linux/arch/x86/kernel/hpet.c
<<
>>
Prefs
   1#include <linux/clocksource.h>
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/sysdev.h>
   5#include <linux/delay.h>
   6#include <linux/errno.h>
   7#include <linux/hpet.h>
   8#include <linux/init.h>
   9#include <linux/cpu.h>
  10#include <linux/pm.h>
  11#include <linux/io.h>
  12
  13#include <asm/fixmap.h>
  14#include <asm/i8253.h>
  15#include <asm/hpet.h>
  16
  17#define HPET_MASK                       CLOCKSOURCE_MASK(32)
  18#define HPET_SHIFT                      22
  19
  20/* FSEC = 10^-15
  21   NSEC = 10^-9 */
  22#define FSEC_PER_NSEC                   1000000L
  23
  24#define HPET_DEV_USED_BIT               2
  25#define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
  26#define HPET_DEV_VALID                  0x8
  27#define HPET_DEV_FSB_CAP                0x1000
  28#define HPET_DEV_PERI_CAP               0x2000
  29
  30#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
  31
  32/*
  33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  34 */
  35unsigned long                           hpet_address;
  36#ifdef CONFIG_PCI_MSI
  37static unsigned long                    hpet_num_timers;
  38#endif
  39static void __iomem                     *hpet_virt_address;
  40
  41struct hpet_dev {
  42        struct clock_event_device       evt;
  43        unsigned int                    num;
  44        int                             cpu;
  45        unsigned int                    irq;
  46        unsigned int                    flags;
  47        char                            name[10];
  48};
  49
  50unsigned long hpet_readl(unsigned long a)
  51{
  52        return readl(hpet_virt_address + a);
  53}
  54
  55static inline void hpet_writel(unsigned long d, unsigned long a)
  56{
  57        writel(d, hpet_virt_address + a);
  58}
  59
  60#ifdef CONFIG_X86_64
  61#include <asm/pgtable.h>
  62#endif
  63
  64static inline void hpet_set_mapping(void)
  65{
  66        hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  67#ifdef CONFIG_X86_64
  68        __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
  69#endif
  70}
  71
  72static inline void hpet_clear_mapping(void)
  73{
  74        iounmap(hpet_virt_address);
  75        hpet_virt_address = NULL;
  76}
  77
  78/*
  79 * HPET command line enable / disable
  80 */
  81static int boot_hpet_disable;
  82int hpet_force_user;
  83static int hpet_verbose;
  84
  85static int __init hpet_setup(char *str)
  86{
  87        if (str) {
  88                if (!strncmp("disable", str, 7))
  89                        boot_hpet_disable = 1;
  90                if (!strncmp("force", str, 5))
  91                        hpet_force_user = 1;
  92                if (!strncmp("verbose", str, 7))
  93                        hpet_verbose = 1;
  94        }
  95        return 1;
  96}
  97__setup("hpet=", hpet_setup);
  98
  99static int __init disable_hpet(char *str)
 100{
 101        boot_hpet_disable = 1;
 102        return 1;
 103}
 104__setup("nohpet", disable_hpet);
 105
 106static inline int is_hpet_capable(void)
 107{
 108        return !boot_hpet_disable && hpet_address;
 109}
 110
 111/*
 112 * HPET timer interrupt enable / disable
 113 */
 114static int hpet_legacy_int_enabled;
 115
 116/**
 117 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 118 */
 119int is_hpet_enabled(void)
 120{
 121        return is_hpet_capable() && hpet_legacy_int_enabled;
 122}
 123EXPORT_SYMBOL_GPL(is_hpet_enabled);
 124
 125static void _hpet_print_config(const char *function, int line)
 126{
 127        u32 i, timers, l, h;
 128        printk(KERN_INFO "hpet: %s(%d):\n", function, line);
 129        l = hpet_readl(HPET_ID);
 130        h = hpet_readl(HPET_PERIOD);
 131        timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 132        printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
 133        l = hpet_readl(HPET_CFG);
 134        h = hpet_readl(HPET_STATUS);
 135        printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
 136        l = hpet_readl(HPET_COUNTER);
 137        h = hpet_readl(HPET_COUNTER+4);
 138        printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 139
 140        for (i = 0; i < timers; i++) {
 141                l = hpet_readl(HPET_Tn_CFG(i));
 142                h = hpet_readl(HPET_Tn_CFG(i)+4);
 143                printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
 144                       i, l, h);
 145                l = hpet_readl(HPET_Tn_CMP(i));
 146                h = hpet_readl(HPET_Tn_CMP(i)+4);
 147                printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
 148                       i, l, h);
 149                l = hpet_readl(HPET_Tn_ROUTE(i));
 150                h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 151                printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
 152                       i, l, h);
 153        }
 154}
 155
 156#define hpet_print_config()                                     \
 157do {                                                            \
 158        if (hpet_verbose)                                       \
 159                _hpet_print_config(__FUNCTION__, __LINE__);     \
 160} while (0)
 161
 162/*
 163 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 164 * timer 0 and timer 1 in case of RTC emulation.
