linux/arch/x86/kernel/tsc.c
<<
>>
Prefs
   1#include <linux/kernel.h>
   2#include <linux/sched.h>
   3#include <linux/init.h>
   4#include <linux/module.h>
   5#include <linux/timer.h>
   6#include <linux/acpi_pmtmr.h>
   7#include <linux/cpufreq.h>
   8#include <linux/dmi.h>
   9#include <linux/delay.h>
  10#include <linux/clocksource.h>
  11#include <linux/percpu.h>
  12#include <linux/timex.h>
  13
  14#include <asm/hpet.h>
  15#include <asm/timer.h>
  16#include <asm/vgtod.h>
  17#include <asm/time.h>
  18#include <asm/delay.h>
  19#include <asm/hypervisor.h>
  20#include <asm/nmi.h>
  21#include <asm/x86_init.h>
  22
  23unsigned int __read_mostly cpu_khz;     /* TSC clocks / usec, not used here */
  24EXPORT_SYMBOL(cpu_khz);
  25
  26unsigned int __read_mostly tsc_khz;
  27EXPORT_SYMBOL(tsc_khz);
  28
  29/*
  30 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  31 */
  32static int __read_mostly tsc_unstable;
  33
  34/* native_sched_clock() is called before tsc_init(), so
  35   we must start with the TSC soft disabled to prevent
  36   erroneous rdtsc usage on !cpu_has_tsc processors */
  37static int __read_mostly tsc_disabled = -1;
  38
  39static int tsc_clocksource_reliable;
  40/*
  41 * Scheduler clock - returns current time in nanosec units.
  42 */
  43u64 native_sched_clock(void)
  44{
  45        u64 this_offset;
  46
  47        /*
  48         * Fall back to jiffies if there's no TSC available:
  49         * ( But note that we still use it if the TSC is marked
  50         *   unstable. We do this because unlike Time Of Day,
  51         *   the scheduler clock tolerates small errors and it's
  52         *   very important for it to be as fast as the platform
  53         *   can achive it. )
  54         */
  55        if (unlikely(tsc_disabled)) {
  56                /* No locking but a rare wrong value is not a big deal: */
  57                return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  58        }
  59
  60        /* read the Time Stamp Counter: */
  61        rdtscll(this_offset);
  62
  63        /* return the value in ns */
  64        return __cycles_2_ns(this_offset);
  65}
  66
  67/* We need to define a real function for sched_clock, to override the
  68   weak default version */
  69#ifdef CONFIG_PARAVIRT
  70unsigned long long sched_clock(void)
  71{
  72        return paravirt_sched_clock();
  73}
  74#else
  75unsigned long long
  76sched_clock(void) __attribute__((alias("native_sched_clock")));
  77#endif
  78
  79int check_tsc_unstable(void)
  80{
  81        return tsc_unstable;
  82}
  83EXPORT_SYMBOL_GPL(check_tsc_unstable);
  84
  85#ifdef CONFIG_X86_TSC
  86int __init notsc_setup(char *str)
  87{
  88        printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  89                        "cannot disable TSC completely.\n");
  90        tsc_disabled = 1;
  91        return 1;
  92}
  93#else
  94/*
  95 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  96 * in cpu/common.c
  97 */
  98int __init notsc_setup(char *str)
  99{
 100        setup_clear_cpu_cap(X86_FEATURE_TSC);
 101        return 1;
 102}
 103#endif
 104
 105__setup("notsc", notsc_setup);
 106
 107static int __init tsc_setup(char *str)
 108{
 109        if (!strcmp(str, "reliable"))
 110                tsc_clocksource_reliable = 1;
 111        return 1;
 112}
 113
 114__setup("tsc=", tsc_setup);
 115
 116#define MAX_RETRIES     5
 117#define SMI_TRESHOLD    50000
 118
 119/*
 120 * Read TSC and the reference counters. Take care of SMI disturbance
 121 */
 122static u64 tsc_read_refs(u64 *p, int hpet)
 123{
 124        u64 t1, t2;
 125        int i;
 126
 127        for (i = 0; i < MAX_RETRIES; i++) {
 128                t1 = get_cycles();
