linux/arch/x86/kernel/vmi_32.c
<<
>>
Prefs
   1/*
   2 * VMI specific paravirt-ops implementation
   3 *
   4 * Copyright (C) 2005, VMware, Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful, but
  12 * WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  14 * NON INFRINGEMENT.  See the GNU General Public License for more
  15 * details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 *
  21 * Send feedback to zach@vmware.com
  22 *
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/cpu.h>
  27#include <linux/bootmem.h>
  28#include <linux/mm.h>
  29#include <linux/highmem.h>
  30#include <linux/sched.h>
  31#include <asm/vmi.h>
  32#include <asm/io.h>
  33#include <asm/fixmap.h>
  34#include <asm/apicdef.h>
  35#include <asm/apic.h>
  36#include <asm/processor.h>
  37#include <asm/timer.h>
  38#include <asm/vmi_time.h>
  39#include <asm/kmap_types.h>
  40#include <asm/setup.h>
  41
  42/* Convenient for calling VMI functions indirectly in the ROM */
  43typedef u32 __attribute__((regparm(1))) (VROMFUNC)(void);
  44typedef u64 __attribute__((regparm(2))) (VROMLONGFUNC)(int);
  45
  46#define call_vrom_func(rom,func) \
  47   (((VROMFUNC *)(rom->func))())
  48
  49#define call_vrom_long_func(rom,func,arg) \
  50   (((VROMLONGFUNC *)(rom->func)) (arg))
  51
  52static struct vrom_header *vmi_rom;
  53static int disable_pge;
  54static int disable_pse;
  55static int disable_sep;
  56static int disable_tsc;
  57static int disable_mtrr;
  58static int disable_noidle;
  59static int disable_vmi_timer;
  60
  61/* Cached VMI operations */
  62static struct {
  63        void (*cpuid)(void /* non-c */);
  64        void (*_set_ldt)(u32 selector);
  65        void (*set_tr)(u32 selector);
  66        void (*write_idt_entry)(struct desc_struct *, int, u32, u32);
  67        void (*write_gdt_entry)(struct desc_struct *, int, u32, u32);
  68        void (*write_ldt_entry)(struct desc_struct *, int, u32, u32);
  69        void (*set_kernel_stack)(u32 selector, u32 sp0);
  70        void (*allocate_page)(u32, u32, u32, u32, u32);
  71        void (*release_page)(u32, u32);
  72        void (*set_pte)(pte_t, pte_t *, unsigned);
  73        void (*update_pte)(pte_t *, unsigned);
  74        void (*set_linear_mapping)(int, void *, u32, u32);
  75        void (*_flush_tlb)(int);
  76        void (*set_initial_ap_state)(int, int);
  77        void (*halt)(void);
  78        void (*set_lazy_mode)(int mode);
  79} vmi_ops;
  80
  81/* Cached VMI operations */
  82struct vmi_timer_ops vmi_timer_ops;
  83
  84/*
  85 * VMI patching routines.
  86 */
  87#define MNEM_CALL 0xe8
  88#define MNEM_JMP  0xe9
  89#define MNEM_RET  0xc3
  90
  91#define IRQ_PATCH_INT_MASK 0
  92#define IRQ_PATCH_DISABLE  5
  93
  94static inline void patch_offset(void *insnbuf,
  95                                unsigned long ip, unsigned long dest)
  96{
  97        *(unsigned long *)(insnbuf+1) = dest-ip-5;
  98}
  99
 100static unsigned patch_internal(int call, unsigned len, void *insnbuf,
 101                               unsigned long ip)
 102{
 103        u64 reloc;
 104        struct vmi_relocation_info *const rel = (struct vmi_relocation_info *)&reloc;
 105        reloc = call_vrom_long_func(vmi_rom, get_reloc, call);
 106        switch(rel->type) {
 107                case VMI_RELOCATION_CALL_REL:
 108                        BUG_ON(len < 5);
 109                        *(char *)insnbuf = MNEM_CALL;
 110                        patch_offset(insnbuf, ip, (unsigned long)rel->eip);
 111                        return 5;
 112
 113                case VMI_RELOCATION_JUMP_REL:
 114                        BUG_ON(len < 5);
 115                        *(char *)insnbuf = MNEM_JMP;
 116                        patch_offset(insnbuf, ip, (unsigned long)rel->eip);
 117                        return 5;
 118
 119                case VMI_RELOCATION_NOP:
 120                        /* obliterate the whole thing */
 121                        return 0;
 122
 123                case VMI_RELOCATION_NONE:
 124                        /* leave native code in place */
 125                        break;
 126
 127                default:
 128                        BUG();
 129        }
 130        return len;
 131}
 132
 133/*
 134 * Apply patch if appropriate, return length of new instruction
 135 * sequence.  The callee does nop padding for us.