 165 */
 166#ifdef CONFIG_HPET
 167
 168static void hpet_reserve_msi_timers(struct hpet_data *hd);
 169
 170static void hpet_reserve_platform_timers(unsigned long id)
 171{
 172        struct hpet __iomem *hpet = hpet_virt_address;
 173        struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
 174        unsigned int nrtimers, i;
 175        struct hpet_data hd;
 176
 177        nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 178
 179        memset(&hd, 0, sizeof(hd));
 180        hd.hd_phys_address      = hpet_address;
 181        hd.hd_address           = hpet;
 182        hd.hd_nirqs             = nrtimers;
 183        hpet_reserve_timer(&hd, 0);
 184
 185#ifdef CONFIG_HPET_EMULATE_RTC
 186        hpet_reserve_timer(&hd, 1);
 187#endif
 188
 189        /*
 190         * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 191         * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 192         * don't bother configuring *any* comparator interrupts.
 193         */
 194        hd.hd_irq[0] = HPET_LEGACY_8254;
 195        hd.hd_irq[1] = HPET_LEGACY_RTC;
 196
 197        for (i = 2; i < nrtimers; timer++, i++) {
 198                hd.hd_irq[i] = (readl(&timer->hpet_config) &
 199                        Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 200        }
 201
 202        hpet_reserve_msi_timers(&hd);
 203
 204        hpet_alloc(&hd);
 205
 206}
 207#else
 208static void hpet_reserve_platform_timers(unsigned long id) { }
 209#endif
 210
 211/*
 212 * Common hpet info
 213 */
 214static unsigned long hpet_period;
 215
 216static void hpet_legacy_set_mode(enum clock_event_mode mode,
 217                          struct clock_event_device *evt);
 218static int hpet_legacy_next_event(unsigned long delta,
 219                           struct clock_event_device *evt);
 220
 221/*
 222 * The hpet clock event device
 223 */
 224static struct clock_event_device hpet_clockevent = {
 225        .name           = "hpet",
 226        .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 227        .set_mode       = hpet_legacy_set_mode,
 228        .set_next_event = hpet_legacy_next_event,
 229        .shift          = 32,
 230        .irq            = 0,
 231        .rating         = 50,
 232};
 233
 234static void hpet_stop_counter(void)
 235{
 236        unsigned long cfg = hpet_readl(HPET_CFG);
 237        cfg &= ~HPET_CFG_ENABLE;
 238        hpet_writel(cfg, HPET_CFG);
 239}
 240
 241static void hpet_reset_counter(void)
 242{
 243        hpet_writel(0, HPET_COUNTER);
 244        hpet_writel(0, HPET_COUNTER + 4);
 245}
 246
 247static void hpet_start_counter(void)
 248{
 249        unsigned long cfg = hpet_readl(HPET_CFG);
 250        cfg |= HPET_CFG_ENABLE;
 251        hpet_writel(cfg, HPET_CFG);
 252}
 253
 254static void hpet_restart_counter(void)
 255{
 256        hpet_stop_counter();
 257        hpet_reset_counter();
 258        hpet_start_counter();
 259}
 260
 261static void hpet_resume_device(void)
 262{
 263        force_hpet_resume();
 264}
 265
 266static void hpet_resume_counter(void)
 267{
 268        hpet_resume_device();
 269        hpet_restart_counter();
 270}
 271
 272static void hpet_enable_legacy_int(void)
 273{
 274        unsigned long cfg = hpet_readl(HPET_CFG);
 275
 276        cfg |= HPET_CFG_LEGACY;
 277        hpet_writel(cfg, HPET_CFG);
 278        hpet_legacy_int_enabled = 1;
 279}
 280
 281static void hpet_legacy_clockevent_register(void)
 282{
 283        /* Start HPET legacy interrupts */
 284        hpet_enable_legacy_int();
 285
 286        /*
 287         * The mult factor is defined as (include/linux/clockchips.h)
 288         *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
 289         * hpet_period is in units of femtoseconds (per cycle), so
 290         *  mult/2^shift = cyc/ns = 10^6/hpet_period
 291         *  mult = (10^6 * 2^shift)/hpet_period
 292         *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
 293         */
 294        hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
 295                                      hpet_period, hpet_clockevent.shift);
 296        /* Calculate the min / max delta */
 297        hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
 298                                                           &hpet_clockevent);
 299        /* 5 usec minimum reprogramming delta. */
 300        hpet_clockevent.min_delta_ns = 5000;
 301
 302        /*
 303         * Start hpet with the boot cpu mask and make it
 304         * global after the IO_APIC has been initialized.
