linux/arch/x86/kernel/process.c
<<
>>
Prefs
   1#include <linux/errno.h>
   2#include <linux/kernel.h>
   3#include <linux/mm.h>
   4#include <linux/smp.h>
   5#include <linux/prctl.h>
   6#include <linux/slab.h>
   7#include <linux/sched.h>
   8#include <linux/module.h>
   9#include <linux/pm.h>
  10#include <linux/clockchips.h>
  11#include <linux/random.h>
  12#include <trace/events/power.h>
  13#include <asm/system.h>
  14#include <asm/apic.h>
  15#include <asm/syscalls.h>
  16#include <asm/idle.h>
  17#include <asm/uaccess.h>
  18#include <asm/i387.h>
  19#include <asm/ds.h>
  20
  21unsigned long idle_halt;
  22EXPORT_SYMBOL(idle_halt);
  23unsigned long idle_nomwait;
  24EXPORT_SYMBOL(idle_nomwait);
  25
  26struct kmem_cache *task_xstate_cachep;
  27
  28int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  29{
  30        *dst = *src;
  31        if (src->thread.xstate) {
  32                dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
  33                                                      GFP_KERNEL);
  34                if (!dst->thread.xstate)
  35                        return -ENOMEM;
  36                WARN_ON((unsigned long)dst->thread.xstate & 15);
  37                memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
  38        }
  39        return 0;
  40}
  41
  42void free_thread_xstate(struct task_struct *tsk)
  43{
  44        if (tsk->thread.xstate) {
  45                kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
  46                tsk->thread.xstate = NULL;
  47        }
  48
  49        WARN(tsk->thread.ds_ctx, "leaking DS context\n");
  50}
  51
  52void free_thread_info(struct thread_info *ti)
  53{
  54        free_thread_xstate(ti->task);
  55        free_pages((unsigned long)ti, get_order(THREAD_SIZE));
  56}
  57
  58void arch_task_cache_init(void)
  59{
  60        task_xstate_cachep =
  61                kmem_cache_create("task_xstate", xstate_size,
  62                                  __alignof__(union thread_xstate),
  63                                  SLAB_PANIC | SLAB_NOTRACK, NULL);
  64}
  65
  66/*
  67 * Free current thread data structures etc..
  68 */
  69void exit_thread(void)
  70{
  71        struct task_struct *me = current;
  72        struct thread_struct *t = &me->thread;
  73        unsigned long *bp = t->io_bitmap_ptr;
  74
  75        if (bp) {
  76                struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  77
  78                t->io_bitmap_ptr = NULL;
  79                clear_thread_flag(TIF_IO_BITMAP);
  80                /*
  81                 * Careful, clear this in the TSS too:
  82                 */
  83                memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  84                t->io_bitmap_max = 0;
  85                put_cpu();
  86                kfree(bp);
  87        }
  88}
  89
  90void flush_thread(void)
  91{
  92        struct task_struct *tsk = current;
  93
  94#ifdef CONFIG_X86_64
  95        if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
  96                clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
  97                if (test_tsk_thread_flag(tsk, TIF_IA32)) {
  98                        clear_tsk_thread_flag(tsk, TIF_IA32);
  99                } else {
 100                        set_tsk_thread_flag(tsk, TIF_IA32);
 101                        current_thread_info()->status |= TS_COMPAT;
 102                }
 103        }
 104#endif
 105
 106        clear_tsk_thread_flag(tsk, TIF_DEBUG);
 107
 108        tsk->thread.debugreg0 = 0;
 109        tsk->thread.debugreg1 = 0;
 110        tsk->thread.debugreg2 = 0;
 111        tsk->thread.debugreg3 = 0;
 112        tsk->thread.debugreg6 = 0;
 113        tsk->thread.debugreg7 = 0;
 114        memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 115        /*
 116         * Forget coprocessor state..
 117         */
 118        tsk->fpu_counter = 0;
 119        clear_fpu(tsk);
 120        clear_used_math();
 121}
 122
 123static void hard_disable_TSC(void)
 124{
 125        write_cr4(read_cr4() | X86_CR4_TSD);
 126}
 127
 128void disable_TSC(void)
 129{
 130        preempt_disable();
 131        if (!test_and_set_thread_flag(TIF_NOTSC))
 132                /*
 133                 * Must flip the CPU state synchronously with
 134                 * TIF_NOTSC in the current running context.
 135                 */
 136                hard_disable_TSC();
 137        preempt_enable();
 138}
 139
 140static void hard_enable_TSC(void)
 141{
 142        write_cr4(read_cr4() & ~X86_CR4_TSD);
 143}
 144
 145static void enable_TSC(void)
 146{
 147        preempt_disable();
 148        if (test_and_clear_thread_flag(TIF_NOTSC))
 149                /*
 150                 * Must flip the CPU state synchronously with
 151                 * TIF_NOTSC in the current running context.