 136 */
 137static unsigned vmi_patch(u8 type, u16 clobbers, void *insns,
 138                          unsigned long ip, unsigned len)
 139{
 140        switch (type) {
 141                case PARAVIRT_PATCH(pv_irq_ops.irq_disable):
 142                        return patch_internal(VMI_CALL_DisableInterrupts, len,
 143                                              insns, ip);
 144                case PARAVIRT_PATCH(pv_irq_ops.irq_enable):
 145                        return patch_internal(VMI_CALL_EnableInterrupts, len,
 146                                              insns, ip);
 147                case PARAVIRT_PATCH(pv_irq_ops.restore_fl):
 148                        return patch_internal(VMI_CALL_SetInterruptMask, len,
 149                                              insns, ip);
 150                case PARAVIRT_PATCH(pv_irq_ops.save_fl):
 151                        return patch_internal(VMI_CALL_GetInterruptMask, len,
 152                                              insns, ip);
 153                case PARAVIRT_PATCH(pv_cpu_ops.iret):
 154                        return patch_internal(VMI_CALL_IRET, len, insns, ip);
 155                case PARAVIRT_PATCH(pv_cpu_ops.irq_enable_sysexit):
 156                        return patch_internal(VMI_CALL_SYSEXIT, len, insns, ip);
 157                default:
 158                        break;
 159        }
 160        return len;
 161}
 162
 163/* CPUID has non-C semantics, and paravirt-ops API doesn't match hardware ISA */
 164static void vmi_cpuid(unsigned int *ax, unsigned int *bx,
 165                               unsigned int *cx, unsigned int *dx)
 166{
 167        int override = 0;
 168        if (*ax == 1)
 169                override = 1;
 170        asm volatile ("call *%6"
 171                      : "=a" (*ax),
 172                        "=b" (*bx),
 173                        "=c" (*cx),
 174                        "=d" (*dx)
 175                      : "0" (*ax), "2" (*cx), "r" (vmi_ops.cpuid));
 176        if (override) {
 177                if (disable_pse)
 178                        *dx &= ~X86_FEATURE_PSE;
 179                if (disable_pge)
 180                        *dx &= ~X86_FEATURE_PGE;
 181                if (disable_sep)
 182                        *dx &= ~X86_FEATURE_SEP;
 183                if (disable_tsc)
 184                        *dx &= ~X86_FEATURE_TSC;
 185                if (disable_mtrr)
 186                        *dx &= ~X86_FEATURE_MTRR;
 187        }
 188}
 189
 190static inline void vmi_maybe_load_tls(struct desc_struct *gdt, int nr, struct desc_struct *new)
 191{
 192        if (gdt[nr].a != new->a || gdt[nr].b != new->b)
 193                write_gdt_entry(gdt, nr, new, 0);
 194}
 195
 196static void vmi_load_tls(struct thread_struct *t, unsigned int cpu)
 197{
 198        struct desc_struct *gdt = get_cpu_gdt_table(cpu);
 199        vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 0, &t->tls_array[0]);
 200        vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 1, &t->tls_array[1]);
 201        vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 2, &t->tls_array[2]);
 202}
 203
 204static void vmi_set_ldt(const void *addr, unsigned entries)
 205{
 206        unsigned cpu = smp_processor_id();
 207        struct desc_struct desc;
 208
 209        pack_descriptor(&desc, (unsigned long)addr,
 210                        entries * sizeof(struct desc_struct) - 1,
 211                        DESC_LDT, 0);
 212        write_gdt_entry(get_cpu_gdt_table(cpu), GDT_ENTRY_LDT, &desc, DESC_LDT);
 213        vmi_ops._set_ldt(entries ? GDT_ENTRY_LDT*sizeof(struct desc_struct) : 0);
 214}
 215
 216static void vmi_set_tr(void)
 217{
 218        vmi_ops.set_tr(GDT_ENTRY_TSS*sizeof(struct desc_struct));
 219}
 220
 221static void vmi_write_idt_entry(gate_desc *dt, int entry, const gate_desc *g)
 222{
 223        u32 *idt_entry = (u32 *)g;
 224        vmi_ops.write_idt_entry(dt, entry, idt_entry[0], idt_entry[1]);
 225}
 226
 227static void vmi_write_gdt_entry(struct desc_struct *dt, int entry,
 228                                const void *desc, int type)
 229{
 230        u32 *gdt_entry = (u32 *)desc;
 231        vmi_ops.write_gdt_entry(dt, entry, gdt_entry[0], gdt_entry[1]);
 232}
 233
 234static void vmi_write_ldt_entry(struct desc_struct *dt, int entry,
 235                                const void *desc)
 236{
 237        u32 *ldt_entry = (u32 *)desc;
 238        vmi_ops.write_ldt_entry(dt, entry, ldt_entry[0], ldt_entry[1]);
 239}
 240
 241static void vmi_load_sp0(struct tss_struct *tss,
 242                                   struct thread_struct *thread)
 243{
 244        tss->x86_tss.sp0 = thread->sp0;
 245
 246        /* This can only happen when SEP is enabled, no need to test "SEP"arately */
 247        if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
 248                tss->x86_tss.ss1 = thread->sysenter_cs;
 249                wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
 250        }
 251        vmi_ops.set_kernel_stack(__KERNEL_DS, tss->x86_tss.sp0);
 252}
 253
 254static void vmi_flush_tlb_user(void)
 255{
 256        vmi_ops._flush_tlb(VMI_FLUSH_TLB);
 257}
 258
 259static void vmi_flush_tlb_kernel(void)
 260{
 261        vmi_ops._flush_tlb(VMI_FLUSH_TLB | VMI_FLUSH_GLOBAL);
 262}
 263
 264/* Stub to do nothing at all; used for delays and unimplemented calls */
 265static void vmi_nop(void)
 266{
 267}
 268
 269#ifdef CONFIG_HIGHPTE
 270static void *vmi_kmap_atomic_pte(struct page *page, enum km_type type)
 271{
 272        void *va = kmap_atomic(page, type);
 273
 274        /*
 275         * Internally, the VMI ROM must map virtual addresses to physical
 276         * addresses for processing MMU updates.  By the time MMU updates
 277         * are issued, this information is typically already lost.