 305         */
 306        hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
 307        clockevents_register_device(&hpet_clockevent);
 308        global_clock_event = &hpet_clockevent;
 309        printk(KERN_DEBUG "hpet clockevent registered\n");
 310}
 311
 312static int hpet_setup_msi_irq(unsigned int irq);
 313
 314static void hpet_set_mode(enum clock_event_mode mode,
 315                          struct clock_event_device *evt, int timer)
 316{
 317        unsigned long cfg, cmp, now;
 318        uint64_t delta;
 319
 320        switch (mode) {
 321        case CLOCK_EVT_MODE_PERIODIC:
 322                hpet_stop_counter();
 323                delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
 324                delta >>= evt->shift;
 325                now = hpet_readl(HPET_COUNTER);
 326                cmp = now + (unsigned long) delta;
 327                cfg = hpet_readl(HPET_Tn_CFG(timer));
 328                /* Make sure we use edge triggered interrupts */
 329                cfg &= ~HPET_TN_LEVEL;
 330                cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
 331                       HPET_TN_SETVAL | HPET_TN_32BIT;
 332                hpet_writel(cfg, HPET_Tn_CFG(timer));
 333                hpet_writel(cmp, HPET_Tn_CMP(timer));
 334                udelay(1);
 335                /*
 336                 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 337                 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 338                 * bit is automatically cleared after the first write.
 339                 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 340                 * Publication # 24674)
 341                 */
 342                hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
 343                hpet_start_counter();
 344                hpet_print_config();
 345                break;
 346
 347        case CLOCK_EVT_MODE_ONESHOT:
 348                cfg = hpet_readl(HPET_Tn_CFG(timer));
 349                cfg &= ~HPET_TN_PERIODIC;
 350                cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 351                hpet_writel(cfg, HPET_Tn_CFG(timer));
 352                break;
 353
 354        case CLOCK_EVT_MODE_UNUSED:
 355        case CLOCK_EVT_MODE_SHUTDOWN:
 356                cfg = hpet_readl(HPET_Tn_CFG(timer));
 357                cfg &= ~HPET_TN_ENABLE;
 358                hpet_writel(cfg, HPET_Tn_CFG(timer));
 359                break;
 360
 361        case CLOCK_EVT_MODE_RESUME:
 362                if (timer == 0) {
 363                        hpet_enable_legacy_int();
 364                } else {
 365                        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 366                        hpet_setup_msi_irq(hdev->irq);
 367                        disable_irq(hdev->irq);
 368                        irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
 369                        enable_irq(hdev->irq);
 370                }
 371                hpet_print_config();
 372                break;
 373        }
 374}
 375
 376static int hpet_next_event(unsigned long delta,
 377                           struct clock_event_device *evt, int timer)
 378{
 379        u32 cnt;
 380
 381        cnt = hpet_readl(HPET_COUNTER);
 382        cnt += (u32) delta;
 383        hpet_writel(cnt, HPET_Tn_CMP(timer));
 384
 385        /*
 386         * We need to read back the CMP register to make sure that
 387         * what we wrote hit the chip before we compare it to the
 388         * counter.