 129                if (hpet)
 130                        *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 131                else
 132                        *p = acpi_pm_read_early();
 133                t2 = get_cycles();
 134                if ((t2 - t1) < SMI_TRESHOLD)
 135                        return t2;
 136        }
 137        return ULLONG_MAX;
 138}
 139
 140/*
 141 * Calculate the TSC frequency from HPET reference
 142 */
 143static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 144{
 145        u64 tmp;
 146
 147        if (hpet2 < hpet1)
 148                hpet2 += 0x100000000ULL;
 149        hpet2 -= hpet1;
 150        tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 151        do_div(tmp, 1000000);
 152        do_div(deltatsc, tmp);
 153
 154        return (unsigned long) deltatsc;
 155}
 156
 157/*
 158 * Calculate the TSC frequency from PMTimer reference
 159 */
 160static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 161{
 162        u64 tmp;
 163
 164        if (!pm1 && !pm2)
 165                return ULONG_MAX;
 166
 167        if (pm2 < pm1)
 168                pm2 += (u64)ACPI_PM_OVRRUN;
 169        pm2 -= pm1;
 170        tmp = pm2 * 1000000000LL;
 171        do_div(tmp, PMTMR_TICKS_PER_SEC);
 172        do_div(deltatsc, tmp);
 173
 174        return (unsigned long) deltatsc;
 175}
 176
 177#define CAL_MS          10
 178#define CAL_LATCH       (CLOCK_TICK_RATE / (1000 / CAL_MS))
 179#define CAL_PIT_LOOPS   1000
 180
 181#define CAL2_MS         50
 182#define CAL2_LATCH      (CLOCK_TICK_RATE / (1000 / CAL2_MS))
 183#define CAL2_PIT_LOOPS  5000
 184
 185
 186/*
 187 * Try to calibrate the TSC against the Programmable
 188 * Interrupt Timer and return the frequency of the TSC
 189 * in kHz.
 190 *
 191 * Return ULONG_MAX on failure to calibrate.
 192 */
 193static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 194{
 195        u64 tsc, t1, t2, delta;
 196        unsigned long tscmin, tscmax;
 197        int pitcnt;
 198
 199        /* Set the Gate high, disable speaker */
 200        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 201
 202        /*
 203         * Setup CTC channel 2* for mode 0, (interrupt on terminal
 204         * count mode), binary count. Set the latch register to 50ms
 205         * (LSB then MSB) to begin countdown.
 206         */
 207        outb(0xb0, 0x43);
 208        outb(latch & 0xff, 0x42);
 209        outb(latch >> 8, 0x42);
 210
 211        tsc = t1 = t2 = get_cycles();
 212
 213        pitcnt = 0;
 214        tscmax = 0;
 215        tscmin = ULONG_MAX;
 216        while ((inb(0x61) & 0x20) == 0) {
 217                t2 = get_cycles();
 218                delta = t2 - tsc;
 219                tsc = t2;
 220                if ((unsigned long) delta < tscmin)
 221                        tscmin = (unsigned int) delta;
 222                if ((unsigned long) delta > tscmax)
 223                        tscmax = (unsigned int) delta;
 224                pitcnt++;
 225        }
 226
 227        /*
 228         * Sanity checks:
 229         *
 230         * If we were not able to read the PIT more than loopmin
 231         * times, then we have been hit by a massive SMI
 232         *
 233         * If the maximum is 10 times larger than the minimum,
 234         * then we got hit by an SMI as well.
 235         */
 236        if (pitcnt < loopmin || tscmax > 10 * tscmin)
 237                return ULONG_MAX;
 238
 239        /* Calculate the PIT value */
 240        delta = t2 - t1;
 241        do_div(delta, ms);
 242        return delta;
 243}
 244
 245/*
 246 * This reads the current MSB of the PIT counter, and
 247 * checks if we are running on sufficiently fast and
 248 * non-virtualized hardware.
