk(KERN_CONT "(ACPI NVS)");
 149                break;
 150        case E820_UNUSABLE:
 151                printk(KERN_CONT "(unusable)");
 152                break;
 153        default:
 154                printk(KERN_CONT "type %u", type);
 155                break;
 156        }
 157}
 158
 159void __init e820_print_map(char *who)
 160{
 161        int i;
 162
 163        for (i = 0; i < e820.nr_map; i++) {
 164                printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
 165                       (unsigned long long) e820.map[i].addr,
 166                       (unsigned long long)
 167                       (e820.map[i].addr + e820.map[i].size));
 168                e820_print_type(e820.map[i].type);
 169                printk(KERN_CONT "\n");
 170        }
 171}
 172
 173/*
 174 * Sanitize the BIOS e820 map.
 175 *
 176 * Some e820 responses include overlapping entries. The following
 177 * replaces the original e820 map with a new one, removing overlaps,
 178 * and resolving conflicting memory types in favor of highest
 179 * numbered type.
 180 *
 181 * The input parameter biosmap points to an array of 'struct
 182 * e820entry' which on entry has elements in the range [0, *pnr_map)
 183 * valid, and which has space for up to max_nr_map entries.
 184 * On return, the resulting sanitized e820 map entries will be in
 185 * overwritten in the same location, starting at biosmap.
 186 *
 187 * The integer pointed to by pnr_map must be valid on entry (the
 188 * current number of valid entries located at biosmap) and will
 189 * be updated on return, with the new number of valid entries
 190 * (something no more than max_nr_map.)
 191 *
 192 * The return value from sanitize_e820_map() is zero if it
 193 * successfully 'sanitized' the map entries passed in, and is -1
 194 * if it did nothing, which can happen if either of (1) it was
 195 * only passed one map entry, or (2) any of the input map entries
 196 * were invalid (start + size < start, meaning that the size was
 197 * so big the described memory range wrapped around through zero.)
 198 *
 199 *      Visually we're performing the following
 200 *      (1,2,3,4 = memory types)...
 201 *
 202 *      Sample memory map (w/overlaps):
 203 *         ____22__________________
 204 *         ______________________4_
 205 *         ____1111________________
 206 *         _44_____________________
 207 *         11111111________________
 208 *         ____________________33__
 209 *         ___________44___________
 210 *         __________33333_________
 211 *         ______________22________
 212 *         ___________________2222_
 213 *         _________111111111______
 214 *         _____________________11_
 215 *         _________________4______
 216 *
 217 *      Sanitized equivalent (no overlap):
 218 *         1_______________________
 219 *         _44_____________________
 220 *         ___1____________________
 221 *         ____22__________________
 222 *         ______11________________
 223 *         _________1______________
 224 *         __________3_____________
 225 *         ___________44___________
 226 *         _____________33_________
 227 *         _______________2________
 228 *         ________________1_______
 229 *         _________________4______
 230 *         ___________________2____
 231 *         ____________________33__
 232 *         ______________________4_
 233 */
 234
 235int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
 236                             u32 *pnr_map)
 237{
 238        struct change_member {
 239                struct e820entry *pbios; /* pointer to original bios entry */
 240                unsigned long long addr; /* address for this change point */
 241        };
 242        static struct change_member change_point_list[2*E820_X_MAX] __initdata;
 243        static struct change_member *change_point[2*E820_X_MAX] __initdata;
 244        static struct e820entry *overlap_list[E820_X_MAX] __initdata;
 245        static struct e820entry new_bios[E820_X_MAX] __initdata;
 246        struct change_member *change_tmp;
 247        unsigned long current_type, last_type;
 248        unsigned long long last_addr;
 249        int chgidx, still_changing;
 250        int overlap_entries;
 251        int new_bios_entry;
 252        int old_nr, new_nr, chg_nr;
 253        int i;
 254
 255        /* if there's only one memory region, don't bother */
 256        if (*pnr_map < 2)
 257                return -1;
 258
 259        old_nr = *pnr_map;
 260        BUG_ON(old_nr > max_nr_map);
 261
 262        /* bail out if we find any unreasonable addresses in bios map */
 263        for (i = 0; i < old_nr; i++)
 264                if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
 265                        return -1;
 266
 267        /* create pointers for initial change-point information (for sorting) */
 268        for (i = 0; i < 2 * old_nr; i++)
 269                change_point[i] = &change_point_list[i];
 270
 271        /* record all known change-points (starting and ending addresses),
 272           omitting those that are for empty memory regions */
 273        chgidx = 0;
 274        for (i = 0; i < old_nr; i++)    {
 275                if (biosmap[i].size != 0) {
 276                        change_point[chgidx]->addr = biosmap[i].addr;
 277                        change_point[chgidx++]->pbios = &biosmap[i];
 278                        change_point[chgidx]->addr = biosmap[i].addr +
 279                                biosmap[i].size;
 280                        change_point[chgidx++]->pbios = &biosmap[i];
 281                }
 282        }
 283        chg_nr = chgidx;
 284
 285        /* sort change-point list by memory addresses (low -> high) */
 286        still_changing = 1;
 287        while (still_changing)  {
 288                still_changing = 0;
 289                for (i = 1; i < chg_nr; i++)  {
 290                        unsigned long long curaddr, lastaddr;
 291                        unsigned long long curpbaddr, lastpbaddr;
 292