 152                 */
 153                hard_enable_TSC();
 154        preempt_enable();
 155}
 156
 157int get_tsc_mode(unsigned long adr)
 158{
 159        unsigned int val;
 160
 161        if (test_thread_flag(TIF_NOTSC))
 162                val = PR_TSC_SIGSEGV;
 163        else
 164                val = PR_TSC_ENABLE;
 165
 166        return put_user(val, (unsigned int __user *)adr);
 167}
 168
 169int set_tsc_mode(unsigned int val)
 170{
 171        if (val == PR_TSC_SIGSEGV)
 172                disable_TSC();
 173        else if (val == PR_TSC_ENABLE)
 174                enable_TSC();
 175        else
 176                return -EINVAL;
 177
 178        return 0;
 179}
 180
 181void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
 182                      struct tss_struct *tss)
 183{
 184        struct thread_struct *prev, *next;
 185
 186        prev = &prev_p->thread;
 187        next = &next_p->thread;
 188
 189        if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
 190            test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
 191                ds_switch_to(prev_p, next_p);
 192        else if (next->debugctlmsr != prev->debugctlmsr)
 193                update_debugctlmsr(next->debugctlmsr);
 194
 195        if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
 196                set_debugreg(next->debugreg0, 0);
 197                set_debugreg(next->debugreg1, 1);
 198                set_debugreg(next->debugreg2, 2);
 199                set_debugreg(next->debugreg3, 3);
 200                /* no 4 and 5 */
 201                set_debugreg(next->debugreg6, 6);
 202                set_debugreg(next->debugreg7, 7);
 203        }
 204
 205        if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
 206            test_tsk_thread_flag(next_p, TIF_NOTSC)) {
 207                /* prev and next are different */
 208                if (test_tsk_thread_flag(next_p, TIF_NOTSC))
 209                        hard_disable_TSC();
 210                else
 211                        hard_enable_TSC();
 212        }
 213
 214        if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 215                /*
 216                 * Copy the relevant range of the IO bitmap.
 217                 * Normally this is 128 bytes or less:
 218                 */
 219                memcpy(tss->io_bitmap, next->io_bitmap_ptr,
 220                       max(prev->io_bitmap_max, next->io_bitmap_max));
 221        } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 222                /*
 223                 * Clear any possible leftover bits:
 224                 */
 225                memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 226        }
 227}
 228
 229int sys_fork(struct pt_regs *regs)
 230{
 231        return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
 232}
 233
 234/*
 235 * This is trivial, and on the face of it looks like it
 236 * could equally well be done in user mode.
 237 *
 238 * Not so, for quite unobvious reasons - register pressure.
 239 * In user mode vfork() cannot have a stack frame, and if
 240 * done by calling the "clone()" system call directly, you
 241 * do not have enough call-clobbered registers to hold all
 242 * the information you need.
 243 */
 244int sys_vfork(struct pt_regs *regs)
 245{
 246        return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
 247                       NULL, NULL);
 248}
 249
 250
 251/*
 252 * Idle related variables and functions
 253 */
 254unsigned long boot_option_idle_override = 0;
 255EXPORT_SYMBOL(boot_option_idle_override);
 256
 257/*
 258 * Powermanagement idle function, if any..
 259 */
 260void (*pm_idle)(void);
 261EXPORT_SYMBOL(pm_idle);
 262
 263#ifdef CONFIG_X86_32
 264/*
 265 * This halt magic was a workaround for ancient floppy DMA
 266 * wreckage. It should be safe to remove.
 267 */
 268static int hlt_counter;
 269void disable_hlt(void)
 270{
 271        hlt_counter++;
 272}
 273EXPORT_SYMBOL(disable_hlt);
 274
 275void enable_hlt(void)
 276{
 277        hlt_counter--;
 278}
 279EXPORT_SYMBOL(enable_hlt);
 280
 281static inline int hlt_use_halt(void)
 282{
 283        return (!hlt_counter && boot_cpu_data.hlt_works_ok);
 284}
 285#else
 286static inline int hlt_use_halt(void)
 287{
 288        return 1;
 289}
 290#endif
 291
 292/*
 293 * We use this if we don't have any better
 294 * idle routine..