 389         */
 390        WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
 391
 392        return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
 393}
 394
 395static void hpet_legacy_set_mode(enum clock_event_mode mode,
 396                        struct clock_event_device *evt)
 397{
 398        hpet_set_mode(mode, evt, 0);
 399}
 400
 401static int hpet_legacy_next_event(unsigned long delta,
 402                        struct clock_event_device *evt)
 403{
 404        return hpet_next_event(delta, evt, 0);
 405}
 406
 407/*
 408 * HPET MSI Support
 409 */
 410#ifdef CONFIG_PCI_MSI
 411
 412static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
 413static struct hpet_dev  *hpet_devs;
 414
 415void hpet_msi_unmask(unsigned int irq)
 416{
 417        struct hpet_dev *hdev = get_irq_data(irq);
 418        unsigned long cfg;
 419
 420        /* unmask it */
 421        cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 422        cfg |= HPET_TN_FSB;
 423        hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 424}
 425
 426void hpet_msi_mask(unsigned int irq)
 427{
 428        unsigned long cfg;
 429        struct hpet_dev *hdev = get_irq_data(irq);
 430
 431        /* mask it */
 432        cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 433        cfg &= ~HPET_TN_FSB;
 434        hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 435}
 436
 437void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
 438{
 439        struct hpet_dev *hdev = get_irq_data(irq);
 440
 441        hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
 442        hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
 443}
 444
 445void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
 446{
 447        struct hpet_dev *hdev = get_irq_data(irq);
 448
 449        msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
 450        msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
 451        msg->address_hi = 0;
 452}
 453
 454static void hpet_msi_set_mode(enum clock_event_mode mode,
 455                                struct clock_event_device *evt)
 456{
 457        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 458        hpet_set_mode(mode, evt, hdev->num);
 459}
 460
 461static int hpet_msi_next_event(unsigned long delta,
 462                                struct clock_event_device *evt)
 463{
 464        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 465        return hpet_next_event(delta, evt, hdev->num);
 466}
 467
 468static int hpet_setup_msi_irq(unsigned int irq)
 469{
 470        if (arch_setup_hpet_msi(irq)) {
 471                destroy_irq(irq);
 472                return -EINVAL;
 473        }
 474        return 0;
 475}
 476
 477static int hpet_assign_irq(struct hpet_dev *dev)
 478{
 479        unsigned int irq;
 480
 481        irq = create_irq();
 482        if (!irq)
 483                return -EINVAL;
 484
 485        set_irq_data(irq, dev);
 486
 487        if (hpet_setup_msi_irq(irq))
 488                return -EINVAL;
 489
 490        dev->irq = irq;
 491        return 0;
 492}
 493
 494static irqreturn_t hpet_interrupt_handler(int irq, void *data)
 495{
 496        struct hpet_dev *dev = (struct hpet_dev *)data;
 497        struct clock_event_device *hevt = &dev->evt;
 498
 499        if (!hevt->event_handler) {
 500                printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
 501                                dev->num);
 502                return IRQ_HANDLED;
 503        }
 504
 505        hevt->event_handler(hevt);
 506        return IRQ_HANDLED;
 507}
 508
 509static int hpet_setup_irq(struct hpet_dev *dev)
 510{
 511
 512        if (request_irq(dev->irq, hpet_interrupt_handler,
 513                        IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
 514                        dev->name, dev))
 515                return -1;
 516
 517        disable_irq(dev->irq);
 518        irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
 519        enable_irq(dev->irq);
 520
 521        printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
 522                         dev->name, dev->irq);
 523
 524        return 0;
 525}
 526
 527/* This should be called in specific @cpu */
 528static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
 529{
 530        struct clock_event_device *evt = &hdev->evt;
 531        uint64_t hpet_freq;
 532
 533        WARN_ON(cpu != smp_processor_id());
 534        if (!(hdev->flags & HPET_DEV_VALID))
 535                return;
 536
 537        if (hpet_setup_msi_irq(hdev->irq))
 538                return;
 539
 540        hdev->cpu = cpu;
 541        per_cpu(cpu_hpet_dev, cpu) = hdev;
 542        evt->name = hdev->name;
 543        hpet_setup_irq(hdev);
 544        evt->irq = hdev->irq;
 545
 546        evt->rating = 110;
 547        evt->features = CLOCK_EVT_FEAT_ONESHOT;
 548        if (hdev->flags & HPET_DEV_PERI_CAP)
 549                evt->features |= CLOCK_EVT_FEAT_PERIODIC;
 550
 551        evt->set_mode = hpet_msi_set_mode;
 552        evt->set_next_event = hpet_msi_next_event;
 553        evt->shift = 32;
 554
 555        /*
 556         * The period is a femto seconds value. We need to calculate the
 557         * scaled math multiplication factor for nanosecond to hpet tick
 558         * conversion.