 278         * Fortunately, the VMI provides a cache of mapping slots for active
 279         * page tables.
 280         *
 281         * We use slot zero for the linear mapping of physical memory, and
 282         * in HIGHPTE kernels, slot 1 and 2 for KM_PTE0 and KM_PTE1.
 283         *
 284         *  args:                 SLOT                 VA    COUNT PFN
 285         */
 286        BUG_ON(type != KM_PTE0 && type != KM_PTE1);
 287        vmi_ops.set_linear_mapping((type - KM_PTE0)+1, va, 1, page_to_pfn(page));
 288
 289        return va;
 290}
 291#endif
 292
 293static void vmi_allocate_pte(struct mm_struct *mm, unsigned long pfn)
 294{
 295        vmi_ops.allocate_page(pfn, VMI_PAGE_L1, 0, 0, 0);
 296}
 297
 298static void vmi_allocate_pmd(struct mm_struct *mm, unsigned long pfn)
 299{
 300        /*
 301         * This call comes in very early, before mem_map is setup.
 302         * It is called only for swapper_pg_dir, which already has
 303         * data on it.
 304         */
 305        vmi_ops.allocate_page(pfn, VMI_PAGE_L2, 0, 0, 0);
 306}
 307
 308static void vmi_allocate_pmd_clone(unsigned long pfn, unsigned long clonepfn, unsigned long start, unsigned long count)
 309{
 310        vmi_ops.allocate_page(pfn, VMI_PAGE_L2 | VMI_PAGE_CLONE, clonepfn, start, count);
 311}
 312
 313static void vmi_release_pte(unsigned long pfn)
 314{
 315        vmi_ops.release_page(pfn, VMI_PAGE_L1);
 316}
 317
 318static void vmi_release_pmd(unsigned long pfn)
 319{
 320        vmi_ops.release_page(pfn, VMI_PAGE_L2);
 321}
 322
 323/*
 324 * We use the pgd_free hook for releasing the pgd page:
 325 */
 326static void vmi_pgd_free(struct mm_struct *mm, pgd_t *pgd)
 327{
 328        unsigned long pfn = __pa(pgd) >> PAGE_SHIFT;
 329
 330        vmi_ops.release_page(pfn, VMI_PAGE_L2);
 331}
 332
 333/*
 334 * Helper macros for MMU update flags.  We can defer updates until a flush
 335 * or page invalidation only if the update is to the current address space
 336 * (otherwise, there is no flush).  We must check against init_mm, since
 337 * this could be a kernel update, which usually passes init_mm, although
 338 * sometimes this check can be skipped if we know the particular function
 339 * is only called on user mode PTEs.  We could change the kernel to pass
 340 * current->active_mm here, but in particular, I was unsure if changing
 341 * mm/highmem.c to do this would still be correct on other architectures.
 342 */
 343#define is_current_as(mm, mustbeuser) ((mm) == current->active_mm ||    \
 344                                       (!mustbeuser && (mm) == &init_mm))
 345#define vmi_flags_addr(mm, addr, level, user)                           \
 346        ((level) | (is_current_as(mm, user) ?                           \
 347                (VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0))
 348#define vmi_flags_addr_defer(mm, addr, level, user)                     \
 349        ((level) | (is_current_as(mm, user) ?                           \
 350                (VMI_PAGE_DEFER | VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0))
 351
 352static void vmi_update_pte(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 353{
 354        vmi_ops.update_pte(ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
 355}
 356
 357static void vmi_update_pte_defer(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 358{
 359        vmi_ops.update_pte(ptep, vmi_flags_addr_defer(mm, addr, VMI_PAGE_PT, 0));
 360}
 361
 362static void vmi_set_pte(pte_t *ptep, pte_t pte)
 363{
 364        /* XXX because of set_pmd_pte, this can be called on PT or PD layers */
 365        vmi_ops.set_pte(pte, ptep, VMI_PAGE_PT);
 366}
 367
 368static void vmi_set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte)
 369{
 370        vmi_ops.set_pte(pte, ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
 371}
 372
 373static void vmi_set_pmd(pmd_t *pmdp, pmd_t pmdval)
 374{
 375#ifdef CONFIG_X86_PAE
 376        const pte_t pte = { .pte = pmdval.pmd };
 377#else
 378        const pte_t pte = { pmdval.pud.pgd.pgd };
 379#endif
 380        vmi_ops.set_pte(pte, (pte_t *)pmdp, VMI_PAGE_PD);
 381}
 382
 383#ifdef CONFIG_X86_PAE
 384
 385static void vmi_set_pte_atomic(pte_t *ptep, pte_t pteval)
 386{
 387        /*
 388         * XXX This is called from set_pmd_pte, but at both PT
 389         * and PD layers so the VMI_PAGE_PT flag is wrong.  But
 390         * it is only called for large page mapping changes,
 391         * the Xen backend, doesn't support large pages, and the
 392         * ESX backend doesn't depend on the flag.
