linux/arch/x86/kernel/vmiclock_32.c
<<
>>
Prefs
   1/*
   2 * VMI paravirtual timer support routines.
   3 *
   4 * Copyright (C) 2007, VMware, Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful, but
  12 * WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  14 * NON INFRINGEMENT.  See the GNU General Public License for more
  15 * details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 *
  21 */
  22
  23#include <linux/smp.h>
  24#include <linux/interrupt.h>
  25#include <linux/cpumask.h>
  26#include <linux/clocksource.h>
  27#include <linux/clockchips.h>
  28
  29#include <asm/vmi.h>
  30#include <asm/vmi_time.h>
  31#include <asm/apicdef.h>
  32#include <asm/apic.h>
  33#include <asm/timer.h>
  34#include <asm/i8253.h>
  35#include <asm/irq_vectors.h>
  36
  37#define VMI_ONESHOT  (VMI_ALARM_IS_ONESHOT  | VMI_CYCLES_REAL | vmi_get_alarm_wiring())
  38#define VMI_PERIODIC (VMI_ALARM_IS_PERIODIC | VMI_CYCLES_REAL | vmi_get_alarm_wiring())
  39
  40static DEFINE_PER_CPU(struct clock_event_device, local_events);
  41
  42static inline u32 vmi_counter(u32 flags)
  43{
  44        /* Given VMI_ONESHOT or VMI_PERIODIC, return the corresponding
  45         * cycle counter. */
  46        return flags & VMI_ALARM_COUNTER_MASK;
  47}
  48
  49/* paravirt_ops.get_wallclock = vmi_get_wallclock */
  50unsigned long vmi_get_wallclock(void)
  51{
  52        unsigned long long wallclock;
  53        wallclock = vmi_timer_ops.get_wallclock(); // nsec
  54        (void)do_div(wallclock, 1000000000);       // sec
  55
  56        return wallclock;
  57}
  58
  59/* paravirt_ops.set_wallclock = vmi_set_wallclock */
  60int vmi_set_wallclock(unsigned long now)
  61{
  62        return 0;
  63}
  64
  65/* paravirt_ops.sched_clock = vmi_sched_clock */
  66unsigned long long vmi_sched_clock(void)
  67{
  68        return cycles_2_ns(vmi_timer_ops.get_cycle_counter(VMI_CYCLES_AVAILABLE));
  69}
  70
  71/* x86_platform.calibrate_tsc = vmi_tsc_khz */
  72unsigned long vmi_tsc_khz(void)
  73{
  74        unsigned long long khz;
  75        khz = vmi_timer_ops.get_cycle_frequency();
  76        (void)do_div(khz, 1000);
  77        return khz;
  78}
  79
  80static inline unsigned int vmi_get_timer_vector(void)
  81{
  82#ifdef CONFIG_X86_IO_APIC
  83        return FIRST_DEVICE_VECTOR;
  84#else
  85        return FIRST_EXTERNAL_VECTOR;
  86#endif
  87}
  88
  89/** vmi clockchip */
  90#ifdef CONFIG_X86_LOCAL_APIC
  91static unsigned int startup_timer_irq(unsigned int irq)
  92{
  93        unsigned long val = apic_read(APIC_LVTT);
  94        apic_write(APIC_LVTT, vmi_get_timer_vector());
  95
  96        return (val & APIC_SEND_PENDING);
  97}
  98
  99static void mask_timer_irq(unsigned int irq)
 100{
 101        unsigned long val = apic_read(APIC_LVTT);
 102        apic_write(APIC_LVTT, val | APIC_LVT_MASKED);
 103}
 104
 105static void unmask_timer_irq(unsigned int irq)
 106{
 107        unsigned long val = apic_read(APIC_LVTT);
 108        apic_write(APIC_LVTT, val & ~APIC_LVT_MASKED);
 109}
 110
 111static void ack_timer_irq(unsigned int irq)
 112{
 113        ack_APIC_irq();
 114}
 115
 116static struct irq_chip vmi_chip __read_mostly = {
 117        .name           = "VMI-LOCAL",
 118        .startup        = startup_timer_irq,
 119        .mask           = mask_timer_irq,
 120        .unmask         = unmask_timer_irq,
 121        .ack            = ack_timer_irq
 122};
 123#endif
 124
 125/** vmi clockevent */
 126#define VMI_ALARM_WIRED_IRQ0    0x00000000
 127#define VMI_ALARM_WIRED_LVTT    0x00010000
 128static int vmi_wiring = VMI_ALARM_WIRED_IRQ0;
 129
 130static inline int vmi_get_alarm_wiring(void)
 131{
 132        return vmi_wiring;
 133}
 134
 135static void vmi_timer_set_mode(enum clock_event_mode mode,
 136                               struct clock_event_device *evt)