 559         */
 560        hpet_freq = 1000000000000000ULL;
 561        do_div(hpet_freq, hpet_period);
 562        evt->mult = div_sc((unsigned long) hpet_freq,
 563                                      NSEC_PER_SEC, evt->shift);
 564        /* Calculate the max delta */
 565        evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
 566        /* 5 usec minimum reprogramming delta. */
 567        evt->min_delta_ns = 5000;
 568
 569        evt->cpumask = cpumask_of(hdev->cpu);
 570        clockevents_register_device(evt);
 571}
 572
 573#ifdef CONFIG_HPET
 574/* Reserve at least one timer for userspace (/dev/hpet) */
 575#define RESERVE_TIMERS 1
 576#else
 577#define RESERVE_TIMERS 0
 578#endif
 579
 580static void hpet_msi_capability_lookup(unsigned int start_timer)
 581{
 582        unsigned int id;
 583        unsigned int num_timers;
 584        unsigned int num_timers_used = 0;
 585        int i;
 586
 587        id = hpet_readl(HPET_ID);
 588
 589        num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 590        num_timers++; /* Value read out starts from 0 */
 591        hpet_print_config();
 592
 593        hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
 594        if (!hpet_devs)
 595                return;
 596
 597        hpet_num_timers = num_timers;
 598
 599        for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
 600                struct hpet_dev *hdev = &hpet_devs[num_timers_used];
 601                unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
 602
 603                /* Only consider HPET timer with MSI support */
 604                if (!(cfg & HPET_TN_FSB_CAP))
 605                        continue;
 606
 607                hdev->flags = 0;
 608                if (cfg & HPET_TN_PERIODIC_CAP)
 609                        hdev->flags |= HPET_DEV_PERI_CAP;
 610                hdev->num = i;
 611
 612                sprintf(hdev->name, "hpet%d", i);
 613                if (hpet_assign_irq(hdev))
 614                        continue;
 615
 616                hdev->flags |= HPET_DEV_FSB_CAP;
 617                hdev->flags |= HPET_DEV_VALID;
 618                num_timers_used++;
 619                if (num_timers_used == num_possible_cpus())
 620                        break;
 621        }
 622
 623        printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
 624                num_timers, num_timers_used);
 625}
 626
 627#ifdef CONFIG_HPET
 628static void hpet_reserve_msi_timers(struct hpet_data *hd)
 629{
 630        int i;
 631
 632        if (!hpet_devs)
 633                return;
 634
 635        for (i = 0; i < hpet_num_timers; i++) {
 636                struct hpet_dev *hdev = &hpet_devs[i];
 637
 638                if (!(hdev->flags & HPET_DEV_VALID))
 639                        continue;
 640
 641                hd->hd_irq[hdev->num] = hdev->irq;
 642                hpet_reserve_timer(hd, hdev->num);
 643        }
 644}
 645#endif
 646
 647static struct hpet_dev *hpet_get_unused_timer(void)
 648{
 649        int i;
 650
 651        if (!hpet_devs)
 652                return NULL;
 653
 654        for (i = 0; i < hpet_num_timers; i++) {
 655                struct hpet_dev *hdev = &hpet_devs[i];
 656
 657                if (!(hdev->flags & HPET_DEV_VALID))
 658                        continue;
 659                if (test_and_set_bit(HPET_DEV_USED_BIT,
 660                        (unsigned long *)&hdev->flags))
 661                        continue;
 662                return hdev;
 663        }
 664        return NULL;
 665}
 666
 667struct hpet_work_struct {
 668        struct delayed_work work;
 669        struct completion complete;
 670};
 671
 672static void hpet_work(struct work_struct *w)
 673{
 674        struct hpet_dev *hdev;
 675        int cpu = smp_processor_id();
 676        struct hpet_work_struct *hpet_work;
 677
 678        hpet_work = container_of(w, struct hpet_work_struct, work.work);
 679
 680        hdev = hpet_get_unused_timer();
 681        if (hdev)
 682                init_one_hpet_msi_clockevent(hdev, cpu);
 683
 684        complete(&hpet_work->complete);
 685}
 686
 687static int hpet_cpuhp_notify(struct notifier_block *n,
 688                unsigned long action, void *hcpu)
 689{
 690        unsigned long cpu = (unsigned long)hcpu;
 691        struct hpet_work_struct work;
 692        struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
 693
 694        switch (action & 0xf) {
 695        case CPU_ONLINE:
 696                INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
 697                init_completion(&work.complete);
 698                /* FIXME: add schedule_work_on() */
 699                schedule_delayed_work_on(cpu, &work.work, 0);
 700                wait_for_completion(&work.complete);
 701                destroy_timer_on_stack(&work.work.timer);
 702                break;
 703        case CPU_DEAD:
 704                if (hdev) {
 705                        free_irq(hdev->irq, hdev);
 706                        hdev->flags &= ~HPET_DEV_USED;
 707                        per_cpu(cpu_hpet_dev, cpu) = NULL;
 708                }
 709                break;
 710        }
 711        return NOTIFY_OK;
 712}
 713#else
 714
 715static int hpet_setup_msi_irq(unsigned int irq)
 716{
 717        return 0;
 718}