 293                        curaddr = change_point[i]->addr;
 294                        lastaddr = change_point[i - 1]->addr;
 295                        curpbaddr = change_point[i]->pbios->addr;
 296                        lastpbaddr = change_point[i - 1]->pbios->addr;
 297
 298                        /*
 299                         * swap entries, when:
 300                         *
 301                         * curaddr > lastaddr or
 302                         * curaddr == lastaddr and curaddr == curpbaddr and
 303                         * lastaddr != lastpbaddr
 304                         */
 305                        if (curaddr < lastaddr ||
 306                            (curaddr == lastaddr && curaddr == curpbaddr &&
 307                             lastaddr != lastpbaddr)) {
 308                                change_tmp = change_point[i];
 309                                change_point[i] = change_point[i-1];
 310                                change_point[i-1] = change_tmp;
 311                                still_changing = 1;
 312                        }
 313                }
 314        }
 315
 316        /* create a new bios memory map, removing overlaps */
 317        overlap_entries = 0;     /* number of entries in the overlap table */
 318        new_bios_entry = 0;      /* index for creating new bios map entries */
 319        last_type = 0;           /* start with undefined memory type */
 320        last_addr = 0;           /* start with 0 as last starting address */
 321
 322        /* loop through change-points, determining affect on the new bios map */
 323        for (chgidx = 0; chgidx < chg_nr; chgidx++) {
 324                /* keep track of all overlapping bios entries */
 325                if (change_point[chgidx]->addr ==
 326                    change_point[chgidx]->pbios->addr) {
 327                        /*
 328                         * add map entry to overlap list (> 1 entry
 329                         * implies an overlap)
 330                         */
 331                        overlap_list[overlap_entries++] =
 332                                change_point[chgidx]->pbios;
 333                } else {
 334                        /*
 335                         * remove entry from list (order independent,
 336                         * so swap with last)
 337                         */
 338                        for (i = 0; i < overlap_entries; i++) {
 339                                if (overlap_list[i] ==
 340                                    change_point[chgidx]->pbios)
 341                                        overlap_list[i] =
 342                                                overlap_list[overlap_entries-1];
 343                        }
 344                        overlap_entries--;
 345                }
 346                /*
 347                 * if there are overlapping entries, decide which
 348                 * "type" to use (larger value takes precedence --
 349                 * 1=usable, 2,3,4,4+=unusable)
 350                 */
 351                current_type = 0;
 352                for (i = 0; i < overlap_entries; i++)
 353                        if (overlap_list[i]->type > current_type)
 354                                current_type = overlap_list[i]->type;
 355                /*
 356                 * continue building up new bios map based on this
 357                 * information
 358                 */
 359                if (current_type != last_type)  {
 360                        if (last_type != 0)      {
 361                                new_bios[new_bios_entry].size =
 362                                        change_point[chgidx]->addr - last_addr;
 363                                /*
 364                                 * move forward only if the new size
 365                                 * was non-zero
 366                                 */
 367                                if (new_bios[new_bios_entry].size != 0)
 368                                        /*
 369                                         * no more space left for new
 370                                         * bios entries ?
 371                                         */
 372                                        if (++new_bios_entry >= max_nr_map)
 373                                                break;
 374                        }
 375                        if (current_type != 0)  {
 376                                new_bios[new_bios_entry].addr =
 377                                        change_point[chgidx]->addr;
 378                                new_bios[new_bios_entry].type = current_type;
 379                                last_addr = change_point[chgidx]->addr;
 380                        }
 381                        last_type = current_type;
 382                }
 383        }
 384        /* retain count for new bios entries */
 385        new_nr = new_bios_entry;
 386
 387        /* copy new bios mapping into original location */
 388        memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
 389        *pnr_map = new_nr;
 390
 391        return 0;
 392}
 393
 394static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
 395{
 396        while (nr_map) {
 397                u64 start = biosmap->addr;
 398                u64 size = biosmap->size;
 399                u64 end = start + size;
 400                u32 type = biosmap->type;
 401
 402                /* Overflow in 64 bits? Ignore the memory map. */
 403                if (start > end)
 404                        return -1;
 405
 406                e820_add_region(start, size, type);
 407
 408                biosmap++;
 409                nr_map--;
 410        }
 411        return 0;
 412}
 413
 414/*
 415 * Copy the BIOS e820 map into a safe place.
 416 *
 417 * Sanity-check it while we're at it..
 418 *
 419 * If we're lucky and live on a modern system, the setup code
 420 * will have given us a memory map that we can use to properly
 421 * set up memory.  If we aren't, we'll fake a memory map.