 393         */
 394        set_64bit((unsigned long long *)ptep,pte_val(pteval));
 395        vmi_ops.update_pte(ptep, VMI_PAGE_PT);
 396}
 397
 398static void vmi_set_pud(pud_t *pudp, pud_t pudval)
 399{
 400        /* Um, eww */
 401        const pte_t pte = { .pte = pudval.pgd.pgd };
 402        vmi_ops.set_pte(pte, (pte_t *)pudp, VMI_PAGE_PDP);
 403}
 404
 405static void vmi_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 406{
 407        const pte_t pte = { .pte = 0 };
 408        vmi_ops.set_pte(pte, ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
 409}
 410
 411static void vmi_pmd_clear(pmd_t *pmd)
 412{
 413        const pte_t pte = { .pte = 0 };
 414        vmi_ops.set_pte(pte, (pte_t *)pmd, VMI_PAGE_PD);
 415}
 416#endif
 417
 418#ifdef CONFIG_SMP
 419static void __devinit
 420vmi_startup_ipi_hook(int phys_apicid, unsigned long start_eip,
 421                     unsigned long start_esp)
 422{
 423        struct vmi_ap_state ap;
 424
 425        /* Default everything to zero.  This is fine for most GPRs. */
 426        memset(&ap, 0, sizeof(struct vmi_ap_state));
 427
 428        ap.gdtr_limit = GDT_SIZE - 1;
 429        ap.gdtr_base = (unsigned long) get_cpu_gdt_table(phys_apicid);
 430
 431        ap.idtr_limit = IDT_ENTRIES * 8 - 1;
 432        ap.idtr_base = (unsigned long) idt_table;
 433
 434        ap.ldtr = 0;
 435
 436        ap.cs = __KERNEL_CS;
 437        ap.eip = (unsigned long) start_eip;
 438        ap.ss = __KERNEL_DS;
 439        ap.esp = (unsigned long) start_esp;
 440
 441        ap.ds = __USER_DS;
 442        ap.es = __USER_DS;
 443        ap.fs = __KERNEL_PERCPU;
 444        ap.gs = __KERNEL_STACK_CANARY;
 445
 446        ap.eflags = 0;
 447
 448#ifdef CONFIG_X86_PAE
 449        /* efer should match BSP efer. */
 450        if (cpu_has_nx) {
 451                unsigned l, h;
 452                rdmsr(MSR_EFER, l, h);
 453                ap.efer = (unsigned long long) h << 32 | l;
 454        }
 455#endif
 456
 457        ap.cr3 = __pa(swapper_pg_dir);
 458        /* Protected mode, paging, AM, WP, NE, MP. */
 459        ap.cr0 = 0x80050023;
 460        ap.cr4 = mmu_cr4_features;
 461        vmi_ops.set_initial_ap_state((u32)&ap, phys_apicid);
 462}
 463#endif
 464
 465static void vmi_start_context_switch(struct task_struct *prev)
 466{
 467        paravirt_start_context_switch(prev);
 468        vmi_ops.set_lazy_mode(2);
 469}
 470
 471static void vmi_end_context_switch(struct task_struct *next)
 472{
 473        vmi_ops.set_lazy_mode(0);
 474        paravirt_end_context_switch(next);
 475}
 476
 477static void vmi_enter_lazy_mmu(void)
 478{
 479        paravirt_enter_lazy_mmu();
 480        vmi_ops.set_lazy_mode(1);
 481}
 482
 483static void vmi_leave_lazy_mmu(void)
 484{
 485        vmi_ops.set_lazy_mode(0);
 486        paravirt_leave_lazy_mmu();
 487}
 488
 489static inline int __init check_vmi_rom(struct vrom_header *rom)
 490{
 491        struct pci_header *pci;
 492        struct pnp_header *pnp;
 493        const char *manufacturer = "UNKNOWN";
 494        const char *product = "UNKNOWN";
 495        const char *license = "unspecified";
 496
 497        if (rom->rom_signature != 0xaa55)
 498                return 0;
 499        if (rom->vrom_signature != VMI_SIGNATURE)
 500                return 0;
 501        if (rom->api_version_maj != VMI_API_REV_MAJOR ||
 502            rom->api_version_min+1 < VMI_API_REV_MINOR+1) {
 503                printk(KERN_WARNING "VMI: Found mismatched rom version %d.%d\n",
 504                                rom->api_version_maj,
 505                                rom->api_version_min);
 506                return 0;
 507        }
 508
 509        /*
 510         * Relying on the VMI_SIGNATURE field is not 100% safe, so check
 511         * the PCI header and device type to make sure this is really a
 512         * VMI device.