 719static void hpet_msi_capability_lookup(unsigned int start_timer)
 720{
 721        return;
 722}
 723
 724#ifdef CONFIG_HPET
 725static void hpet_reserve_msi_timers(struct hpet_data *hd)
 726{
 727        return;
 728}
 729#endif
 730
 731static int hpet_cpuhp_notify(struct notifier_block *n,
 732                unsigned long action, void *hcpu)
 733{
 734        return NOTIFY_OK;
 735}
 736
 737#endif
 738
 739/*
 740 * Clock source related code
 741 */
 742static cycle_t read_hpet(struct clocksource *cs)
 743{
 744        return (cycle_t)hpet_readl(HPET_COUNTER);
 745}
 746
 747#ifdef CONFIG_X86_64
 748static cycle_t __vsyscall_fn vread_hpet(void)
 749{
 750        return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
 751}
 752#endif
 753
 754static struct clocksource clocksource_hpet = {
 755        .name           = "hpet",
 756        .rating         = 250,
 757        .read           = read_hpet,
 758        .mask           = HPET_MASK,
 759        .shift          = HPET_SHIFT,
 760        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 761        .resume         = hpet_resume_counter,
 762#ifdef CONFIG_X86_64
 763        .vread          = vread_hpet,
 764#endif
 765};
 766
 767static int hpet_clocksource_register(void)
 768{
 769        u64 start, now;
 770        cycle_t t1;
 771
 772        /* Start the counter */
 773        hpet_restart_counter();
 774
 775        /* Verify whether hpet counter works */
 776        t1 = hpet_readl(HPET_COUNTER);
 777        rdtscll(start);
 778
 779        /*
 780         * We don't know the TSC frequency yet, but waiting for
 781         * 200000 TSC cycles is safe:
 782         * 4 GHz == 50us
 783         * 1 GHz == 200us
 784         */
 785        do {
 786                rep_nop();
 787                rdtscll(now);
 788        } while ((now - start) < 200000UL);
 789
 790        if (t1 == hpet_readl(HPET_COUNTER)) {
 791                printk(KERN_WARNING
 792                       "HPET counter not counting. HPET disabled\n");
 793                return -ENODEV;
 794        }
 795
 796        /*
 797         * The definition of mult is (include/linux/clocksource.h)
 798         * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
 799         * so we first need to convert hpet_period to ns/cyc units:
 800         *  mult/2^shift = ns/cyc = hpet_period/10^6
 801         *  mult = (hpet_period * 2^shift)/10^6
 802         *  mult = (hpet_period << shift)/FSEC_PER_NSEC
 803         */
 804        clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
 805
 806        clocksource_register(&clocksource_hpet);
 807
 808        return 0;
 809}
 810
 811/**
 812 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 813 */
 814int __init hpet_enable(void)
 815{
 816        unsigned long id;
 817        int i;
 818
 819        if (!is_hpet_capable())
 820                return 0;
 821
 822        hpet_set_mapping();
 823
 824        /*
 825         * Read the period and check for a sane value:
 826         */
 827        hpet_period = hpet_readl(HPET_PERIOD);
 828
 829        /*
 830         * AMD SB700 based systems with spread spectrum enabled use a
 831         * SMM based HPET emulation to provide proper frequency
 832         * setting. The SMM code is initialized with the first HPET
 833         * register access and takes some time to complete. During
 834         * this time the config register reads 0xffffffff. We check
 835         * for max. 1000 loops whether the config register reads a non
 836         * 0xffffffff value to make sure that HPET is up and running
 837         * before we go further. A counting loop is safe, as the HPET
 838         * access takes thousands of CPU cycles. On non SB700 based
 839         * machines this check is only done once and has no side
 840         * effects.
 841         */
 842        for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
 843                if (i == 1000) {
 844                        printk(KERN_WARNING
 845                               "HPET config register value = 0xFFFFFFFF. "
 846                               "Disabling HPET\n");
 847                        goto out_nohpet;
 848                }
 849        }
 850
 851        if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 852                goto out_nohpet;
 853
 854        /*
 855         * Read the HPET ID register to retrieve the IRQ routing
 856         * information and the number of channels
 857         */
 858        id = hpet_readl(HPET_ID);
 859        hpet_print_config();
 860
 861#ifdef CONFIG_HPET_EMULATE_RTC
 862        /*
 863         * The legacy routing mode needs at least two channels, tick timer
 864         * and the rtc emulation channel.
 865         */
 866        if (!(id & HPET_ID_NUMBER))
 867                goto out_nohpet;
 868#endif
 869
 870        if (hpet_clocksource_register())
 871                goto out_nohpet;
 872
 873        if (id & HPET_ID_LEGSUP) {
 874                hpet_legacy_clockevent_register();
 875                hpet_msi_capability_lookup(2);
 876                return 1;
 877        }
 878        hpet_msi_capability_lookup(0);
 879        return 0;
 880
 881out_nohpet:
 882        hpet_clear_mapping();
 883        hpet_address = 0;
 884        return 0;
 885}
 886
 887/*
 888 * Needs to be late, as the reserve_timer code calls kalloc !