 422 */
 423static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
 424{
 425        /* Only one memory region (or negative)? Ignore it */
 426        if (nr_map < 2)
 427                return -1;
 428
 429        return __append_e820_map(biosmap, nr_map);
 430}
 431
 432static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
 433                                        u64 size, unsigned old_type,
 434                                        unsigned new_type)
 435{
 436        u64 end;
 437        unsigned int i;
 438        u64 real_updated_size = 0;
 439
 440        BUG_ON(old_type == new_type);
 441
 442        if (size > (ULLONG_MAX - start))
 443                size = ULLONG_MAX - start;
 444
 445        end = start + size;
 446        printk(KERN_DEBUG "e820 update range: %016Lx - %016Lx ",
 447                       (unsigned long long) start,
 448                       (unsigned long long) end);
 449        e820_print_type(old_type);
 450        printk(KERN_CONT " ==> ");
 451        e820_print_type(new_type);
 452        printk(KERN_CONT "\n");
 453
 454        for (i = 0; i < e820x->nr_map; i++) {
 455                struct e820entry *ei = &e820x->map[i];
 456                u64 final_start, final_end;
 457                u64 ei_end;
 458
 459                if (ei->type != old_type)
 460                        continue;
 461
 462                ei_end = ei->addr + ei->size;
 463                /* totally covered by new range? */
 464                if (ei->addr >= start && ei_end <= end) {
 465                        ei->type = new_type;
 466                        real_updated_size += ei->size;
 467                        continue;
 468                }
 469
 470                /* new range is totally covered? */
 471                if (ei->addr < start && ei_end > end) {
 472                        __e820_add_region(e820x, start, size, new_type);
 473                        __e820_add_region(e820x, end, ei_end - end, ei->type);
 474                        ei->size = start - ei->addr;
 475                        real_updated_size += size;
 476                        continue;
 477                }
 478
 479                /* partially covered */
 480                final_start = max(start, ei->addr);
 481                final_end = min(end, ei_end);
 482                if (final_start >= final_end)
 483                        continue;
 484
 485                __e820_add_region(e820x, final_start, final_end - final_start,
 486                                  new_type);
 487
 488                real_updated_size += final_end - final_start;
 489
 490                /*
 491                 * left range could be head or tail, so need to update
 492                 * size at first.
 493                 */
 494                ei->size -= final_end - final_start;
 495                if (ei->addr < final_start)
 496                        continue;
 497                ei->addr = final_end;
 498        }
 499        return real_updated_size;
 500}
 501
 502u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
 503                             unsigned new_type)
 504{
 505        return __e820_update_range(&e820, start, size, old_type, new_type);
 506}
 507
 508static u64 __init e820_update_range_saved(u64 start, u64 size,
 509                                          unsigned old_type, unsigned new_type)
 510{
 511        return __e820_update_range(&e820_saved, start, size, old_type,
 512                                     new_type);
 513}
 514
 515/* make e820 not cover the range */
 516u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
 517                             int checktype)
 518{
 519        int i;
 520        u64 real_removed_size = 0;
 521
 522        if (size > (ULLONG_MAX - start))
 523                size = ULLONG_MAX - start;
 524
 525        for (i = 0; i < e820.nr_map; i++) {
 526                struct e820entry *ei = &e820.map[i];
 527                u64 final_start, final_end;
 528
 529                if (checktype && ei->type != old_type)
 530                        continue;
 531                /* totally covered? */
 532                if (ei->addr >= start &&
 533                    (ei->addr + ei->size) <= (start + size)) {
 534                        real_removed_size += ei->size;
 535                        memset(ei, 0, sizeof(struct e820entry));
 536                        continue;
 537                }
 538                /* partially covered */
 539                final_start = max(start, ei->addr);
 540                final_end = min(start + size, ei->addr + ei->size);
 541                if (final_start >= final_end)
 542                        continue;
 543                real_removed_size += final_end - final_start;
 544
 545                ei->size -= final_end - final_start;
 546                if (ei->addr < final_start)
 547                        continue;
 548                ei->addr = final_end;
 549        }
 550        return real_removed_size;
 551}
 552
 553void __init update_e820(void)
 554{
 555        u32 nr_map;
 556
 557        nr_map = e820.nr_map;
 558        if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
 559                return;
 560        e820.nr_map = nr_map;
 561        printk(KERN_INFO "modified physical RAM map:\n");
 562        e820_print_map("modified");
 563}
 564static void __init update_e820_saved(void)
 565{
 566        u32 nr_map;
 567
 568        nr_map = e820_saved.nr_map;
 569        if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
 570                return;
 571        e820_saved.nr_map = nr_map;
 572}
 573#define MAX_GAP_END 0x100000000ull
 574/*
 575 * Search for a gap in the e820 memory space from start_addr to end_addr.
 576 */
 577__init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
 578                unsigned long start_addr, unsigned long long end_addr)
 579{
 580        unsigned long long last;
 581        int i = e820.nr_map;
 582        int found = 0;
 583
 584        last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
 585
 586        while (--i >= 0) {
 587                unsigned long long start = e820.map[i].addr;
 588                unsigned long long end = start + e820.map[i].size;
 589
 590                if (end < start_addr)
 591                        continue;
 592
 593                /*
 594                 * Since "last" is at most 4GB, we know we'll
 595                 * fit in 32 bits if this condition is true
 596                 */
 597                if (last > end) {
 598                        unsigned long gap = last - end;
 599
 600                        if (gap >= *gapsize) {
 601                                *gapsize = gap;
 602                                *gapstart = end;
 603                                found = 1;
 604                        }
 605                }
 606                if (start < last)
 607                        last = start;
 608        }
 609        return found;
 610}
 611
 612/*
 613 * Search for the biggest gap in the low 32 bits of the e820
 614 * memory space.  We pass this space to PCI to assign MMIO resources
 615 * for hotplug or unconfigured devices in.
 616 * Hopefully the BIOS let enough space left.
