linux/arch/x86/kernel/vm86_32.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1994  Linus Torvalds
   3 *
   4 *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
   5 *                stack - Manfred Spraul <manfred@colorfullife.com>
   6 *
   7 *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
   8 *                them correctly. Now the emulation will be in a
   9 *                consistent state after stackfaults - Kasper Dupont
  10 *                <kasperd@daimi.au.dk>
  11 *
  12 *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
  13 *                <kasperd@daimi.au.dk>
  14 *
  15 *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
  16 *                caused by Kasper Dupont's changes - Stas Sergeev
  17 *
  18 *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
  19 *                Kasper Dupont <kasperd@daimi.au.dk>
  20 *
  21 *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
  22 *                Kasper Dupont <kasperd@daimi.au.dk>
  23 *
  24 *   9 apr 2002 - Changed stack access macros to jump to a label
  25 *                instead of returning to userspace. This simplifies
  26 *                do_int, and is needed by handle_vm6_fault. Kasper
  27 *                Dupont <kasperd@daimi.au.dk>
  28 *
  29 */
  30
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/interrupt.h>
  34#include <linux/sched.h>
  35#include <linux/kernel.h>
  36#include <linux/signal.h>
  37#include <linux/string.h>
  38#include <linux/mm.h>
  39#include <linux/smp.h>
  40#include <linux/highmem.h>
  41#include <linux/ptrace.h>
  42#include <linux/audit.h>
  43#include <linux/stddef.h>
  44
  45#include <asm/uaccess.h>
  46#include <asm/io.h>
  47#include <asm/tlbflush.h>
  48#include <asm/irq.h>
  49#include <asm/syscalls.h>
  50
  51/*
  52 * Known problems:
  53 *
  54 * Interrupt handling is not guaranteed:
  55 * - a real x86 will disable all interrupts for one instruction
  56 *   after a "mov ss,xx" to make stack handling atomic even without
  57 *   the 'lss' instruction. We can't guarantee this in v86 mode,
  58 *   as the next instruction might result in a page fault or similar.
  59 * - a real x86 will have interrupts disabled for one instruction
  60 *   past the 'sti' that enables them. We don't bother with all the
  61 *   details yet.
  62 *
  63 * Let's hope these problems do not actually matter for anything.
  64 */
  65
  66
  67#define KVM86   ((struct kernel_vm86_struct *)regs)
  68#define VMPI    KVM86->vm86plus
  69
  70
  71/*
  72 * 8- and 16-bit register defines..
  73 */
  74#define AL(regs)        (((unsigned char *)&((regs)->pt.ax))[0])
  75#define AH(regs)        (((unsigned char *)&((regs)->pt.ax))[1])
  76#define IP(regs)        (*(unsigned short *)&((regs)->pt.ip))
  77#define SP(regs)        (*(unsigned short *)&((regs)->pt.sp))
  78
  79/*
  80 * virtual flags (16 and 32-bit versions)
  81 */
  82#define VFLAGS  (*(unsigned short *)&(current->thread.v86flags))
  83#define VEFLAGS (current->thread.v86flags)
  84
  85#define set_flags(X, new, mask) \
  86((X) = ((X) & ~(mask)) | ((new) & (mask)))
  87
  88#define SAFE_MASK       (0xDD5)
  89#define RETURN_MASK     (0xDFF)
  90
  91/* convert kernel_vm86_regs to vm86_regs */
  92static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
  93                                  const struct kernel_vm86_regs *regs)
  94{
  95        int ret = 0;
  96
  97        /*
  98         * kernel_vm86_regs is missing gs, so copy everything up to
  99         * (but not including) orig_eax, and then rest including orig_eax.
 100         */
 101        ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
 102        ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
 103                            sizeof(struct kernel_vm86_regs) -
 104                            offsetof(struct kernel_vm86_regs, pt.orig_ax));
 105
 106        return ret;
 107}
 108
 109/* convert vm86_regs to kernel_vm86_regs */
 110static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
 111                                    const struct vm86_regs __user *user,
 112                                    unsigned extra)
 113{
 114        int ret = 0;
 115
 116        /* copy ax-fs inclusive */
 117        ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
 118        /* copy orig_ax-__gsh+extra */
 119        ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
 120                              sizeof(struct kernel_vm86_regs) -
 121                              offsetof(struct kernel_vm86_regs, pt.orig_ax) +
 122                              extra);
 123        return ret;
 124}
 125
 126struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
 127{
 128        struct tss_struct *tss;
 129        struct pt_regs *ret;
 130        unsigned long tmp;
 131
 132        /*
 133         * This gets called from entry.S with interrupts disabled, but
 134         * from process context. Enable interrupts here, before trying
 135         * to access user space.