 137{
 138        cycle_t now, cycles_per_hz;
 139        BUG_ON(!irqs_disabled());
 140
 141        switch (mode) {
 142        case CLOCK_EVT_MODE_ONESHOT:
 143        case CLOCK_EVT_MODE_RESUME:
 144                break;
 145        case CLOCK_EVT_MODE_PERIODIC:
 146                cycles_per_hz = vmi_timer_ops.get_cycle_frequency();
 147                (void)do_div(cycles_per_hz, HZ);
 148                now = vmi_timer_ops.get_cycle_counter(vmi_counter(VMI_PERIODIC));
 149                vmi_timer_ops.set_alarm(VMI_PERIODIC, now, cycles_per_hz);
 150                break;
 151        case CLOCK_EVT_MODE_UNUSED:
 152        case CLOCK_EVT_MODE_SHUTDOWN:
 153                switch (evt->mode) {
 154                case CLOCK_EVT_MODE_ONESHOT:
 155                        vmi_timer_ops.cancel_alarm(VMI_ONESHOT);
 156                        break;
 157                case CLOCK_EVT_MODE_PERIODIC:
 158                        vmi_timer_ops.cancel_alarm(VMI_PERIODIC);
 159                        break;
 160                default:
 161                        break;
 162                }
 163                break;
 164        default:
 165                break;
 166        }
 167}
 168
 169static int vmi_timer_next_event(unsigned long delta,
 170                                struct clock_event_device *evt)
 171{
 172        /* Unfortunately, set_next_event interface only passes relative
 173         * expiry, but we want absolute expiry.  It'd be better if were
 174         * were passed an aboslute expiry, since a bunch of time may
 175         * have been stolen between the time the delta is computed and
 176         * when we set the alarm below. */
 177        cycle_t now = vmi_timer_ops.get_cycle_counter(vmi_counter(VMI_ONESHOT));
 178
 179        BUG_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
 180        vmi_timer_ops.set_alarm(VMI_ONESHOT, now + delta, 0);
 181        return 0;
 182}
 183
 184static struct clock_event_device vmi_clockevent = {
 185        .name           = "vmi-timer",
 186        .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 187        .shift          = 22,
 188        .set_mode       = vmi_timer_set_mode,
 189        .set_next_event = vmi_timer_next_event,
 190        .rating         = 1000,
 191        .irq            = 0,
 192};
 193
 194static irqreturn_t vmi_timer_interrupt(int irq, void *dev_id)
 195{
 196        struct clock_event_device *evt = &__get_cpu_var(local_events);
 197        evt->event_handler(evt);
 198        return IRQ_HANDLED;
 199}
 200
 201static struct irqaction vmi_clock_action  = {
 202        .name           = "vmi-timer",
 203        .handler        = vmi_timer_interrupt,
 204        .flags          = IRQF_DISABLED | IRQF_NOBALANCING | IRQF_TIMER,
 205};
 206
 207static void __devinit vmi_time_init_clockevent(void)
 208{
 209        cycle_t cycles_per_msec;
 210        struct clock_event_device *evt;
 211
 212        int cpu = smp_processor_id();
 213        evt = &__get_cpu_var(local_events);
 214
 215        /* Use cycles_per_msec since div_sc params are 32-bits. */
 216        cycles_per_msec = vmi_timer_ops.get_cycle_frequency();
 217        (void)do_div(cycles_per_msec, 1000);
 218
 219        memcpy(evt, &vmi_clockevent, sizeof(*evt));
 220        /* Must pick .shift such that .mult fits in 32-bits.  Choosing
 221         * .shift to be 22 allows 2^(32-22) cycles per nano-seconds
 222         * before overflow. */
 223        evt->mult = div_sc(cycles_per_msec, NSEC_PER_MSEC, evt->shift);
 224        /* Upper bound is clockevent's use of ulong for cycle deltas. */
 225        evt->max_delta_ns = clockevent_delta2ns(ULONG_MAX, evt);
 226        evt->min_delta_ns = clockevent_delta2ns(1, evt);
 227        evt->cpumask = cpumask_of(cpu);
 228