 889 *
 890 * Not a problem on i386 as hpet_enable is called from late_time_init,
 891 * but on x86_64 it is necessary !
 892 */
 893static __init int hpet_late_init(void)
 894{
 895        int cpu;
 896
 897        if (boot_hpet_disable)
 898                return -ENODEV;
 899
 900        if (!hpet_address) {
 901                if (!force_hpet_address)
 902                        return -ENODEV;
 903
 904                hpet_address = force_hpet_address;
 905                hpet_enable();
 906        }
 907
 908        if (!hpet_virt_address)
 909                return -ENODEV;
 910
 911        hpet_reserve_platform_timers(hpet_readl(HPET_ID));
 912        hpet_print_config();
 913
 914        for_each_online_cpu(cpu) {
 915                hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
 916        }
 917
 918        /* This notifier should be called after workqueue is ready */
 919        hotcpu_notifier(hpet_cpuhp_notify, -20);
 920
 921        return 0;
 922}
 923fs_initcall(hpet_late_init);
 924
 925void hpet_disable(void)
 926{
 927        if (is_hpet_capable()) {
 928                unsigned long cfg = hpet_readl(HPET_CFG);
 929
 930                if (hpet_legacy_int_enabled) {
 931                        cfg &= ~HPET_CFG_LEGACY;
 932                        hpet_legacy_int_enabled = 0;
 933                }
 934                cfg &= ~HPET_CFG_ENABLE;
 935                hpet_writel(cfg, HPET_CFG);
 936        }
 937}
 938
 939#ifdef CONFIG_HPET_EMULATE_RTC
 940
 941/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 942 * is enabled, we support RTC interrupt functionality in software.
 943 * RTC has 3 kinds of interrupts:
 944 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 945 *    is updated
 946 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 947 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 948 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 949 * (1) and (2) above are implemented using polling at a frequency of
 950 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 951 * overhead. (DEFAULT_RTC_INT_FREQ)
 952 * For (3), we use interrupts at 64Hz or user specified periodic
 953 * frequency, whichever is higher.
 954 */
 955#include <linux/mc146818rtc.h>
 956#include <linux/rtc.h>
 957#include <asm/rtc.h>
 958
 959#define DEFAULT_RTC_INT_FREQ    64
 960#define DEFAULT_RTC_SHIFT       6
 961#define RTC_NUM_INTS            1
 962
 963static unsigned long hpet_rtc_flags;
 964static int hpet_prev_update_sec;
 965static struct rtc_time hpet_alarm_time;
 966static unsigned long hpet_pie_count;
 967static u32 hpet_t1_cmp;
 968static unsigned long hpet_default_delta;
 969static unsigned long hpet_pie_delta;
 970static unsigned long hpet_pie_limit;
 971
 972static rtc_irq_handler irq_handler;
 973
 974/*
 975 * Check that the hpet counter c1 is ahead of the c2
 976 */
 977static inline int hpet_cnt_ahead(u32 c1, u32 c2)
 978{
 979        return (s32)(c2 - c1) < 0;
 980}
 981
 982/*
 983 * Registers a IRQ handler.
 984 */
 985int hpet_register_irq_handler(rtc_irq_handler handler)
 986{
 987        if (!is_hpet_enabled())
 988                return -ENODEV;
 989        if (irq_handler)
 990                return -EBUSY;
 991
 992        irq_handler = handler;
 993
 994        return 0;
 995}
 996EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
 997
 998/*
 999 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1000 * and does cleanup.
1001 */
1002void hpet_unregister_irq_handler(rtc_irq_handler handler)
1003{
1004        if (!is_hpet_enabled())
1005                return;
1006
1007        irq_handler = NULL;
1008        hpet_rtc_flags = 0;
1009}
1010EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1011
1012/*
1013 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1014 * is not supported by all HPET implementations for timer 1.
1015 *
1016 * hpet_rtc_timer_init() is called when the rtc is initialized.