 136         */
 137        local_irq_enable();
 138
 139        if (!current->thread.vm86_info) {
 140                printk("no vm86_info: BAD\n");
 141                do_exit(SIGSEGV);
 142        }
 143        set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask);
 144        tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs, regs);
 145        tmp += put_user(current->thread.screen_bitmap, &current->thread.vm86_info->screen_bitmap);
 146        if (tmp) {
 147                printk("vm86: could not access userspace vm86_info\n");
 148                do_exit(SIGSEGV);
 149        }
 150
 151        tss = &per_cpu(init_tss, get_cpu());
 152        current->thread.sp0 = current->thread.saved_sp0;
 153        current->thread.sysenter_cs = __KERNEL_CS;
 154        load_sp0(tss, &current->thread);
 155        current->thread.saved_sp0 = 0;
 156        put_cpu();
 157
 158        ret = KVM86->regs32;
 159
 160        ret->fs = current->thread.saved_fs;
 161        set_user_gs(ret, current->thread.saved_gs);
 162
 163        return ret;
 164}
 165
 166static void mark_screen_rdonly(struct mm_struct *mm)
 167{
 168        pgd_t *pgd;
 169        pud_t *pud;
 170        pmd_t *pmd;
 171        pte_t *pte;
 172        spinlock_t *ptl;
 173        int i;
 174
 175        pgd = pgd_offset(mm, 0xA0000);
 176        if (pgd_none_or_clear_bad(pgd))
 177                goto out;
 178        pud = pud_offset(pgd, 0xA0000);
 179        if (pud_none_or_clear_bad(pud))
 180                goto out;
 181        pmd = pmd_offset(pud, 0xA0000);
 182        if (pmd_none_or_clear_bad(pmd))
 183                goto out;
 184        pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
 185        for (i = 0; i < 32; i++) {
 186                if (pte_present(*pte))
 187                        set_pte(pte, pte_wrprotect(*pte));
 188                pte++;
 189        }
 190        pte_unmap_unlock(pte, ptl);
 191out:
 192        flush_tlb();
 193}
 194
 195
 196
 197static int do_vm86_irq_handling(int subfunction, int irqnumber);
 198static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
 199
 200int sys_vm86old(struct pt_regs *regs)
 201{
 202        struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs->bx;
 203        struct kernel_vm86_struct info; /* declare this _on top_,
 204                                         * this avoids wasting of stack space.
 205                                         * This remains on the stack until we
 206                                         * return to 32 bit user space.
 207                                         */
 208        struct task_struct *tsk;
 209        int tmp, ret = -EPERM;
 210
 211        tsk = current;
 212        if (tsk->thread.saved_sp0)
 213                goto out;
 214        tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
 215                                       offsetof(struct kernel_vm86_struct, vm86plus) -
 216                                       sizeof(info.regs));
 217        ret = -EFAULT;
 218        if (tmp)
 219                goto out;
 220        memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
 221        info.regs32 = regs;
 222        tsk->thread.vm86_info = v86;
 223        do_sys_vm86(&info, tsk);
 224        ret = 0;        /* we never return here */
 225out:
 226        return ret;
 227}
 228
 229
 230int sys_vm86(struct pt_regs *regs)
 231{
 232        struct kernel_vm86_struct info; /* declare this _on top_,
 233                                         * this avoids wasting of stack space.
 234                                         * This remains on the stack until we
 235                                         * return to 32 bit user space.