 513         */
 514        if (!rom->pci_header_offs) {
 515                printk(KERN_WARNING "VMI: ROM does not contain PCI header.\n");
 516                return 0;
 517        }
 518
 519        pci = (struct pci_header *)((char *)rom+rom->pci_header_offs);
 520        if (pci->vendorID != PCI_VENDOR_ID_VMWARE ||
 521            pci->deviceID != PCI_DEVICE_ID_VMWARE_VMI) {
 522                /* Allow it to run... anyways, but warn */
 523                printk(KERN_WARNING "VMI: ROM from unknown manufacturer\n");
 524        }
 525
 526        if (rom->pnp_header_offs) {
 527                pnp = (struct pnp_header *)((char *)rom+rom->pnp_header_offs);
 528                if (pnp->manufacturer_offset)
 529                        manufacturer = (const char *)rom+pnp->manufacturer_offset;
 530                if (pnp->product_offset)
 531                        product = (const char *)rom+pnp->product_offset;
 532        }
 533
 534        if (rom->license_offs)
 535                license = (char *)rom+rom->license_offs;
 536
 537        printk(KERN_INFO "VMI: Found %s %s, API version %d.%d, ROM version %d.%d\n",
 538                manufacturer, product,
 539                rom->api_version_maj, rom->api_version_min,
 540                pci->rom_version_maj, pci->rom_version_min);
 541
 542        /* Don't allow BSD/MIT here for now because we don't want to end up
 543           with any binary only shim layers */
 544        if (strcmp(license, "GPL") && strcmp(license, "GPL v2")) {
 545                printk(KERN_WARNING "VMI: Non GPL license `%s' found for ROM. Not used.\n",
 546                        license);
 547                return 0;
 548        }
 549
 550        return 1;
 551}
 552
 553/*
 554 * Probe for the VMI option ROM
 555 */
 556static inline int __init probe_vmi_rom(void)
 557{
 558        unsigned long base;
 559
 560        /* VMI ROM is in option ROM area, check signature */
 561        for (base = 0xC0000; base < 0xE0000; base += 2048) {
 562                struct vrom_header *romstart;
 563                romstart = (struct vrom_header *)isa_bus_to_virt(base);
 564                if (check_vmi_rom(romstart)) {
 565                        vmi_rom = romstart;
 566                        return 1;
 567                }
 568        }
 569        return 0;
 570}
 571
 572/*
 573 * VMI setup common to all processors
 574 */
 575void vmi_bringup(void)
 576{
 577        /* We must establish the lowmem mapping for MMU ops to work */
 578        if (vmi_ops.set_linear_mapping)
 579                vmi_ops.set_linear_mapping(0, (void *)__PAGE_OFFSET, MAXMEM_PFN, 0);
 580}
 581
 582/*
 583 * Return a pointer to a VMI function or NULL if unimplemented
 584 */
 585static void *vmi_get_function(int vmicall)
 586{
 587        u64 reloc;
 588        const struct vmi_relocation_info *rel = (struct vmi_relocation_info *)&reloc;
 589        reloc = call_vrom_long_func(vmi_rom, get_reloc, vmicall);
 590        BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL);
 591        if (rel->type == VMI_RELOCATION_CALL_REL)
 592                return (void *)rel->eip;
 593        else
 594                return NULL;
 595}
 596
 597/*
 598 * Helper macro for making the VMI paravirt-ops fill code readable.
 599 * For unimplemented operations, fall back to default, unless nop
 600 * is returned by the ROM.
 601 */
 602#define para_fill(opname, vmicall)                              \
 603do {                                                            \
 604        reloc = call_vrom_long_func(vmi_rom, get_reloc,         \
 605                                    VMI_CALL_##vmicall);        \
 606        if (rel->type == VMI_RELOCATION_CALL_REL)               \
 607                opname = (void *)rel->eip;                      \
 608        else if (rel->type == VMI_RELOCATION_NOP)               \
 609                opname = (void *)vmi_nop;                       \
 610        else if (rel->type != VMI_RELOCATION_NONE)              \
 611                printk(KERN_WARNING "VMI: Unknown relocation "  \
 612                                    "type %d for " #vmicall"\n",\
 613                                        rel->type);             \
 614} while (0)
 615
 616/*
 617 * Helper macro for making the VMI paravirt-ops fill code readable.