 617 */
 618__init void e820_setup_gap(void)
 619{
 620        unsigned long gapstart, gapsize;
 621        int found;
 622
 623        gapstart = 0x10000000;
 624        gapsize = 0x400000;
 625        found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
 626
 627#ifdef CONFIG_X86_64
 628        if (!found) {
 629                gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 630                printk(KERN_ERR
 631        "PCI: Warning: Cannot find a gap in the 32bit address range\n"
 632        "PCI: Unassigned devices with 32bit resource registers may break!\n");
 633        }
 634#endif
 635
 636        /*
 637         * e820_reserve_resources_late protect stolen RAM already
 638         */
 639        pci_mem_start = gapstart;
 640
 641        printk(KERN_INFO
 642               "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
 643               pci_mem_start, gapstart, gapsize);
 644}
 645
 646/**
 647 * Because of the size limitation of struct boot_params, only first
 648 * 128 E820 memory entries are passed to kernel via
 649 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
 650 * linked list of struct setup_data, which is parsed here.
 651 */
 652void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data)
 653{
 654        u32 map_len;
 655        int entries;
 656        struct e820entry *extmap;
 657
 658        entries = sdata->len / sizeof(struct e820entry);
 659        map_len = sdata->len + sizeof(struct setup_data);
 660        if (map_len > PAGE_SIZE)
 661                sdata = early_ioremap(pa_data, map_len);
 662        extmap = (struct e820entry *)(sdata->data);
 663        __append_e820_map(extmap, entries);
 664        sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 665        if (map_len > PAGE_SIZE)
 666                early_iounmap(sdata, map_len);
 667        printk(KERN_INFO "extended physical RAM map:\n");
 668        e820_print_map("extended");
 669}
 670
 671#if defined(CONFIG_X86_64) || \
 672        (defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
 673/**
 674 * Find the ranges of physical addresses that do not correspond to
 675 * e820 RAM areas and mark the corresponding pages as nosave for
 676 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
 677 *
 678 * This function requires the e820 map to be sorted and without any
 679 * overlapping entries and assumes the first e820 area to be RAM.
 680 */
 681void __init e820_mark_nosave_regions(unsigned long limit_pfn)
 682{
 683        int i;
 684        unsigned long pfn;
 685
 686        pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
 687        for (i = 1; i < e820.nr_map; i++) {
 688                struct e820entry *ei = &e820.map[i];
 689
 690                if (pfn < PFN_UP(ei->addr))
 691                        register_nosave_region(pfn, PFN_UP(ei->addr));
 692
 693                pfn = PFN_DOWN(ei->addr + ei->size);
 694                if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
 695                        register_nosave_region(PFN_UP(ei->addr), pfn);
 696
 697                if (pfn >= limit_pfn)
 698                        break;
 699        }
 700}
 701#endif
 702
 703#ifdef CONFIG_HIBERNATION
 704/**
 705 * Mark ACPI NVS memory region, so that we can save/restore it during
 706 * hibernation and the subsequent resume.
 707 */
 708static int __init e820_mark_nvs_memory(void)
 709{
 710        int i;
 711
 712        for (i = 0; i < e820.nr_map; i++) {
 713                struct e820entry *ei = &e820.map[i];
 714
 715                if (ei->type == E820_NVS)
 716                        hibernate_nvs_register(ei->addr, ei->size);
 717        }
 718
 719        return 0;
 720}
 721core_initcall(e820_mark_nvs_memory);
 722#endif
 723
 724/*
 725 * Early reserved memory areas.
 726 */
 727#define MAX_EARLY_RES 20
 728
 729struct early_res {
 730        u64 start, end;
 731        char name[16];
 732        char overlap_ok;
 733};
 734static struct early_res early_res[MAX_EARLY_RES] __initdata = {
 735        { 0, PAGE_SIZE, "BIOS data page" },     /* BIOS data page */
 736        {}
 737};
 738
 739static int __init find_overlapped_early(u64 start, u64 end)
 740{
 741        int i;
 742        struct early_res *r;
 743
 744        for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
 745                r = &early_res[i];
 746                if (end > r->start && start < r->end)
 747                        break;
 748        }
 749
 750        return i;
 751}
 752
 753/*
 754 * Drop the i-th range from the early reservation map,
 755 * by copying any higher ranges down one over it, and
 756 * clearing what had been the last slot.
 757 */
 758static void __init drop_range(int i)
 759{
 760        int j;
 761
 762        for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++)
 763                ;
 764
 765        memmove(&early_res[i], &early_res[i + 1],
 766               (j - 1 - i) * sizeof(struct early_res));
 767
 768        early_res[j - 1].end = 0;
 769}
 770
 771/*
 772 * Split any existing ranges that:
 773 *  1) are marked 'overlap_ok', and
 774 *  2) overlap with the stated range [start, end)
 775 * into whatever portion (if any) of the existing range is entirely
 776 * below or entirely above the stated range.  Drop the portion
 777 * of the existing range that overlaps with the stated range,
 778 * which will allow the caller of this routine to then add that
 779 * stated range without conflicting with any existing range.
 780 */
 781static void __init drop_overlaps_that_are_ok(u64 start, u64 end)
 782{
 783        int i;
 784        struct early_res *r;
 785        u64 lower_start, lower_end;
 786        u64 upper_start, upper_end;
 787        char name[16];
 788
 789        for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
 790                r = &early_res[i];
 791
 792                /* Continue past non-overlapping ranges */
 793                if (end <= r->start || start >= r->end)
 794                        continue;
 795
 796                /*
 797                 * Leave non-ok overlaps as is; let caller
 798                 * panic "Overlapping early reservations"
 799                 * when it hits this overlap.