 236                                         */
 237        struct task_struct *tsk;
 238        int tmp, ret;
 239        struct vm86plus_struct __user *v86;
 240
 241        tsk = current;
 242        switch (regs->bx) {
 243        case VM86_REQUEST_IRQ:
 244        case VM86_FREE_IRQ:
 245        case VM86_GET_IRQ_BITS:
 246        case VM86_GET_AND_RESET_IRQ:
 247                ret = do_vm86_irq_handling(regs->bx, (int)regs->cx);
 248                goto out;
 249        case VM86_PLUS_INSTALL_CHECK:
 250                /*
 251                 * NOTE: on old vm86 stuff this will return the error
 252                 *  from access_ok(), because the subfunction is
 253                 *  interpreted as (invalid) address to vm86_struct.
 254                 *  So the installation check works.
 255                 */
 256                ret = 0;
 257                goto out;
 258        }
 259
 260        /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
 261        ret = -EPERM;
 262        if (tsk->thread.saved_sp0)
 263                goto out;
 264        v86 = (struct vm86plus_struct __user *)regs->cx;
 265        tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
 266                                       offsetof(struct kernel_vm86_struct, regs32) -
 267                                       sizeof(info.regs));
 268        ret = -EFAULT;
 269        if (tmp)
 270                goto out;
 271        info.regs32 = regs;
 272        info.vm86plus.is_vm86pus = 1;
 273        tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
 274        do_sys_vm86(&info, tsk);
 275        ret = 0;        /* we never return here */
 276out:
 277        return ret;
 278}
 279
 280
 281static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
 282{
 283        struct tss_struct *tss;
 284/*
 285 * make sure the vm86() system call doesn't try to do anything silly
 286 */
 287        info->regs.pt.ds = 0;
 288        info->regs.pt.es = 0;
 289        info->regs.pt.fs = 0;
 290#ifndef CONFIG_X86_32_LAZY_GS
 291        info->regs.pt.gs = 0;
 292#endif
 293
 294/*
 295 * The flags register is also special: we cannot trust that the user
 296 * has set it up safely, so this makes sure interrupt etc flags are
 297 * inherited from protected mode.
 298 */
 299        VEFLAGS = info->regs.pt.flags;
 300        info->regs.pt.flags &= SAFE_MASK;
 301        info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
 302        info->regs.pt.flags |= X86_VM_MASK;
 303
 304        switch (info->cpu_type) {
 305        case CPU_286:
 306                tsk->thread.v86mask = 0;
 307                break;
 308        case CPU_386:
 309                tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 310                break;
 311        case CPU_486:
 312                tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 313                break;
 314        default:
 315                tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 316                break;
 317        }
 318
 319/*
 320 * Save old state, set default return value (%ax) to 0 (VM86_SIGNAL)
 321 */
 322        info->regs32->ax = VM86_SIGNAL;
 323        tsk->thread.saved_sp0 = tsk->thread.sp0;
 324        tsk->thread.saved_fs = info->regs32->fs;
 325        tsk->thread.saved_gs = get_user_gs(info->regs32);
 326
 327        tss = &per_cpu(init_tss, get_cpu());
 328        tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
 329        if (cpu_has_sep)
 330                tsk->thread.sysenter_cs = 0;
 331        load_sp0(tss, &tsk->thread);
 332        put_cpu();
 333
 334        tsk->thread.screen_bitmap = info->screen_bitmap;
 335        if (info->flags & VM86_SCREEN_BITMAP)
 336                mark_screen_rdonly(tsk->mm);
 337
 338        /*call audit_syscall_exit since we do not exit via the normal paths */
 339        if (unlikely(current->audit_context))
 340                audit_syscall_exit(AUDITSC_RESULT(0), 0);
 341
 342        __asm__ __volatile__(
 343                "movl %0,%%esp\n\t"
 344                "movl %1,%%ebp\n\t"
 345#ifdef CONFIG_X86_32_LAZY_GS
 346                "mov  %2, %%gs\n\t"
 347#endif
 348                "jmp resume_userspace"
 349                : /* no outputs */
 350                :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
 351        /* we never return here */
 352}
 353
 354static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
 355{
 356        struct pt_regs *regs32;
 357
 358        regs32 = save_v86_state(regs16);
 359        regs32->ax = retval;
 360        __asm__ __volatile__("movl %0,%%esp\n\t"
 361                "movl %1,%%ebp\n\t"
 362                "jmp resume_userspace"
 363                : : "r" (regs32), "r" (current_thread_info()));
 364}
 365
 366static inline void set_IF(struct kernel_vm86_regs *regs)
 367{
 368        VEFLAGS |= X86_EFLAGS_VIF;
 369        if (VEFLAGS & X86_EFLAGS_VIP)
 370                return_to_32bit(regs, VM86_STI);
 371}
 372
 373static inline void clear_IF(struct kernel_vm86_regs *regs)
 374{
 375        VEFLAGS &= ~X86_EFLAGS_VIF;
 376}
 377
 378static inline void clear_TF(struct kernel_vm86_regs *regs)
 379{
 380        regs->pt.flags &= ~X86_EFLAGS_TF;
 381}
 382
 383static inline void clear_AC(struct kernel_vm86_regs *regs)
 384{
 385        regs->pt.flags &= ~X86_EFLAGS_AC;
 386}
 387
 388/*
 389 * It is correct to call set_IF(regs) from the set_vflags_*
 390 * functions. However someone forgot to call clear_IF(regs)
 391 * in the opposite case.