 249 *
 250 * Our expectations are:
 251 *
 252 *  - the PIT is running at roughly 1.19MHz
 253 *
 254 *  - each IO is going to take about 1us on real hardware,
 255 *    but we allow it to be much faster (by a factor of 10) or
 256 *    _slightly_ slower (ie we allow up to a 2us read+counter
 257 *    update - anything else implies a unacceptably slow CPU
 258 *    or PIT for the fast calibration to work.
 259 *
 260 *  - with 256 PIT ticks to read the value, we have 214us to
 261 *    see the same MSB (and overhead like doing a single TSC
 262 *    read per MSB value etc).
 263 *
 264 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 265 *    them each to take about a microsecond on real hardware.
 266 *    So we expect a count value of around 100. But we'll be
 267 *    generous, and accept anything over 50.
 268 *
 269 *  - if the PIT is stuck, and we see *many* more reads, we
 270 *    return early (and the next caller of pit_expect_msb()
 271 *    then consider it a failure when they don't see the
 272 *    next expected value).
 273 *
 274 * These expectations mean that we know that we have seen the
 275 * transition from one expected value to another with a fairly
 276 * high accuracy, and we didn't miss any events. We can thus
 277 * use the TSC value at the transitions to calculate a pretty
 278 * good value for the TSC frequencty.
 279 */
 280static inline int pit_verify_msb(unsigned char val)
 281{
 282        /* Ignore LSB */
 283        inb(0x42);
 284        return inb(0x42) == val;
 285}
 286
 287static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 288{
 289        int count;
 290        u64 tsc = 0;
 291
 292        for (count = 0; count < 50000; count++) {
 293                if (!pit_verify_msb(val))
 294                        break;
 295                tsc = get_cycles();
 296        }
 297        *deltap = get_cycles() - tsc;
 298        *tscp = tsc;
 299
 300        /*
 301         * We require _some_ success, but the quality control
 302         * will be based on the error terms on the TSC values.
 303         */
 304        return count > 5;
 305}
 306
 307/*
 308 * How many MSB values do we want to see? We aim for
 309 * a maximum error rate of 500ppm (in practice the
 310 * real error is much smaller), but refuse to spend
 311 * more than 25ms on it.
 312 */
 313#define MAX_QUICK_PIT_MS 25
 314#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 315
 316static unsigned long quick_pit_calibrate(void)
 317{
 318        int i;
 319        u64 tsc, delta;
 320        unsigned long d1, d2;
 321
 322        /* Set the Gate high, disable speaker */
 323        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 324
 325        /*
 326         * Counter 2, mode 0 (one-shot), binary count
 327         *
 328         * NOTE! Mode 2 decrements by two (and then the
 329         * output is flipped each time, giving the same
 330         * final output frequency as a decrement-by-one),
 331         * so mode 0 is much better when looking at the
 332         * individual counts.
 333         */
 334        outb(0xb0, 0x43);
 335
 336        /* Start at 0xffff */
 337        outb(0xff, 0x42);
 338        outb(0xff, 0x42);
 339
 340        /*
 341         * The PIT starts counting at the next edge, so we
 342         * need to delay for a microsecond. The easiest way
 343         * to do that is to just read back the 16-bit counter
 344         * once from the PIT.
 345         */
 346        pit_verify_msb(0);
 347
 348        if (pit_expect_msb(0xff, &tsc, &d1)) {
 349                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 350                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 351                                break;
 352
 353                        /*
 354                         * Iterate until the error is less than 500 ppm
 355                         */
 356                        delta -= tsc;
 357                        if (d1+d2 >= delta >> 11)
 358                                continue;
 359
 360                        /*
 361                         * Check the PIT one more time to verify that
 362                         * all TSC reads were stable wrt the PIT.
 363                         *
 364                         * This also guarantees serialization of the
 365                         * last cycle read ('d2') in pit_expect_msb.