 800                 */
 801                if (!r->overlap_ok)
 802                        return;
 803
 804                /*
 805                 * We have an ok overlap.  We will drop it from the early
 806                 * reservation map, and add back in any non-overlapping
 807                 * portions (lower or upper) as separate, overlap_ok,
 808                 * non-overlapping ranges.
 809                 */
 810
 811                /* 1. Note any non-overlapping (lower or upper) ranges. */
 812                strncpy(name, r->name, sizeof(name) - 1);
 813
 814                lower_start = lower_end = 0;
 815                upper_start = upper_end = 0;
 816                if (r->start < start) {
 817                        lower_start = r->start;
 818                        lower_end = start;
 819                }
 820                if (r->end > end) {
 821                        upper_start = end;
 822                        upper_end = r->end;
 823                }
 824
 825                /* 2. Drop the original ok overlapping range */
 826                drop_range(i);
 827
 828                i--;            /* resume for-loop on copied down entry */
 829
 830                /* 3. Add back in any non-overlapping ranges. */
 831                if (lower_end)
 832                        reserve_early_overlap_ok(lower_start, lower_end, name);
 833                if (upper_end)
 834                        reserve_early_overlap_ok(upper_start, upper_end, name);
 835        }
 836}
 837
 838static void __init __reserve_early(u64 start, u64 end, char *name,
 839                                                int overlap_ok)
 840{
 841        int i;
 842        struct early_res *r;
 843
 844        i = find_overlapped_early(start, end);
 845        if (i >= MAX_EARLY_RES)
 846                panic("Too many early reservations");
 847        r = &early_res[i];
 848        if (r->end)
 849                panic("Overlapping early reservations "
 850                      "%llx-%llx %s to %llx-%llx %s\n",
 851                      start, end - 1, name?name:"", r->start,
 852                      r->end - 1, r->name);
 853        r->start = start;
 854        r->end = end;
 855        r->overlap_ok = overlap_ok;
 856        if (name)
 857                strncpy(r->name, name, sizeof(r->name) - 1);
 858}
 859
 860/*
 861 * A few early reservtations come here.
 862 *
 863 * The 'overlap_ok' in the name of this routine does -not- mean it
 864 * is ok for these reservations to overlap an earlier reservation.
 865 * Rather it means that it is ok for subsequent reservations to
 866 * overlap this one.
 867 *
 868 * Use this entry point to reserve early ranges when you are doing
 869 * so out of "Paranoia", reserving perhaps more memory than you need,
 870 * just in case, and don't mind a subsequent overlapping reservation
 871 * that is known to be needed.
 872 *
 873 * The drop_overlaps_that_are_ok() call here isn't really needed.
 874 * It would be needed if we had two colliding 'overlap_ok'
 875 * reservations, so that the second such would not panic on the
 876 * overlap with the first.  We don't have any such as of this
 877 * writing, but might as well tolerate such if it happens in
 878 * the future.
 879 */
 880void __init reserve_early_overlap_ok(u64 start, u64 end, char *name)
 881{
 882        drop_overlaps_that_are_ok(start, end);
 883        __reserve_early(start, end, name, 1);
 884}
 885
 886/*
 887 * Most early reservations come here.
 888 *
 889 * We first have drop_overlaps_that_are_ok() drop any pre-existing
 890 * 'overlap_ok' ranges, so that we can then reserve this memory
 891 * range without risk of panic'ing on an overlapping overlap_ok
 892 * early reservation.
 893 */
 894void __init reserve_early(u64 start, u64 end, char *name)
 895{
 896        if (start >= end)
 897                return;
 898
 899        drop_overlaps_that_are_ok(start, end);
 900        __reserve_early(start, end, name, 0);
 901}
 902
 903void __init free_early(u64 start, u64 end)
 904{
 905        struct early_res *r;
 906        int i;
 907
 908        i = find_overlapped_early(start, end);
 909        r = &early_res[i];
 910        if (i >= MAX_EARLY_RES || r->end != end || r->start != start)
 911                panic("free_early on not reserved area: %llx-%llx!",
 912                         start, end - 1);
 913
 914        drop_range(i);
 915}
 916
 917void __init early_res_to_bootmem(u64 start, u64 end)
 918{
 919        int i, count;
 920        u64 final_start, final_end;
 921
 922        count  = 0;
 923        for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++)
 924                count++;
 925
 926        printk(KERN_INFO "(%d early reservations) ==> bootmem [%010llx - %010llx]\n",
 927                         count, start, end);
 928        for (i = 0; i < count; i++) {
 929                struct early_res *r = &early_res[i];
 930                printk(KERN_INFO "  #%d [%010llx - %010llx] %16s", i,
 931                        r->start, r->end, r->name);
 932                final_start = max(start, r->start);
 933                final_end = min(end, r->end);
 934                if (final_start >= final_end) {
 935                        printk(KERN_CONT "\n");
 936                        continue;
 937                }
 938                printk(KERN_CONT " ==> [%010llx - %010llx]\n",
 939                        final_start, final_end);
 940                reserve_bootmem_generic(final_start, final_end - final_start,
 941                                BOOTMEM_DEFAULT);
 942        }
 943}
 944
 945/* Check for already reserved areas */
 946static inline int __init bad_addr(u64 *addrp, u64 size, u64 align)
 947{
 948        int i;
 949        u64 addr = *addrp;
 950        int changed = 0;
 951        struct early_res *r;
 952again:
 953        i = find_overlapped_early(addr, addr + size);
 954        r = &early_res[i];
 955        if (i < MAX_EARLY_RES && r->end) {
 956                *addrp = addr = round_up(r->end, align);
 957                changed = 1;
 958                goto again;
 959        }
 960        return changed;
 961}
 962
 963/* Check for already reserved areas */
 964static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align)
 965{
 966        int i;
 967        u64 addr = *addrp, last;
 968        u64 size = *sizep;
 969        int changed = 0;
 970again:
 971        last = addr + size;
 972        for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
 973                struct early_res *r = &early_res[i];
 974                if (last > r->start && addr < r->start) {
 975                        size = r->start - addr;
 976                        changed = 1;
 977                        goto again;
 978                }
 979                if (last > r->end && addr < r->end) {
 980                        addr = round_up(r->end, align);
 981                        size = last - addr;
 982                        changed = 1;
 983                        goto again;
 984                }
 985                if (last <= r->end && addr >= r->start) {
 986                        (*sizep)++;
 987                        return 0;
 988                }
 989        }
 990        if (changed) {
 991                *addrp = addr;
 992                *sizep = size;
 993        }
 994        return changed;
 995}
 996
 997/*
 998 * Find a free area with specified alignment in a specific range.