 229        printk(KERN_WARNING "vmi: registering clock event %s. mult=%lu shift=%u\n",
 230               evt->name, evt->mult, evt->shift);
 231        clockevents_register_device(evt);
 232}
 233
 234void __init vmi_time_init(void)
 235{
 236        unsigned int cpu;
 237        /* Disable PIT: BIOSes start PIT CH0 with 18.2hz peridic. */
 238        outb_pit(0x3a, PIT_MODE); /* binary, mode 5, LSB/MSB, ch 0 */
 239
 240        vmi_time_init_clockevent();
 241        setup_irq(0, &vmi_clock_action);
 242        for_each_possible_cpu(cpu)
 243                per_cpu(vector_irq, cpu)[vmi_get_timer_vector()] = 0;
 244}
 245
 246#ifdef CONFIG_X86_LOCAL_APIC
 247void __devinit vmi_time_bsp_init(void)
 248{
 249        /*
 250         * On APIC systems, we want local timers to fire on each cpu.  We do
 251         * this by programming LVTT to deliver timer events to the IRQ handler
 252         * for IRQ-0, since we can't re-use the APIC local timer handler
 253         * without interfering with that code.
 254         */
 255        clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
 256        local_irq_disable();
 257#ifdef CONFIG_SMP
 258        /*
 259         * XXX handle_percpu_irq only defined for SMP; we need to switch over
 260         * to using it, since this is a local interrupt, which each CPU must
 261         * handle individually without locking out or dropping simultaneous
 262         * local timers on other CPUs.  We also don't want to trigger the
 263         * quirk workaround code for interrupts which gets invoked from
 264         * handle_percpu_irq via eoi, so we use our own IRQ chip.
 265         */
 266        set_irq_chip_and_handler_name(0, &vmi_chip, handle_percpu_irq, "lvtt");
 267#else
 268        set_irq_chip_and_handler_name(0, &vmi_chip, handle_edge_irq, "lvtt");
 269#endif
 270        vmi_wiring = VMI_ALARM_WIRED_LVTT;
 271        apic_write(APIC_LVTT, vmi_get_timer_vector());
 272        local_irq_enable();
 273        clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
 274}
 275
 276void __devinit vmi_time_ap_init(void)
 277{
 278        vmi_time_init_clockevent();
 279        apic_write(APIC_LVTT, vmi_get_timer_vector());
 280}
 281#endif
 282
 283/** vmi clocksource */
 284static struct clocksource clocksource_vmi;
 285
 286static cycle_t read_real_cycles(struct clocksource *cs)
 287{
 288        cycle_t ret = (cycle_t)vmi_timer_ops.get_cycle_counter(VMI_CYCLES_REAL);
 289        return max(ret, clocksource_vmi.cycle_last);
 290}
 291
 292static struct clocksource clocksource_vmi = {
 293        .name                   = "vmi-timer",
 294        .rating                 = 450,
 295        .read                   = read_real_cycles,
 296        .mask                   = CLOCKSOURCE_MASK(64),
 297        .mult                   = 0, /* to be set */
 298        .shift                  = 22,
 299        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
 300};
 301
 302static int __init init_vmi_clocksource(void)
 303{
 304        cycle_t cycles_per_msec;
 305
 306        if (!vmi_timer_ops.get_cycle_frequency)
 307                return 0;
 308        /* Use khz2mult rather than hz2mult since hz arg is only 32-bits. */
 309        cycles_per_msec = vmi_timer_ops.get_cycle_frequency();
 310        (void)do_div(cycles_per_msec, 1000);
 311
 312        /* Note that clocksource.{mult, shift} converts in the opposite direction
 313         * as clockevents.  */
 314        clocksource_vmi.mult = clocksource_khz2mult(cycles_per_msec,
 315                                                    clocksource_vmi.shift);
 316
 317        printk(KERN_WARNING "vmi: registering clock source khz=%lld\n", cycles_per_msec);
 318        return clocksource_register(&clocksource_vmi);
 319
 320}
 321module_init(init_vmi_clocksource);
 322