 366                         */
 367                        if (!pit_verify_msb(0xfe - i))
 368                                break;
 369                        goto success;
 370                }
 371        }
 372        printk("Fast TSC calibration failed\n");
 373        return 0;
 374
 375success:
 376        /*
 377         * Ok, if we get here, then we've seen the
 378         * MSB of the PIT decrement 'i' times, and the
 379         * error has shrunk to less than 500 ppm.
 380         *
 381         * As a result, we can depend on there not being
 382         * any odd delays anywhere, and the TSC reads are
 383         * reliable (within the error). We also adjust the
 384         * delta to the middle of the error bars, just
 385         * because it looks nicer.
 386         *
 387         * kHz = ticks / time-in-seconds / 1000;
 388         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 389         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 390         */
 391        delta += (long)(d2 - d1)/2;
 392        delta *= PIT_TICK_RATE;
 393        do_div(delta, i*256*1000);
 394        printk("Fast TSC calibration using PIT\n");
 395        return delta;
 396}
 397
 398/**
 399 * native_calibrate_tsc - calibrate the tsc on boot
 400 */
 401unsigned long native_calibrate_tsc(void)
 402{
 403        u64 tsc1, tsc2, delta, ref1, ref2;
 404        unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 405        unsigned long flags, latch, ms, fast_calibrate;
 406        int hpet = is_hpet_enabled(), i, loopmin;
 407
 408        local_irq_save(flags);
 409        fast_calibrate = quick_pit_calibrate();
 410        local_irq_restore(flags);
 411        if (fast_calibrate)
 412                return fast_calibrate;
 413
 414        /*
 415         * Run 5 calibration loops to get the lowest frequency value
 416         * (the best estimate). We use two different calibration modes
 417         * here:
 418         *
 419         * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 420         * load a timeout of 50ms. We read the time right after we
 421         * started the timer and wait until the PIT count down reaches
 422         * zero. In each wait loop iteration we read the TSC and check
 423         * the delta to the previous read. We keep track of the min
 424         * and max values of that delta. The delta is mostly defined
 425         * by the IO time of the PIT access, so we can detect when a
 426         * SMI/SMM disturbance happend between the two reads. If the
 427         * maximum time is significantly larger than the minimum time,
 428         * then we discard the result and have another try.
 429         *
 430         * 2) Reference counter. If available we use the HPET or the
 431         * PMTIMER as a reference to check the sanity of that value.
 432         * We use separate TSC readouts and check inside of the
 433         * reference read for a SMI/SMM disturbance. We dicard
 434         * disturbed values here as well. We do that around the PIT
 435         * calibration delay loop as we have to wait for a certain
 436         * amount of time anyway.
 437         */
 438
 439        /* Preset PIT loop values */
 440        latch = CAL_LATCH;
 441        ms = CAL_MS;
 442        loopmin = CAL_PIT_LOOPS;
 443
 444        for (i = 0; i < 3; i++) {
 445                unsigned long tsc_pit_khz;
 446
 447                /*
 448                 * Read the start value and the reference count of
 449                 * hpet/pmtimer when available. Then do the PIT
 450                 * calibration, which will take at least 50ms, and
 451                 * read the end value.
 452                 */
 453                local_irq_save(flags);
 454                tsc1 = tsc_read_refs(&ref1, hpet);
 455                tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 456                tsc2 = tsc_read_refs(&ref2, hpet);
 457                local_irq_restore(flags);
 458
 459                /* Pick the lowest PIT TSC calibration so far */
 460                tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 461
 462                /* hpet or pmtimer available ? */
 463                if (!hpet && !ref1 && !ref2)
 464                        continue;
 465
 466                /* Check, whether the sampling was disturbed by an SMI */
 467                if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 468                        continue;
 469
 470                tsc2 = (tsc2 - tsc1) * 1000000LL;
 471                if (hpet)
 472                        tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 473                else
 474                        tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 475
 476                tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 477
 478                /* Check the reference deviation */
 479                delta = ((u64) tsc_pit_min) * 100;
 480                do_div(delta, tsc_ref_min);
 481
 482                /*
 483                 * If both calibration results are inside a 10% window
 484                 * then we can be sure, that the calibration
 485                 * succeeded. We break out of the loop right away. We
 486                 * use the reference value, as it is more precise.