 999 */
1000u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align)
1001{
1002        int i;
1003
1004        for (i = 0; i < e820.nr_map; i++) {
1005                struct e820entry *ei = &e820.map[i];
1006                u64 addr, last;
1007                u64 ei_last;
1008
1009                if (ei->type != E820_RAM)
1010                        continue;
1011                addr = round_up(ei->addr, align);
1012                ei_last = ei->addr + ei->size;
1013                if (addr < start)
1014                        addr = round_up(start, align);
1015                if (addr >= ei_last)
1016                        continue;
1017                while (bad_addr(&addr, size, align) && addr+size <= ei_last)
1018                        ;
1019                last = addr + size;
1020                if (last > ei_last)
1021                        continue;
1022                if (last > end)
1023                        continue;
1024                return addr;
1025        }
1026        return -1ULL;
1027}
1028
1029/*
1030 * Find next free range after *start
1031 */
1032u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align)
1033{
1034        int i;
1035
1036        for (i = 0; i < e820.nr_map; i++) {
1037                struct e820entry *ei = &e820.map[i];
1038                u64 addr, last;
1039                u64 ei_last;
1040
1041                if (ei->type != E820_RAM)
1042                        continue;
1043                addr = round_up(ei->addr, align);
1044                ei_last = ei->addr + ei->size;
1045                if (addr < start)
1046                        addr = round_up(start, align);
1047                if (addr >= ei_last)
1048                        continue;
1049                *sizep = ei_last - addr;
1050                while (bad_addr_size(&addr, sizep, align) &&
1051                        addr + *sizep <= ei_last)
1052                        ;
1053                last = addr + *sizep;
1054                if (last > ei_last)
1055                        continue;
1056                return addr;
1057        }
1058
1059        return -1ULL;
1060}
1061
1062/*
1063 * pre allocated 4k and reserved it in e820
1064 */
1065u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align)
1066{
1067        u64 size = 0;
1068        u64 addr;
1069        u64 start;
1070
1071        for (start = startt; ; start += size) {
1072                start = find_e820_area_size(start, &size, align);
1073                if (!(start + 1))
1074                        return 0;
1075                if (size >= sizet)
1076                        break;
1077        }
1078
1079#ifdef CONFIG_X86_32
1080        if (start >= MAXMEM)
1081                return 0;
1082        if (start + size > MAXMEM)
1083                size = MAXMEM - start;
1084#endif
1085
1086        addr = round_down(start + size - sizet, align);
1087        if (addr < start)
1088                return 0;
1089        e820_update_range(addr, sizet, E820_RAM, E820_RESERVED);
1090        e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED);
1091        printk(KERN_INFO "update e820 for early_reserve_e820\n");
1092        update_e820();
1093        update_e820_saved();
1094
1095        return addr;
1096}
1097
1098#ifdef CONFIG_X86_32
1099# ifdef CONFIG_X86_PAE
1100#  define MAX_ARCH_PFN          (1ULL<<(36-PAGE_SHIFT))
1101# else
1102#  define MAX_ARCH_PFN          (1ULL<<(32-PAGE_SHIFT))
1103# endif
1104#else /* CONFIG_X86_32 */
1105# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
1106#endif
1107
1108/*
1109 * Find the highest page frame number we have available
1110 */
1111static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
1112{
1113        int i;
1114        unsigned long last_pfn = 0;
1115        unsigned long max_arch_pfn = MAX_ARCH_PFN;
1116
1117        for (i = 0; i < e820.nr_map; i++) {
1118                struct e820entry *ei = &e820.map[i];
1119                unsigned long start_pfn;
1120                unsigned long end_pfn;
1121
1122                if (ei->type != type)
1123                        continue;
1124
1125                start_pfn = ei->addr >> PAGE_SHIFT;
1126                end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
1127
1128                if (start_pfn >= limit_pfn)
1129                        continue;
1130                if (end_pfn > limit_pfn) {
1131                        last_pfn = limit_pfn;
1132                        break;
1133                }
1134                if (end_pfn > last_pfn)
1135                        last_pfn = end_pfn;
1136        }
1137
1138        if (last_pfn > max_arch_pfn)
1139                last_pfn = max_arch_pfn;
1140
1141        printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n",
1142                         last_pfn, max_arch_pfn);
1143        return last_pfn;
1144}
1145unsigned long __init e820_end_of_ram_pfn(void)
1146{
1147        return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
1148}
1149
1150unsigned long __init e820_end_of_low_ram_pfn(void)
1151{
1152        return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
1153}
1154/*
1155 * Finds an active region in the address range from start_pfn to last_pfn and
1156 * returns its range in ei_startpfn and ei_endpfn for the e820 entry.