 618 * For cached operations which do not match the VMI ROM ABI and must
 619 * go through a tranlation stub.  Ignore NOPs, since it is not clear
 620 * a NOP * VMI function corresponds to a NOP paravirt-op when the
 621 * functions are not in 1-1 correspondence.
 622 */
 623#define para_wrap(opname, wrapper, cache, vmicall)              \
 624do {                                                            \
 625        reloc = call_vrom_long_func(vmi_rom, get_reloc,         \
 626                                    VMI_CALL_##vmicall);        \
 627        BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL);           \
 628        if (rel->type == VMI_RELOCATION_CALL_REL) {             \
 629                opname = wrapper;                               \
 630                vmi_ops.cache = (void *)rel->eip;               \
 631        }                                                       \
 632} while (0)
 633
 634/*
 635 * Activate the VMI interface and switch into paravirtualized mode
 636 */
 637static inline int __init activate_vmi(void)
 638{
 639        short kernel_cs;
 640        u64 reloc;
 641        const struct vmi_relocation_info *rel = (struct vmi_relocation_info *)&reloc;
 642
 643        if (call_vrom_func(vmi_rom, vmi_init) != 0) {
 644                printk(KERN_ERR "VMI ROM failed to initialize!");
 645                return 0;
 646        }
 647        savesegment(cs, kernel_cs);
 648
 649        pv_info.paravirt_enabled = 1;
 650        pv_info.kernel_rpl = kernel_cs & SEGMENT_RPL_MASK;
 651        pv_info.name = "vmi [deprecated]";
 652
 653        pv_init_ops.patch = vmi_patch;
 654
 655        /*
 656         * Many of these operations are ABI compatible with VMI.
 657         * This means we can fill in the paravirt-ops with direct
 658         * pointers into the VMI ROM.  If the calling convention for
 659         * these operations changes, this code needs to be updated.
 660         *
 661         * Exceptions
 662         *  CPUID paravirt-op uses pointers, not the native ISA
 663         *  halt has no VMI equivalent; all VMI halts are "safe"
 664         *  no MSR support yet - just trap and emulate.  VMI uses the
 665         *    same ABI as the native ISA, but Linux wants exceptions
 666         *    from bogus MSR read / write handled
 667         *  rdpmc is not yet used in Linux
 668         */
 669
 670        /* CPUID is special, so very special it gets wrapped like a present */
 671        para_wrap(pv_cpu_ops.cpuid, vmi_cpuid, cpuid, CPUID);
 672
 673        para_fill(pv_cpu_ops.clts, CLTS);
 674        para_fill(pv_cpu_ops.get_debugreg, GetDR);
 675        para_fill(pv_cpu_ops.set_debugreg, SetDR);
 676        para_fill(pv_cpu_ops.read_cr0, GetCR0);
 677        para_fill(pv_mmu_ops.read_cr2, GetCR2);
 678        para_fill(pv_mmu_ops.read_cr3, GetCR3);
 679        para_fill(pv_cpu_ops.read_cr4, GetCR4);
 680        para_fill(pv_cpu_ops.write_cr0, SetCR0);
 681        para_fill(pv_mmu_ops.write_cr2, SetCR2);
 682        para_fill(pv_mmu_ops.write_cr3, SetCR3);
 683        para_fill(pv_cpu_ops.write_cr4, SetCR4);
 684
 685        para_fill(pv_irq_ops.save_fl.func, GetInterruptMask);
 686        para_fill(pv_irq_ops.restore_fl.func, SetInterruptMask);
 687        para_fill(pv_irq_ops.irq_disable.func, DisableInterrupts);
 688        para_fill(pv_irq_ops.irq_enable.func, EnableInterrupts);
 689
 690        para_fill(pv_cpu_ops.wbinvd, WBINVD);
 691        para_fill(pv_cpu_ops.read_tsc, RDTSC);
 692
 693        /* The following we emulate with trap and emulate for now */
 694        /* paravirt_ops.read_msr = vmi_rdmsr */
 695        /* paravirt_ops.write_msr = vmi_wrmsr */
 696        /* paravirt_ops.rdpmc = vmi_rdpmc */
 697
 698        /* TR interface doesn't pass TR value, wrap */
 699        para_wrap(pv_cpu_ops.load_tr_desc, vmi_set_tr, set_tr, SetTR);
 700
 701        /* LDT is special, too */
 702        para_wrap(pv_cpu_ops.set_ldt, vmi_set_ldt, _set_ldt, SetLDT);
 703
 704        para_fill(pv_cpu_ops.load_gdt, SetGDT);
 705        para_fill(pv_cpu_ops.load_idt, SetIDT);
 706        para_fill(pv_cpu_ops.store_gdt, GetGDT);