 487                 */
 488                if (delta >= 90 && delta <= 110) {
 489                        printk(KERN_INFO
 490                               "TSC: PIT calibration matches %s. %d loops\n",
 491                               hpet ? "HPET" : "PMTIMER", i + 1);
 492                        return tsc_ref_min;
 493                }
 494
 495                /*
 496                 * Check whether PIT failed more than once. This
 497                 * happens in virtualized environments. We need to
 498                 * give the virtual PC a slightly longer timeframe for
 499                 * the HPET/PMTIMER to make the result precise.
 500                 */
 501                if (i == 1 && tsc_pit_min == ULONG_MAX) {
 502                        latch = CAL2_LATCH;
 503                        ms = CAL2_MS;
 504                        loopmin = CAL2_PIT_LOOPS;
 505                }
 506        }
 507
 508        /*
 509         * Now check the results.
 510         */
 511        if (tsc_pit_min == ULONG_MAX) {
 512                /* PIT gave no useful value */
 513                printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
 514
 515                /* We don't have an alternative source, disable TSC */
 516                if (!hpet && !ref1 && !ref2) {
 517                        printk("TSC: No reference (HPET/PMTIMER) available\n");
 518                        return 0;
 519                }
 520
 521                /* The alternative source failed as well, disable TSC */
 522                if (tsc_ref_min == ULONG_MAX) {
 523                        printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
 524                               "failed.\n");
 525                        return 0;
 526                }
 527
 528                /* Use the alternative source */
 529                printk(KERN_INFO "TSC: using %s reference calibration\n",
 530                       hpet ? "HPET" : "PMTIMER");
 531
 532                return tsc_ref_min;
 533        }
 534
 535        /* We don't have an alternative source, use the PIT calibration value */
 536        if (!hpet && !ref1 && !ref2) {
 537                printk(KERN_INFO "TSC: Using PIT calibration value\n");
 538                return tsc_pit_min;
 539        }
 540
 541        /* The alternative source failed, use the PIT calibration value */
 542        if (tsc_ref_min == ULONG_MAX) {
 543                printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
 544                       "Using PIT calibration\n");
 545                return tsc_pit_min;
 546        }
 547
 548        /*
 549         * The calibration values differ too much. In doubt, we use
 550         * the PIT value as we know that there are PMTIMERs around
 551         * running at double speed. At least we let the user know:
 552         */
 553        printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
 554               hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 555        printk(KERN_INFO "TSC: Using PIT calibration value\n");
 556        return tsc_pit_min;
 557}
 558
 559int recalibrate_cpu_khz(void)
 560{
 561#ifndef CONFIG_SMP
 562        unsigned long cpu_khz_old = cpu_khz;
 563
 564        if (cpu_has_tsc) {
 565                tsc_khz = x86_platform.calibrate_tsc();
 566                cpu_khz = tsc_khz;
 567                cpu_data(0).loops_per_jiffy =
 568                        cpufreq_scale(cpu_data(0).loops_per_jiffy,
 569                                        cpu_khz_old, cpu_khz);
 570                return 0;
 571        } else
 572                return -ENODEV;
 573#else
 574        return -ENODEV;
 575#endif
 576}
 577
 578EXPORT_SYMBOL(recalibrate_cpu_khz);
 579
 580
 581/* Accelerators for sched_clock()
 582 * convert from cycles(64bits) => nanoseconds (64bits)
 583 *  basic equation:
 584 *              ns = cycles / (freq / ns_per_sec)
 585 *              ns = cycles * (ns_per_sec / freq)
 586 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 587 *              ns = cycles * (10^6 / cpu_khz)
 588 *
 589 *      Then we use scaling math (suggested by george@mvista.com) to get:
 590 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 591 *              ns = cycles * cyc2ns_scale / SC
 592 *
 593 *      And since SC is a constant power of two, we can convert the div
 594 *  into a shift.