1157 */
1158int __init e820_find_active_region(const struct e820entry *ei,
1159                                  unsigned long start_pfn,
1160                                  unsigned long last_pfn,
1161                                  unsigned long *ei_startpfn,
1162                                  unsigned long *ei_endpfn)
1163{
1164        u64 align = PAGE_SIZE;
1165
1166        *ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT;
1167        *ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT;
1168
1169        /* Skip map entries smaller than a page */
1170        if (*ei_startpfn >= *ei_endpfn)
1171                return 0;
1172
1173        /* Skip if map is outside the node */
1174        if (ei->type != E820_RAM || *ei_endpfn <= start_pfn ||
1175                                    *ei_startpfn >= last_pfn)
1176                return 0;
1177
1178        /* Check for overlaps */
1179        if (*ei_startpfn < start_pfn)
1180                *ei_startpfn = start_pfn;
1181        if (*ei_endpfn > last_pfn)
1182                *ei_endpfn = last_pfn;
1183
1184        return 1;
1185}
1186
1187/* Walk the e820 map and register active regions within a node */
1188void __init e820_register_active_regions(int nid, unsigned long start_pfn,
1189                                         unsigned long last_pfn)
1190{
1191        unsigned long ei_startpfn;
1192        unsigned long ei_endpfn;
1193        int i;
1194
1195        for (i = 0; i < e820.nr_map; i++)
1196                if (e820_find_active_region(&e820.map[i],
1197                                            start_pfn, last_pfn,
1198                                            &ei_startpfn, &ei_endpfn))
1199                        add_active_range(nid, ei_startpfn, ei_endpfn);
1200}
1201
1202/*
1203 * Find the hole size (in bytes) in the memory range.
1204 * @start: starting address of the memory range to scan
1205 * @end: ending address of the memory range to scan
1206 */
1207u64 __init e820_hole_size(u64 start, u64 end)
1208{
1209        unsigned long start_pfn = start >> PAGE_SHIFT;
1210        unsigned long last_pfn = end >> PAGE_SHIFT;
1211        unsigned long ei_startpfn, ei_endpfn, ram = 0;
1212        int i;
1213
1214        for (i = 0; i < e820.nr_map; i++) {
1215                if (e820_find_active_region(&e820.map[i],
1216                                            start_pfn, last_pfn,
1217                                            &ei_startpfn, &ei_endpfn))
1218                        ram += ei_endpfn - ei_startpfn;
1219        }
1220        return end - start - ((u64)ram << PAGE_SHIFT);
1221}
1222
1223static void early_panic(char *msg)
1224{
1225        early_printk(msg);
1226        panic(msg);
1227}
1228
1229static int userdef __initdata;
1230
1231/* "mem=nopentium" disables the 4MB page tables. */
1232static int __init parse_memopt(char *p)
1233{
1234        u64 mem_size;
1235
1236        if (!p)
1237                return -EINVAL;
1238
1239#ifdef CONFIG_X86_32
1240        if (!strcmp(p, "nopentium")) {
1241                setup_clear_cpu_cap(X86_FEATURE_PSE);
1242                return 0;
1243        }
1244#endif
1245
1246        userdef = 1;
1247        mem_size = memparse(p, &p);
1248        e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1249
1250        return 0;
1251}
1252early_param("mem", parse_memopt);
1253
1254static int __init parse_memmap_opt(char *p)
1255{
1256        char *oldp;
1257        u64 start_at, mem_size;
1258
1259        if (!p)
1260                return -EINVAL;
1261
1262        if (!strncmp(p, "exactmap", 8)) {
1263#ifdef CONFIG_CRASH_DUMP
1264                /*
1265                 * If we are doing a crash dump, we still need to know
1266                 * the real mem size before original memory map is
1267                 * reset.
1268                 */
1269                saved_max_pfn = e820_end_of_ram_pfn();
1270#endif
1271                e820.nr_map = 0;
1272                userdef = 1;
1273                return 0;
1274        }
1275
1276        oldp = p;
1277        mem_size = memparse(p, &p);
1278        if (p == oldp)
1279                return -EINVAL;
1280
1281        userdef = 1;
1282        if (*p == '@') {
1283                start_at = memparse(p+1, &p);
1284                e820_add_region(start_at, mem_size, E820_RAM);
1285        } else if (*p == '#') {
1286                start_at = memparse(p+1, &p);
1287                e820_add_region(start_at, mem_size, E820_ACPI);
1288        } else if (*p == '$') {
1289                start_at = memparse(p+1, &p);
1290                e820_add_region(start_at, mem_size, E820_RESERVED);
1291        } else
1292                e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1293
1294        return *p == '\0' ? 0 : -EINVAL;
1295}
1296early_param("memmap", parse_memmap_opt);
1297
1298void __init finish_e820_parsing(void)
1299{
1300        if (userdef) {
1301                u32 nr = e820.nr_map;
1302
1303                if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
1304                        early_panic("Invalid user supplied memory map");
1305                e820.nr_map = nr;
1306
1307                printk(KERN_INFO "user-defined physical RAM map:\n");
1308                e820_print_map("user");
1309        }
1310}
1311
1312static inline const char *e820_type_to_string(int e820_type)
1313{
1314        switch (e820_type) {
1315        case E820_RESERVED_KERN:
1316        case E820_RAM:  return "System RAM";
1317        case E820_ACPI: return "ACPI Tables";
1318        case E820_NVS:  return "ACPI Non-volatile Storage";
1319        case E820_UNUSABLE:     return "Unusable memory";
1320        default:        return "reserved";
1321        }
1322}
1323
1324/*
1325 * Mark e820 reserved areas as busy for the resource manager.