 295 */
 296void default_idle(void)
 297{
 298        if (hlt_use_halt()) {
 299                trace_power_start(POWER_CSTATE, 1);
 300                current_thread_info()->status &= ~TS_POLLING;
 301                /*
 302                 * TS_POLLING-cleared state must be visible before we
 303                 * test NEED_RESCHED:
 304                 */
 305                smp_mb();
 306
 307                if (!need_resched())
 308                        safe_halt();    /* enables interrupts racelessly */
 309                else
 310                        local_irq_enable();
 311                current_thread_info()->status |= TS_POLLING;
 312        } else {
 313                local_irq_enable();
 314                /* loop is done by the caller */
 315                cpu_relax();
 316        }
 317}
 318#ifdef CONFIG_APM_MODULE
 319EXPORT_SYMBOL(default_idle);
 320#endif
 321
 322void stop_this_cpu(void *dummy)
 323{
 324        local_irq_disable();
 325        /*
 326         * Remove this CPU:
 327         */
 328        set_cpu_online(smp_processor_id(), false);
 329        disable_local_APIC();
 330
 331        for (;;) {
 332                if (hlt_works(smp_processor_id()))
 333                        halt();
 334        }
 335}
 336
 337static void do_nothing(void *unused)
 338{
 339}
 340
 341/*
 342 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
 343 * pm_idle and update to new pm_idle value. Required while changing pm_idle
 344 * handler on SMP systems.
 345 *
 346 * Caller must have changed pm_idle to the new value before the call. Old
 347 * pm_idle value will not be used by any CPU after the return of this function.
 348 */
 349void cpu_idle_wait(void)
 350{
 351        smp_mb();
 352        /* kick all the CPUs so that they exit out of pm_idle */
 353        smp_call_function(do_nothing, NULL, 1);
 354}
 355EXPORT_SYMBOL_GPL(cpu_idle_wait);
 356
 357/*
 358 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
 359 * which can obviate IPI to trigger checking of need_resched.
 360 * We execute MONITOR against need_resched and enter optimized wait state
 361 * through MWAIT. Whenever someone changes need_resched, we would be woken
 362 * up from MWAIT (without an IPI).
 363 *
 364 * New with Core Duo processors, MWAIT can take some hints based on CPU
 365 * capability.
 366 */
 367void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
 368{
 369        trace_power_start(POWER_CSTATE, (ax>>4)+1);
 370        if (!need_resched()) {
 371                if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
 372                        clflush((void *)&current_thread_info()->flags);
 373
 374                __monitor((void *)&current_thread_info()->flags, 0, 0);
 375                smp_mb();
 376                if (!need_resched())
 377                        __mwait(ax, cx);
 378        }
 379}
 380
 381/* Default MONITOR/MWAIT with no hints, used for default C1 state */
 382static void mwait_idle(void)
 383{
 384        if (!need_resched()) {
 385                trace_power_start(POWER_CSTATE, 1);
 386                if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
 387                        clflush((void *)&current_thread_info()->flags);
 388
 389                __monitor((void *)&current_thread_info()->flags, 0, 0);
 390                smp_mb();
 391                if (!need_resched())
 392                        __sti_mwait(0, 0);
 393                else
 394                        local_irq_enable();
 395        } else
 396                local_irq_enable();
 397}
 398
 399/*
 400 * On SMP it's slightly faster (but much more power-consuming!)
 401 * to poll the ->work.need_resched flag instead of waiting for the
 402 * cross-CPU IPI to arrive. Use this option with caution.
 403 */
 404static void poll_idle(void)
 405{
 406        trace_power_start(POWER_CSTATE, 0);
 407        local_irq_enable();
 408        while (!need_resched())
 409                cpu_relax();
 410        trace_power_end(0);
 411}
 412
 413/*
 414 * mwait selection logic:
 415 *
 416 * It depends on the CPU. For AMD CPUs that support MWAIT this is
 417 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
 418 * then depend on a clock divisor and current Pstate of the core. If
 419 * all cores of a processor are in halt state (C1) the processor can
 420 * enter the C1E (C1 enhanced) state. If mwait is used this will never
 421 * happen.
 422 *
 423 * idle=mwait overrides this decision and forces the usage of mwait.