 595 *
 596 *  We can use khz divisor instead of mhz to keep a better precision, since
 597 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 598 *  (mathieu.desnoyers@polymtl.ca)
 599 *
 600 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 601 */
 602
 603DEFINE_PER_CPU(unsigned long, cyc2ns);
 604DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
 605
 606static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
 607{
 608        unsigned long long tsc_now, ns_now, *offset;
 609        unsigned long flags, *scale;
 610
 611        local_irq_save(flags);
 612        sched_clock_idle_sleep_event();
 613
 614        scale = &per_cpu(cyc2ns, cpu);
 615        offset = &per_cpu(cyc2ns_offset, cpu);
 616
 617        rdtscll(tsc_now);
 618        ns_now = __cycles_2_ns(tsc_now);
 619
 620        if (cpu_khz) {
 621                *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
 622                *offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
 623        }
 624
 625        sched_clock_idle_wakeup_event(0);
 626        local_irq_restore(flags);
 627}
 628
 629#ifdef CONFIG_CPU_FREQ
 630
 631/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 632 * changes.
 633 *
 634 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 635 * not that important because current Opteron setups do not support
 636 * scaling on SMP anyroads.
 637 *
 638 * Should fix up last_tsc too. Currently gettimeofday in the
 639 * first tick after the change will be slightly wrong.
 640 */
 641
 642static unsigned int  ref_freq;
 643static unsigned long loops_per_jiffy_ref;
 644static unsigned long tsc_khz_ref;
 645
 646static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 647                                void *data)
 648{
 649        struct cpufreq_freqs *freq = data;
 650        unsigned long *lpj;
 651
 652        if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
 653                return 0;
 654
 655        lpj = &boot_cpu_data.loops_per_jiffy;
 656#ifdef CONFIG_SMP
 657        if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 658                lpj = &cpu_data(freq->cpu).loops_per_jiffy;
 659#endif
 660
 661        if (!ref_freq) {
 662                ref_freq = freq->old;
 663                loops_per_jiffy_ref = *lpj;
 664                tsc_khz_ref = tsc_khz;
 665        }
 666        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 667                        (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
 668                        (val == CPUFREQ_RESUMECHANGE)) {
 669                *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 670
 671                tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 672                if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 673                        mark_tsc_unstable("cpufreq changes");
 674        }
 675
 676        set_cyc2ns_scale(tsc_khz, freq->cpu);
 677
 678        return 0;
 679}
 680
 681static struct notifier_block time_cpufreq_notifier_block = {
 682        .notifier_call  = time_cpufreq_notifier
 683};
 684
 685static int __init cpufreq_tsc(void)
 686{
 687        if (!cpu_has_tsc)
 688                return 0;
 689        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 690                return 0;
 691        cpufreq_register_notifier(&time_cpufreq_notifier_block,
 692                                CPUFREQ_TRANSITION_NOTIFIER);
 693        return 0;
 694}
 695
 696core_initcall(cpufreq_tsc);
 697
 698#endif /* CONFIG_CPU_FREQ */
 699
 700/* clocksource code */
 701
 702static struct clocksource clocksource_tsc;
 703
 704/*
 705 * We compare the TSC to the cycle_last value in the clocksource
 706 * structure to avoid a nasty time-warp. This can be observed in a
 707 * very small window right after one CPU updated cycle_last under
 708 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 709 * is smaller than the cycle_last reference value due to a TSC which
 710 * is slighty behind. This delta is nowhere else observable, but in
 711 * that case it results in a forward time jump in the range of hours
 712 * due to the unsigned delta calculation of the time keeping core
 713 * code, which is necessary to support wrapping clocksources like pm
 714 * timer.
 715 */
 716static cycle_t read_tsc(struct clocksource *cs)
 717{
 718        cycle_t ret = (cycle_t)get_cycles();
 719
 720        return ret >= clocksource_tsc.cycle_last ?