 392 * After the command sequence CLI PUSHF STI POPF you should
 393 * end up with interrupts disabled, but you ended up with
 394 * interrupts enabled.
 395 *  ( I was testing my own changes, but the only bug I
 396 *    could find was in a function I had not changed. )
 397 * [KD]
 398 */
 399
 400static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
 401{
 402        set_flags(VEFLAGS, flags, current->thread.v86mask);
 403        set_flags(regs->pt.flags, flags, SAFE_MASK);
 404        if (flags & X86_EFLAGS_IF)
 405                set_IF(regs);
 406        else
 407                clear_IF(regs);
 408}
 409
 410static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
 411{
 412        set_flags(VFLAGS, flags, current->thread.v86mask);
 413        set_flags(regs->pt.flags, flags, SAFE_MASK);
 414        if (flags & X86_EFLAGS_IF)
 415                set_IF(regs);
 416        else
 417                clear_IF(regs);
 418}
 419
 420static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
 421{
 422        unsigned long flags = regs->pt.flags & RETURN_MASK;
 423
 424        if (VEFLAGS & X86_EFLAGS_VIF)
 425                flags |= X86_EFLAGS_IF;
 426        flags |= X86_EFLAGS_IOPL;
 427        return flags | (VEFLAGS & current->thread.v86mask);
 428}
 429
 430static inline int is_revectored(int nr, struct revectored_struct *bitmap)
 431{
 432        __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
 433                :"=r" (nr)
 434                :"m" (*bitmap), "r" (nr));
 435        return nr;
 436}
 437
 438#define val_byte(val, n) (((__u8 *)&val)[n])
 439
 440#define pushb(base, ptr, val, err_label) \
 441        do { \
 442                __u8 __val = val; \
 443                ptr--; \
 444                if (put_user(__val, base + ptr) < 0) \
 445                        goto err_label; \
 446        } while (0)
 447
 448#define pushw(base, ptr, val, err_label) \
 449        do { \
 450                __u16 __val = val; \
 451                ptr--; \
 452                if (put_user(val_byte(__val, 1), base + ptr) < 0) \
 453                        goto err_label; \
 454                ptr--; \
 455                if (put_user(val_byte(__val, 0), base + ptr) < 0) \
 456                        goto err_label; \
 457        } while (0)
 458
 459#define pushl(base, ptr, val, err_label) \
 460        do { \
 461                __u32 __val = val; \
 462                ptr--; \
 463                if (put_user(val_byte(__val, 3), base + ptr) < 0) \
 464                        goto err_label; \
 465                ptr--; \
 466                if (put_user(val_byte(__val, 2), base + ptr) < 0) \
 467                        goto err_label; \
 468                ptr--; \
 469                if (put_user(val_byte(__val, 1), base + ptr) < 0) \
 470                        goto err_label; \
 471                ptr--; \
 472                if (put_user(val_byte(__val, 0), base + ptr) < 0) \
 473                        goto err_label; \
 474        } while (0)
 475
 476#define popb(base, ptr, err_label) \
 477        ({ \
 478                __u8 __res; \
 479                if (get_user(__res, base + ptr) < 0) \
 480                        goto err_label; \
 481                ptr++; \
 482                __res; \
 483        })
 484
 485#define popw(base, ptr, err_label) \
 486        ({ \
 487                __u16 __res; \
 488                if (get_user(val_byte(__res, 0), base + ptr) < 0) \
 489                        goto err_label; \
 490                ptr++; \
 491                if (get_user(val_byte(__res, 1), base + ptr) < 0) \
 492                        goto err_label; \
 493                ptr++; \
 494                __res; \
 495        })
 496
 497#define popl(base, ptr, err_label) \
 498        ({ \
 499                __u32 __res; \
 500                if (get_user(val_byte(__res, 0), base + ptr) < 0) \
 501                        goto err_label; \
 502                ptr++; \
 503                if (get_user(val_byte(__res, 1), base + ptr) < 0) \
 504                        goto err_label; \
 505                ptr++; \
 506                if (get_user(val_byte(__res, 2), base + ptr) < 0) \