1326 */
1327static struct resource __initdata *e820_res;
1328void __init e820_reserve_resources(void)
1329{
1330        int i;
1331        struct resource *res;
1332        u64 end;
1333
1334        res = alloc_bootmem(sizeof(struct resource) * e820.nr_map);
1335        e820_res = res;
1336        for (i = 0; i < e820.nr_map; i++) {
1337                end = e820.map[i].addr + e820.map[i].size - 1;
1338                if (end != (resource_size_t)end) {
1339                        res++;
1340                        continue;
1341                }
1342                res->name = e820_type_to_string(e820.map[i].type);
1343                res->start = e820.map[i].addr;
1344                res->end = end;
1345
1346                res->flags = IORESOURCE_MEM;
1347
1348                /*
1349                 * don't register the region that could be conflicted with
1350                 * pci device BAR resource and insert them later in
1351                 * pcibios_resource_survey()
1352                 */
1353                if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) {
1354                        res->flags |= IORESOURCE_BUSY;
1355                        insert_resource(&iomem_resource, res);
1356                }
1357                res++;
1358        }
1359
1360        for (i = 0; i < e820_saved.nr_map; i++) {
1361                struct e820entry *entry = &e820_saved.map[i];
1362                firmware_map_add_early(entry->addr,
1363                        entry->addr + entry->size - 1,
1364                        e820_type_to_string(entry->type));
1365        }
1366}
1367
1368/* How much should we pad RAM ending depending on where it is? */
1369static unsigned long ram_alignment(resource_size_t pos)
1370{
1371        unsigned long mb = pos >> 20;
1372
1373        /* To 64kB in the first megabyte */
1374        if (!mb)
1375                return 64*1024;
1376
1377        /* To 1MB in the first 16MB */
1378        if (mb < 16)
1379                return 1024*1024;
1380
1381        /* To 64MB for anything above that */
1382        return 64*1024*1024;
1383}
1384
1385#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1386
1387void __init e820_reserve_resources_late(void)
1388{
1389        int i;
1390        struct resource *res;
1391
1392        res = e820_res;
1393        for (i = 0; i < e820.nr_map; i++) {
1394                if (!res->parent && res->end)
1395                        insert_resource_expand_to_fit(&iomem_resource, res);
1396                res++;
1397        }
1398
1399        /*
1400         * Try to bump up RAM regions to reasonable boundaries to
1401         * avoid stolen RAM:
1402         */
1403        for (i = 0; i < e820.nr_map; i++) {
1404                struct e820entry *entry = &e820.map[i];
1405                u64 start, end;
1406
1407                if (entry->type != E820_RAM)
1408                        continue;
1409                start = entry->addr + entry->size;
1410                end = round_up(start, ram_alignment(start)) - 1;
1411                if (end > MAX_RESOURCE_SIZE)
1412                        end = MAX_RESOURCE_SIZE;
1413                if (start >= end)
1414                        continue;
1415                reserve_region_with_split(&iomem_resource, start, end,
1416                                          "RAM buffer");
1417        }
1418}
1419
1420char *__init default_machine_specific_memory_setup(void)
1421{
1422        char *who = "BIOS-e820";
1423        u32 new_nr;
1424        /*
1425         * Try to copy the BIOS-supplied E820-map.
1426         *
1427         * Otherwise fake a memory map; one section from 0k->640k,
1428         * the next section from 1mb->appropriate_mem_k
1429         */
1430        new_nr = boot_params.e820_entries;
1431        sanitize_e820_map(boot_params.e820_map,
1432                        ARRAY_SIZE(boot_params.e820_map),
1433                        &new_nr);
1434        boot_params.e820_entries = new_nr;
1435        if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1436          < 0) {
1437                u64 mem_size;
1438
1439                /* compare results from other methods and take the greater */
1440                if (boot_params.alt_mem_k
1441                    < boot_params.screen_info.ext_mem_k) {
1442                        mem_size = boot_params.screen_info.ext_mem_k;
1443                        who = "BIOS-88";
1444                } else {
1445                        mem_size = boot_params.alt_mem_k;
1446                        who = "BIOS-e801";
1447                }
1448
1449                e820.nr_map = 0;
1450                e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1451                e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1452        }
1453
1454        /* In case someone cares... */
1455        return who;
1456}
1457
1458void __init setup_memory_map(void)
1459{
1460        char *who;
1461
1462        who = x86_init.resources.memory_setup();
1463        memcpy(&e820_saved, &e820, sizeof(struct e820map));
1464        printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1465        e820_print_map(who);
1466}
1467