 707        para_fill(pv_cpu_ops.store_idt, GetIDT);
 708        para_fill(pv_cpu_ops.store_tr, GetTR);
 709        pv_cpu_ops.load_tls = vmi_load_tls;
 710        para_wrap(pv_cpu_ops.write_ldt_entry, vmi_write_ldt_entry,
 711                  write_ldt_entry, WriteLDTEntry);
 712        para_wrap(pv_cpu_ops.write_gdt_entry, vmi_write_gdt_entry,
 713                  write_gdt_entry, WriteGDTEntry);
 714        para_wrap(pv_cpu_ops.write_idt_entry, vmi_write_idt_entry,
 715                  write_idt_entry, WriteIDTEntry);
 716        para_wrap(pv_cpu_ops.load_sp0, vmi_load_sp0, set_kernel_stack, UpdateKernelStack);
 717        para_fill(pv_cpu_ops.set_iopl_mask, SetIOPLMask);
 718        para_fill(pv_cpu_ops.io_delay, IODelay);
 719
 720        para_wrap(pv_cpu_ops.start_context_switch, vmi_start_context_switch,
 721                  set_lazy_mode, SetLazyMode);
 722        para_wrap(pv_cpu_ops.end_context_switch, vmi_end_context_switch,
 723                  set_lazy_mode, SetLazyMode);
 724
 725        para_wrap(pv_mmu_ops.lazy_mode.enter, vmi_enter_lazy_mmu,
 726                  set_lazy_mode, SetLazyMode);
 727        para_wrap(pv_mmu_ops.lazy_mode.leave, vmi_leave_lazy_mmu,
 728                  set_lazy_mode, SetLazyMode);
 729
 730        /* user and kernel flush are just handled with different flags to FlushTLB */
 731        para_wrap(pv_mmu_ops.flush_tlb_user, vmi_flush_tlb_user, _flush_tlb, FlushTLB);
 732        para_wrap(pv_mmu_ops.flush_tlb_kernel, vmi_flush_tlb_kernel, _flush_tlb, FlushTLB);
 733        para_fill(pv_mmu_ops.flush_tlb_single, InvalPage);
 734
 735        /*
 736         * Until a standard flag format can be agreed on, we need to
 737         * implement these as wrappers in Linux.  Get the VMI ROM
 738         * function pointers for the two backend calls.
 739         */
 740#ifdef CONFIG_X86_PAE
 741        vmi_ops.set_pte = vmi_get_function(VMI_CALL_SetPxELong);
 742        vmi_ops.update_pte = vmi_get_function(VMI_CALL_UpdatePxELong);
 743#else
 744        vmi_ops.set_pte = vmi_get_function(VMI_CALL_SetPxE);
 745        vmi_ops.update_pte = vmi_get_function(VMI_CALL_UpdatePxE);
 746#endif
 747
 748        if (vmi_ops.set_pte) {
 749                pv_mmu_ops.set_pte = vmi_set_pte;
 750                pv_mmu_ops.set_pte_at = vmi_set_pte_at;
 751                pv_mmu_ops.set_pmd = vmi_set_pmd;
 752#ifdef CONFIG_X86_PAE
 753                pv_mmu_ops.set_pte_atomic = vmi_set_pte_atomic;
 754                pv_mmu_ops.set_pud = vmi_set_pud;
 755                pv_mmu_ops.pte_clear = vmi_pte_clear;
 756                pv_mmu_ops.pmd_clear = vmi_pmd_clear;
 757#endif
 758        }
 759
 760        if (vmi_ops.update_pte) {
 761                pv_mmu_ops.pte_update = vmi_update_pte;
 762                pv_mmu_ops.pte_update_defer = vmi_update_pte_defer;
 763        }
 764
 765        vmi_ops.allocate_page = vmi_get_function(VMI_CALL_AllocatePage);
 766        if (vmi_ops.allocate_page) {
 767                pv_mmu_ops.alloc_pte = vmi_allocate_pte;
 768                pv_mmu_ops.alloc_pmd = vmi_allocate_pmd;
 769                pv_mmu_ops.alloc_pmd_clone = vmi_allocate_pmd_clone;
 770        }
 771
 772        vmi_ops.release_page = vmi_get_function(VMI_CALL_ReleasePage);
 773        if (vmi_ops.release_page) {
 774                pv_mmu_ops.release_pte = vmi_release_pte;
 775                pv_mmu_ops.release_pmd = vmi_release_pmd;
 776                pv_mmu_ops.pgd_free = vmi_pgd_free;
 777        }
 778
 779        /* Set linear is needed in all cases */
 780        vmi_ops.set_linear_mapping = vmi_get_function(VMI_CALL_SetLinearMapping);
 781#ifdef CONFIG_HIGHPTE
 782        if (vmi_ops.set_linear_mapping)
 783                pv_mmu_ops.kmap_atomic_pte = vmi_kmap_atomic_pte;
 784#endif
 785
 786        /*
 787         * These MUST always be patched.  Don't support indirect jumps
 788         * through these operations, as the VMI interface may use either
 789         * a jump or a call to get to these operations, depending on
 790         * the backend.  They are performance critical anyway, so requiring
 791         * a patch is not a big problem.