 507                        goto err_label; \
 508                ptr++; \
 509                if (get_user(val_byte(__res, 3), base + ptr) < 0) \
 510                        goto err_label; \
 511                ptr++; \
 512                __res; \
 513        })
 514
 515/* There are so many possible reasons for this function to return
 516 * VM86_INTx, so adding another doesn't bother me. We can expect
 517 * userspace programs to be able to handle it. (Getting a problem
 518 * in userspace is always better than an Oops anyway.) [KD]
 519 */
 520static void do_int(struct kernel_vm86_regs *regs, int i,
 521    unsigned char __user *ssp, unsigned short sp)
 522{
 523        unsigned long __user *intr_ptr;
 524        unsigned long segoffs;
 525
 526        if (regs->pt.cs == BIOSSEG)
 527                goto cannot_handle;
 528        if (is_revectored(i, &KVM86->int_revectored))
 529                goto cannot_handle;
 530        if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
 531                goto cannot_handle;
 532        intr_ptr = (unsigned long __user *) (i << 2);
 533        if (get_user(segoffs, intr_ptr))
 534                goto cannot_handle;
 535        if ((segoffs >> 16) == BIOSSEG)
 536                goto cannot_handle;
 537        pushw(ssp, sp, get_vflags(regs), cannot_handle);
 538        pushw(ssp, sp, regs->pt.cs, cannot_handle);
 539        pushw(ssp, sp, IP(regs), cannot_handle);
 540        regs->pt.cs = segoffs >> 16;
 541        SP(regs) -= 6;
 542        IP(regs) = segoffs & 0xffff;
 543        clear_TF(regs);
 544        clear_IF(regs);
 545        clear_AC(regs);
 546        return;
 547
 548cannot_handle:
 549        return_to_32bit(regs, VM86_INTx + (i << 8));
 550}
 551
 552int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
 553{
 554        if (VMPI.is_vm86pus) {
 555                if ((trapno == 3) || (trapno == 1))
 556                        return_to_32bit(regs, VM86_TRAP + (trapno << 8));
 557                do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
 558                return 0;
 559        }
 560        if (trapno != 1)
 561                return 1; /* we let this handle by the calling routine */
 562        current->thread.trap_no = trapno;
 563        current->thread.error_code = error_code;
 564        force_sig(SIGTRAP, current);
 565        return 0;
 566}
 567
 568void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
 569{
 570        unsigned char opcode;
 571        unsigned char __user *csp;
 572        unsigned char __user *ssp;
 573        unsigned short ip, sp, orig_flags;
 574        int data32, pref_done;
 575
 576#define CHECK_IF_IN_TRAP \
 577        if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
 578                newflags |= X86_EFLAGS_TF
 579#define VM86_FAULT_RETURN do { \
 580        if (VMPI.force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \
 581                return_to_32bit(regs, VM86_PICRETURN); \
 582        if (orig_flags & X86_EFLAGS_TF) \
 583                handle_vm86_trap(regs, 0, 1); \
 584        return; } while (0)
 585
 586        orig_flags = *(unsigned short *)&regs->pt.flags;
 587
 588        csp = (unsigned char __user *) (regs->pt.cs << 4);
 589        ssp = (unsigned char __user *) (regs->pt.ss << 4);
 590        sp = SP(regs);
 591        ip = IP(regs);
 592
 593        data32 = 0;
 594        pref_done = 0;
 595        do {
 596                switch (opcode = popb(csp, ip, simulate_sigsegv)) {
 597                case 0x66:      /* 32-bit data */     data32 = 1; break;
 598                case 0x67:      /* 32-bit address */  break;
 599                case 0x2e:      /* CS */              break;
 600                case 0x3e:      /* DS */              break;
 601                case 0x26:      /* ES */              break;
 602                case 0x36:      /* SS */              break;
 603                case 0x65:      /* GS */              break;
 604                case 0x64:      /* FS */              break;
 605                case 0xf2:      /* repnz */       break;
 606                case 0xf3:      /* rep */             break;