 424 */
 425static int __cpuinitdata force_mwait;
 426
 427#define MWAIT_INFO                      0x05
 428#define MWAIT_ECX_EXTENDED_INFO         0x01
 429#define MWAIT_EDX_C1                    0xf0
 430
 431static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
 432{
 433        u32 eax, ebx, ecx, edx;
 434
 435        if (force_mwait)
 436                return 1;
 437
 438        if (c->cpuid_level < MWAIT_INFO)
 439                return 0;
 440
 441        cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
 442        /* Check, whether EDX has extended info about MWAIT */
 443        if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
 444                return 1;
 445
 446        /*
 447         * edx enumeratios MONITOR/MWAIT extensions. Check, whether
 448         * C1  supports MWAIT
 449         */
 450        return (edx & MWAIT_EDX_C1);
 451}
 452
 453/*
 454 * Check for AMD CPUs, which have potentially C1E support
 455 */
 456static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
 457{
 458        if (c->x86_vendor != X86_VENDOR_AMD)
 459                return 0;
 460
 461        if (c->x86 < 0x0F)
 462                return 0;
 463
 464        /* Family 0x0f models < rev F do not have C1E */
 465        if (c->x86 == 0x0f && c->x86_model < 0x40)
 466                return 0;
 467
 468        return 1;
 469}
 470
 471static cpumask_var_t c1e_mask;
 472static int c1e_detected;
 473
 474void c1e_remove_cpu(int cpu)
 475{
 476        if (c1e_mask != NULL)
 477                cpumask_clear_cpu(cpu, c1e_mask);
 478}
 479
 480/*
 481 * C1E aware idle routine. We check for C1E active in the interrupt
 482 * pending message MSR. If we detect C1E, then we handle it the same
 483 * way as C3 power states (local apic timer and TSC stop)
 484 */
 485static void c1e_idle(void)
 486{
 487        if (need_resched())
 488                return;
 489
 490        if (!c1e_detected) {
 491                u32 lo, hi;
 492
 493                rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 494                if (lo & K8_INTP_C1E_ACTIVE_MASK) {
 495                        c1e_detected = 1;
 496                        if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 497                                mark_tsc_unstable("TSC halt in AMD C1E");
 498                        printk(KERN_INFO "System has AMD C1E enabled\n");
 499                        set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
 500                }
 501        }
 502
 503        if (c1e_detected) {
 504                int cpu = smp_processor_id();
 505
 506                if (!cpumask_test_cpu(cpu, c1e_mask)) {
 507                        cpumask_set_cpu(cpu, c1e_mask);
 508                        /*
 509                         * Force broadcast so ACPI can not interfere.
 510                         */
 511                        clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
 512                                           &cpu);
 513                        printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
 514                               cpu);
 515                }
 516                clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
 517
 518                default_idle();
 519
 520                /*
 521                 * The switch back from broadcast mode needs to be
 522                 * called with interrupts disabled.
 523                 */
 524                 local_irq_disable();
 525                 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
 526                 local_irq_enable();
 527        } else
 528                default_idle();
 529}
 530
 531void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
 532{
 533#ifdef CONFIG_SMP
 534        if (pm_idle == poll_idle && smp_num_siblings > 1) {
 535                printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
 536                        " performance may degrade.\n");
 537        }
 538#endif
 539        if (pm_idle)
 540                return;
 541
 542        if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
 543                /*
 544                 * One CPU supports mwait => All CPUs supports mwait
 545                 */
 546                printk(KERN_INFO "using mwait in idle threads.\n");
 547                pm_idle = mwait_idle;
 548        } else if (check_c1e_idle(c)) {
 549                printk(KERN_INFO "using C1E aware idle routine\n");
 550                pm_idle = c1e_idle;
 551        } else
 552                pm_idle = default_idle;
 553}
 554
 555void __init init_c1e_mask(void)
 556{
 557        /* If we're using c1e_idle, we need to allocate c1e_mask. */
 558        if (pm_idle == c1e_idle)
 559                zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
 560}
 561
 562static int __init idle_setup(char *str)
 563{
 564        if (!str)
 565                return -EINVAL;
 566
 567        if (!strcmp(str, "poll")) {
 568                printk("using polling idle threads.\n");
 569                pm_idle = poll_idle;
 570        } else if (!strcmp(str, "mwait"))
 571                force_mwait = 1;
 572        else if (!strcmp(str, "halt")) {
 573                /*
 574                 * When the boot option of idle=halt is added, halt is
 575                 * forced to be used for CPU idle. In such case CPU C2/C3
 576                 * won't be used again.
 577                 * To continue to load the CPU idle driver, don't touch
 578                 * the boot_option_idle_override.
 579                 */
 580                pm_idle = default_idle;
 581                idle_halt = 1;
 582                return 0;
 583        } else if (!strcmp(str, "nomwait")) {
 584                /*
 585                 * If the boot option of "idle=nomwait" is added,
 586                 * it means that mwait will be disabled for CPU C2/C3
 587                 * states. In such case it won't touch the variable
 588                 * of boot_option_idle_override.
 589                 */
 590                idle_nomwait = 1;
 591                return 0;
 592        } else
 593                return -1;
 594
 595        boot_option_idle_override = 1;
 596        return 0;
 597}
 598early_param("idle", idle_setup);
 599
 600unsigned long arch_align_stack(unsigned long sp)
 601{
 602        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 603                sp -= get_random_int() % 8192;
 604        return sp & ~0xf;
 605}
 606
 607unsigned long arch_randomize_brk(struct mm_struct *mm)
 608{
 609        unsigned long range_end = mm->brk + 0x02000000;
 610        return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 611}
 612
 613