 721                ret : clocksource_tsc.cycle_last;
 722}
 723
 724#ifdef CONFIG_X86_64
 725static cycle_t __vsyscall_fn vread_tsc(void)
 726{
 727        cycle_t ret;
 728
 729        /*
 730         * Surround the RDTSC by barriers, to make sure it's not
 731         * speculated to outside the seqlock critical section and
 732         * does not cause time warps:
 733         */
 734        rdtsc_barrier();
 735        ret = (cycle_t)vget_cycles();
 736        rdtsc_barrier();
 737
 738        return ret >= __vsyscall_gtod_data.clock.cycle_last ?
 739                ret : __vsyscall_gtod_data.clock.cycle_last;
 740}
 741#endif
 742
 743static void resume_tsc(void)
 744{
 745        clocksource_tsc.cycle_last = 0;
 746}
 747
 748static struct clocksource clocksource_tsc = {
 749        .name                   = "tsc",
 750        .rating                 = 300,
 751        .read                   = read_tsc,
 752        .resume                 = resume_tsc,
 753        .mask                   = CLOCKSOURCE_MASK(64),
 754        .shift                  = 22,
 755        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
 756                                  CLOCK_SOURCE_MUST_VERIFY,
 757#ifdef CONFIG_X86_64
 758        .vread                  = vread_tsc,
 759#endif
 760};
 761
 762void mark_tsc_unstable(char *reason)
 763{
 764        if (!tsc_unstable) {
 765                tsc_unstable = 1;
 766                printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
 767                /* Change only the rating, when not registered */
 768                if (clocksource_tsc.mult)
 769                        clocksource_mark_unstable(&clocksource_tsc);
 770                else {
 771                        clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
 772                        clocksource_tsc.rating = 0;
 773                }
 774        }
 775}
 776
 777EXPORT_SYMBOL_GPL(mark_tsc_unstable);
 778
 779static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
 780{
 781        printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
 782                        d->ident);
 783        tsc_unstable = 1;
 784        return 0;
 785}
 786
 787/* List of systems that have known TSC problems */
 788static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
 789        {
 790                .callback = dmi_mark_tsc_unstable,
 791                .ident = "IBM Thinkpad 380XD",
 792                .matches = {
 793                        DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
 794                        DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
 795                },
 796        },
 797        {}
 798};
 799
 800static void __init check_system_tsc_reliable(void)
 801{
 802#ifdef CONFIG_MGEODE_LX
 803        /* RTSC counts during suspend */
 804#define RTSC_SUSP 0x100
 805        unsigned long res_low, res_high;
 806
 807        rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
 808        /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
 809        if (res_low & RTSC_SUSP)
 810                tsc_clocksource_reliable = 1;
 811#endif
 812        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
 813                tsc_clocksource_reliable = 1;
 814}
 815
 816/*
 817 * Make an educated guess if the TSC is trustworthy and synchronized
 818 * over all CPUs.
 819 */
 820__cpuinit int unsynchronized_tsc(void)
 821{
 822        if (!cpu_has_tsc || tsc_unstable)
 823                return 1;
 824
 825#ifdef CONFIG_SMP
 826        if (apic_is_clustered_box())
 827                return 1;
 828#endif
 829
 830        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 831                return 0;
 832        /*
 833         * Intel systems are normally all synchronized.