 607                default: pref_done = 1;
 608                }
 609        } while (!pref_done);
 610
 611        switch (opcode) {
 612
 613        /* pushf */
 614        case 0x9c:
 615                if (data32) {
 616                        pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
 617                        SP(regs) -= 4;
 618                } else {
 619                        pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
 620                        SP(regs) -= 2;
 621                }
 622                IP(regs) = ip;
 623                VM86_FAULT_RETURN;
 624
 625        /* popf */
 626        case 0x9d:
 627                {
 628                unsigned long newflags;
 629                if (data32) {
 630                        newflags = popl(ssp, sp, simulate_sigsegv);
 631                        SP(regs) += 4;
 632                } else {
 633                        newflags = popw(ssp, sp, simulate_sigsegv);
 634                        SP(regs) += 2;
 635                }
 636                IP(regs) = ip;
 637                CHECK_IF_IN_TRAP;
 638                if (data32)
 639                        set_vflags_long(newflags, regs);
 640                else
 641                        set_vflags_short(newflags, regs);
 642
 643                VM86_FAULT_RETURN;
 644                }
 645
 646        /* int xx */
 647        case 0xcd: {
 648                int intno = popb(csp, ip, simulate_sigsegv);
 649                IP(regs) = ip;
 650                if (VMPI.vm86dbg_active) {
 651                        if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
 652                                return_to_32bit(regs, VM86_INTx + (intno << 8));
 653                }
 654                do_int(regs, intno, ssp, sp);
 655                return;
 656        }
 657
 658        /* iret */
 659        case 0xcf:
 660                {
 661                unsigned long newip;
 662                unsigned long newcs;
 663                unsigned long newflags;
 664                if (data32) {
 665                        newip = popl(ssp, sp, simulate_sigsegv);
 666                        newcs = popl(ssp, sp, simulate_sigsegv);
 667                        newflags = popl(ssp, sp, simulate_sigsegv);
 668                        SP(regs) += 12;
 669                } else {
 670                        newip = popw(ssp, sp, simulate_sigsegv);
 671                        newcs = popw(ssp, sp, simulate_sigsegv);
 672                        newflags = popw(ssp, sp, simulate_sigsegv);
 673                        SP(regs) += 6;
 674                }
 675                IP(regs) = newip;
 676                regs->pt.cs = newcs;
 677                CHECK_IF_IN_TRAP;
 678                if (data32) {
 679                        set_vflags_long(newflags, regs);
 680                } else {
 681                        set_vflags_short(newflags, regs);
 682                }
 683                VM86_FAULT_RETURN;
 684                }
 685
 686        /* cli */
 687        case 0xfa:
 688                IP(regs) = ip;
 689                clear_IF(regs);
 690                VM86_FAULT_RETURN;
 691
 692        /* sti */
 693        /*
 694         * Damn. This is incorrect: the 'sti' instruction should actually
 695         * enable interrupts after the /next/ instruction. Not good.
 696         *
 697         * Probably needs some horsing around with the TF flag. Aiee..
 698         */
 699        case 0xfb:
 700                IP(regs) = ip;
 701                set_IF(regs);
 702                VM86_FAULT_RETURN;
 703
 704        default:
 705                return_to_32bit(regs, VM86_UNKNOWN);
 706        }
 707
 708        return;
 709
 710simulate_sigsegv:
 711        /* FIXME: After a long discussion with Stas we finally
 712         *        agreed, that this is wrong. Here we should
 713         *        really send a SIGSEGV to the user program.
 714         *        But how do we create the correct context? We
 715         *        are inside a general protection fault handler
 716         *        and has just returned from a page fault handler.