 792         */
 793        pv_cpu_ops.irq_enable_sysexit = (void *)0xfeedbab0;
 794        pv_cpu_ops.iret = (void *)0xbadbab0;
 795
 796#ifdef CONFIG_SMP
 797        para_wrap(pv_apic_ops.startup_ipi_hook, vmi_startup_ipi_hook, set_initial_ap_state, SetInitialAPState);
 798#endif
 799
 800#ifdef CONFIG_X86_LOCAL_APIC
 801       para_fill(apic->read, APICRead);
 802       para_fill(apic->write, APICWrite);
 803#endif
 804
 805        /*
 806         * Check for VMI timer functionality by probing for a cycle frequency method
 807         */
 808        reloc = call_vrom_long_func(vmi_rom, get_reloc, VMI_CALL_GetCycleFrequency);
 809        if (!disable_vmi_timer && rel->type != VMI_RELOCATION_NONE) {
 810                vmi_timer_ops.get_cycle_frequency = (void *)rel->eip;
 811                vmi_timer_ops.get_cycle_counter =
 812                        vmi_get_function(VMI_CALL_GetCycleCounter);
 813                vmi_timer_ops.get_wallclock =
 814                        vmi_get_function(VMI_CALL_GetWallclockTime);
 815                vmi_timer_ops.wallclock_updated =
 816                        vmi_get_function(VMI_CALL_WallclockUpdated);
 817                vmi_timer_ops.set_alarm = vmi_get_function(VMI_CALL_SetAlarm);
 818                vmi_timer_ops.cancel_alarm =
 819                         vmi_get_function(VMI_CALL_CancelAlarm);
 820                x86_init.timers.timer_init = vmi_time_init;
 821#ifdef CONFIG_X86_LOCAL_APIC
 822                x86_init.timers.setup_percpu_clockev = vmi_time_bsp_init;
 823                x86_cpuinit.setup_percpu_clockev = vmi_time_ap_init;
 824#endif
 825                pv_time_ops.sched_clock = vmi_sched_clock;
 826                x86_platform.calibrate_tsc = vmi_tsc_khz;
 827                x86_platform.get_wallclock = vmi_get_wallclock;
 828                x86_platform.set_wallclock = vmi_set_wallclock;
 829
 830                /* We have true wallclock functions; disable CMOS clock sync */
 831                no_sync_cmos_clock = 1;
 832        } else {
 833                disable_noidle = 1;
 834                disable_vmi_timer = 1;
 835        }
 836
 837        para_fill(pv_irq_ops.safe_halt, Halt);
 838
 839        /*
 840         * Alternative instruction rewriting doesn't happen soon enough
 841         * to convert VMI_IRET to a call instead of a jump; so we have
 842         * to do this before IRQs get reenabled.  Fortunately, it is
 843         * idempotent.
 844         */
 845        apply_paravirt(__parainstructions, __parainstructions_end);
 846
 847        vmi_bringup();
 848
 849        return 1;
 850}
 851
 852#undef para_fill
 853
 854void __init vmi_init(void)
 855{
 856        if (!vmi_rom)
 857                probe_vmi_rom();
 858        else
 859                check_vmi_rom(vmi_rom);
 860
 861        /* In case probing for or validating the ROM failed, basil */
 862        if (!vmi_rom)
 863                return;
 864
 865        reserve_top_address(-vmi_rom->virtual_top);
 866
 867#ifdef CONFIG_X86_IO_APIC
 868        /* This is virtual hardware; timer routing is wired correctly */
 869        no_timer_check = 1;
 870#endif
 871}
 872
 873void __init vmi_activate(void)
 874{
 875        unsigned long flags;
 876
 877        if (!vmi_rom)
 878                return;
 879
 880        local_irq_save(flags);
 881        activate_vmi();
 882        local_irq_restore(flags & X86_EFLAGS_IF);
 883}
 884
 885static int __init parse_vmi(char *arg)
 886{
 887        if (!arg)
 888                return -EINVAL;
 889
 890        if (!strcmp(arg, "disable_pge")) {
 891                clear_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
 892                disable_pge = 1;
 893        } else if (!strcmp(arg, "disable_pse")) {
 894                clear_cpu_cap(&boot_cpu_data, X86_FEATURE_PSE);
 895                disable_pse = 1;
 896        } else if (!strcmp(arg, "disable_sep")) {
 897                clear_cpu_cap(&boot_cpu_data, X86_FEATURE_SEP);
 898                disable_sep = 1;
 899        } else if (!strcmp(arg, "disable_tsc")) {
 900                clear_cpu_cap(&boot_cpu_data, X86_FEATURE_TSC);
 901                disable_tsc = 1;
 902        } else if (!strcmp(arg, "disable_mtrr")) {
 903                clear_cpu_cap(&boot_cpu_data, X86_FEATURE_MTRR);
 904                disable_mtrr = 1;
 905        } else if (!strcmp(arg, "disable_timer")) {
 906                disable_vmi_timer = 1;
 907                disable_noidle = 1;
 908        } else if (!strcmp(arg, "disable_noidle"))
 909                disable_noidle = 1;
 910        return 0;
 911}
 912
 913early_param("vmi", parse_vmi);
 914