 834         * Exceptions must mark TSC as unstable:
 835         */
 836        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
 837                /* assume multi socket systems are not synchronized: */
 838                if (num_possible_cpus() > 1)
 839                        tsc_unstable = 1;
 840        }
 841
 842        return tsc_unstable;
 843}
 844
 845static void __init init_tsc_clocksource(void)
 846{
 847        clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
 848                        clocksource_tsc.shift);
 849        if (tsc_clocksource_reliable)
 850                clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
 851        /* lower the rating if we already know its unstable: */
 852        if (check_tsc_unstable()) {
 853                clocksource_tsc.rating = 0;
 854                clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
 855        }
 856        clocksource_register(&clocksource_tsc);
 857}
 858
 859#ifdef CONFIG_X86_64
 860/*
 861 * calibrate_cpu is used on systems with fixed rate TSCs to determine
 862 * processor frequency
 863 */
 864#define TICK_COUNT 100000000
 865static unsigned long __init calibrate_cpu(void)
 866{
 867        int tsc_start, tsc_now;
 868        int i, no_ctr_free;
 869        unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;
 870        unsigned long flags;
 871
 872        for (i = 0; i < 4; i++)
 873                if (avail_to_resrv_perfctr_nmi_bit(i))
 874                        break;
 875        no_ctr_free = (i == 4);
 876        if (no_ctr_free) {
 877                WARN(1, KERN_WARNING "Warning: AMD perfctrs busy ... "
 878                     "cpu_khz value may be incorrect.\n");
 879                i = 3;
 880                rdmsrl(MSR_K7_EVNTSEL3, evntsel3);
 881                wrmsrl(MSR_K7_EVNTSEL3, 0);
 882                rdmsrl(MSR_K7_PERFCTR3, pmc3);
 883        } else {
 884                reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);
 885                reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
 886        }
 887        local_irq_save(flags);
 888        /* start measuring cycles, incrementing from 0 */
 889        wrmsrl(MSR_K7_PERFCTR0 + i, 0);
 890        wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);
 891        rdtscl(tsc_start);
 892        do {
 893                rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);
 894                tsc_now = get_cycles();
 895        } while ((tsc_now - tsc_start) < TICK_COUNT);
 896
 897        local_irq_restore(flags);
 898        if (no_ctr_free) {
 899                wrmsrl(MSR_K7_EVNTSEL3, 0);
 900                wrmsrl(MSR_K7_PERFCTR3, pmc3);
 901                wrmsrl(MSR_K7_EVNTSEL3, evntsel3);
 902        } else {
 903                release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
 904                release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
 905        }
 906
 907        return pmc_now * tsc_khz / (tsc_now - tsc_start);
 908}
 909#else
 910static inline unsigned long calibrate_cpu(void) { return cpu_khz; }
 911#endif
 912
 913void __init tsc_init(void)
 914{
 915        u64 lpj;
 916        int cpu;
 917
 918        x86_init.timers.tsc_pre_init();
 919
 920        if (!cpu_has_tsc)
 921                return;
 922
 923        tsc_khz = x86_platform.calibrate_tsc();
 924        cpu_khz = tsc_khz;
 925
 926        if (!tsc_khz) {
 927                mark_tsc_unstable("could not calculate TSC khz");
 928                return;
 929        }
 930
 931        if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
 932                        (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
 933                cpu_khz = calibrate_cpu();
 934
 935        printk("Detected %lu.%03lu MHz processor.\n",
 936                        (unsigned long)cpu_khz / 1000,
 937                        (unsigned long)cpu_khz % 1000);
 938
 939        /*
 940         * Secondary CPUs do not run through tsc_init(), so set up
 941         * all the scale factors for all CPUs, assuming the same
 942         * speed as the bootup CPU. (cpufreq notifiers will fix this
 943         * up if their speed diverges)
 944         */
 945        for_each_possible_cpu(cpu)
 946                set_cyc2ns_scale(cpu_khz, cpu);
 947
 948        if (tsc_disabled > 0)
 949                return;
 950
 951        /* now allow native_sched_clock() to use rdtsc */
 952        tsc_disabled = 0;
 953
 954        lpj = ((u64)tsc_khz * 1000);
 955        do_div(lpj, HZ);
 956        lpj_fine = lpj;
 957
 958        use_tsc_delay();
 959        /* Check and install the TSC clocksource */
 960        dmi_check_system(bad_tsc_dmi_table);
 961
 962        if (unsynchronized_tsc())
 963                mark_tsc_unstable("TSCs unsynchronized");
 964
 965        check_system_tsc_reliable();
 966        init_tsc_clocksource();
 967}
 968
 969