 717         *        The correct context for the signal handler
 718         *        should be a mixture of the two, but how do we
 719         *        get the information? [KD]
 720         */
 721        return_to_32bit(regs, VM86_UNKNOWN);
 722}
 723
 724/* ---------------- vm86 special IRQ passing stuff ----------------- */
 725
 726#define VM86_IRQNAME            "vm86irq"
 727
 728static struct vm86_irqs {
 729        struct task_struct *tsk;
 730        int sig;
 731} vm86_irqs[16];
 732
 733static DEFINE_SPINLOCK(irqbits_lock);
 734static int irqbits;
 735
 736#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
 737        | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
 738        | (1 << SIGUNUSED))
 739
 740static irqreturn_t irq_handler(int intno, void *dev_id)
 741{
 742        int irq_bit;
 743        unsigned long flags;
 744
 745        spin_lock_irqsave(&irqbits_lock, flags);
 746        irq_bit = 1 << intno;
 747        if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
 748                goto out;
 749        irqbits |= irq_bit;
 750        if (vm86_irqs[intno].sig)
 751                send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
 752        /*
 753         * IRQ will be re-enabled when user asks for the irq (whether
 754         * polling or as a result of the signal)
 755         */
 756        disable_irq_nosync(intno);
 757        spin_unlock_irqrestore(&irqbits_lock, flags);
 758        return IRQ_HANDLED;
 759
 760out:
 761        spin_unlock_irqrestore(&irqbits_lock, flags);
 762        return IRQ_NONE;
 763}
 764
 765static inline void free_vm86_irq(int irqnumber)
 766{
 767        unsigned long flags;
 768
 769        free_irq(irqnumber, NULL);
 770        vm86_irqs[irqnumber].tsk = NULL;
 771
 772        spin_lock_irqsave(&irqbits_lock, flags);
 773        irqbits &= ~(1 << irqnumber);
 774        spin_unlock_irqrestore(&irqbits_lock, flags);
 775}
 776
 777void release_vm86_irqs(struct task_struct *task)
 778{
 779        int i;
 780        for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
 781            if (vm86_irqs[i].tsk == task)
 782                free_vm86_irq(i);
 783}
 784
 785static inline int get_and_reset_irq(int irqnumber)
 786{
 787        int bit;
 788        unsigned long flags;
 789        int ret = 0;
 790
 791        if (invalid_vm86_irq(irqnumber)) return 0;
 792        if (vm86_irqs[irqnumber].tsk != current) return 0;
 793        spin_lock_irqsave(&irqbits_lock, flags);
 794        bit = irqbits & (1 << irqnumber);
 795        irqbits &= ~bit;
 796        if (bit) {
 797                enable_irq(irqnumber);
 798                ret = 1;
 799        }
 800
 801        spin_unlock_irqrestore(&irqbits_lock, flags);
 802        return ret;
 803}
 804
 805
 806static int do_vm86_irq_handling(int subfunction, int irqnumber)
 807{
 808        int ret;
 809        switch (subfunction) {
 810                case VM86_GET_AND_RESET_IRQ: {
 811                        return get_and_reset_irq(irqnumber);
 812                }
 813                case VM86_GET_IRQ_BITS: {
 814                        return irqbits;
 815                }
 816                case VM86_REQUEST_IRQ: {
 817                        int sig = irqnumber >> 8;
 818                        int irq = irqnumber & 255;
 819                        if (!capable(CAP_SYS_ADMIN)) return -EPERM;
 820                        if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
 821                        if (invalid_vm86_irq(irq)) return -EPERM;
 822                        if (vm86_irqs[irq].tsk) return -EPERM;
 823                        ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
 824                        if (ret) return ret;
 825                        vm86_irqs[irq].sig = sig;
 826                        vm86_irqs[irq].tsk = current;
 827                        return irq;
 828                }
 829                case  VM86_FREE_IRQ: {
 830                        if (invalid_vm86_irq(irqnumber)) return -EPERM;
 831                        if (!vm86_irqs[irqnumber].tsk) return 0;
 832                        if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
 833                        free_vm86_irq(irqnumber);
 834                        return 0;
 835                }
 836        }
 837        return -EINVAL;
 838}
 839
 840