1017 */
1018int hpet_rtc_timer_init(void)
1019{
1020        unsigned long cfg, cnt, delta, flags;
1021
1022        if (!is_hpet_enabled())
1023                return 0;
1024
1025        if (!hpet_default_delta) {
1026                uint64_t clc;
1027
1028                clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1029                clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1030                hpet_default_delta = (unsigned long) clc;
1031        }
1032
1033        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1034                delta = hpet_default_delta;
1035        else
1036                delta = hpet_pie_delta;
1037
1038        local_irq_save(flags);
1039
1040        cnt = delta + hpet_readl(HPET_COUNTER);
1041        hpet_writel(cnt, HPET_T1_CMP);
1042        hpet_t1_cmp = cnt;
1043
1044        cfg = hpet_readl(HPET_T1_CFG);
1045        cfg &= ~HPET_TN_PERIODIC;
1046        cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1047        hpet_writel(cfg, HPET_T1_CFG);
1048
1049        local_irq_restore(flags);
1050
1051        return 1;
1052}
1053EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1054
1055/*
1056 * The functions below are called from rtc driver.
1057 * Return 0 if HPET is not being used.
1058 * Otherwise do the necessary changes and return 1.
1059 */
1060int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1061{
1062        if (!is_hpet_enabled())
1063                return 0;
1064
1065        hpet_rtc_flags &= ~bit_mask;
1066        return 1;
1067}
1068EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1069
1070int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1071{
1072        unsigned long oldbits = hpet_rtc_flags;
1073
1074        if (!is_hpet_enabled())
1075                return 0;
1076
1077        hpet_rtc_flags |= bit_mask;
1078
1079        if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1080                hpet_prev_update_sec = -1;
1081
1082        if (!oldbits)
1083                hpet_rtc_timer_init();
1084
1085        return 1;
1086}
1087EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1088
1089int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1090                        unsigned char sec)
1091{
1092        if (!is_hpet_enabled())
1093                return 0;
1094
1095        hpet_alarm_time.tm_hour = hrs;
1096        hpet_alarm_time.tm_min = min;
1097        hpet_alarm_time.tm_sec = sec;
1098
1099        return 1;
1100}
1101EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1102
1103int hpet_set_periodic_freq(unsigned long freq)
1104{
1105        uint64_t clc;
1106
1107        if (!is_hpet_enabled())
1108                return 0;
1109
1110        if (freq <= DEFAULT_RTC_INT_FREQ)
1111                hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1112        else {
1113                clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1114                do_div(clc, freq);
1115                clc >>= hpet_clockevent.shift;
1116                hpet_pie_delta = (unsigned long) clc;
1117        }
1118        return 1;
1119}
1120EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1121
1122int hpet_rtc_dropped_irq(void)
1123{
1124        return is_hpet_enabled();
1125}
1126EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1127
1128static void hpet_rtc_timer_reinit(void)
1129{
1130        unsigned long cfg, delta;
1131        int lost_ints = -1;
1132
1133        if (unlikely(!hpet_rtc_flags)) {
1134                cfg = hpet_readl(HPET_T1_CFG);
1135                cfg &= ~HPET_TN_ENABLE;
1136                hpet_writel(cfg, HPET_T1_CFG);
1137                return;
1138        }
1139
1140        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1141                delta = hpet_default_delta;
1142        else
1143                delta = hpet_pie_delta;
1144
1145        /*
1146         * Increment the comparator value until we are ahead of the
1147         * current count.
1148         */
1149        do {
1150                hpet_t1_cmp += delta;
1151                hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1152                lost_ints++;
1153        } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1154
1155        if (lost_ints) {
1156                if (hpet_rtc_flags & RTC_PIE)
1157                        hpet_pie_count += lost_ints;
1158                if (printk_ratelimit())
1159                        printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1160                                lost_ints);
1161        }
1162}
1163
1164irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1165{
1166        struct rtc_time curr_time;
1167        unsigned long rtc_int_flag = 0;
1168
1169        hpet_rtc_timer_reinit();
1170        memset(&curr_time, 0, sizeof(struct rtc_time));
1171
1172        if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1173                get_rtc_time(&curr_time);
1174
1175        if (hpet_rtc_flags & RTC_UIE &&
1176            curr_time.tm_sec != hpet_prev_update_sec) {
1177                if (hpet_prev_update_sec >= 0)
1178                        rtc_int_flag = RTC_UF;
1179                hpet_prev_update_sec = curr_time.tm_sec;
1180        }
1181
1182        if (hpet_rtc_flags & RTC_PIE &&
1183            ++hpet_pie_count >= hpet_pie_limit) {
1184                rtc_int_flag |= RTC_PF;
1185                hpet_pie_count = 0;
1186        }
1187
1188        if (hpet_rtc_flags & RTC_AIE &&
1189            (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1190            (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1191            (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1192                        rtc_int_flag |= RTC_AF;
1193
1194        if (rtc_int_flag) {
1195                rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1196                if (irq_handler)
1197                        irq_handler(rtc_int_flag, dev_id);
1198        }
1199        return IRQ_HANDLED;
1200}
1201EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1202#endif
1203