linux/arch/x86/kvm/i8254.c
<<
>>
Prefs
   1/*
   2 * 8253/8254 interval timer emulation
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 * Copyright (c) 2006 Intel Corporation
   6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
   7 * Copyright (c) 2008 Intel Corporation
   8 *
   9 * Permission is hereby granted, free of charge, to any person obtaining a copy
  10 * of this software and associated documentation files (the "Software"), to deal
  11 * in the Software without restriction, including without limitation the rights
  12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13 * copies of the Software, and to permit persons to whom the Software is
  14 * furnished to do so, subject to the following conditions:
  15 *
  16 * The above copyright notice and this permission notice shall be included in
  17 * all copies or substantial portions of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25 * THE SOFTWARE.
  26 *
  27 * Authors:
  28 *   Sheng Yang <sheng.yang@intel.com>
  29 *   Based on QEMU and Xen.
  30 */
  31
  32#include <linux/kvm_host.h>
  33
  34#include "irq.h"
  35#include "i8254.h"
  36
  37#ifndef CONFIG_X86_64
  38#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
  39#else
  40#define mod_64(x, y) ((x) % (y))
  41#endif
  42
  43#define RW_STATE_LSB 1
  44#define RW_STATE_MSB 2
  45#define RW_STATE_WORD0 3
  46#define RW_STATE_WORD1 4
  47
  48/* Compute with 96 bit intermediate result: (a*b)/c */
  49static u64 muldiv64(u64 a, u32 b, u32 c)
  50{
  51        union {
  52                u64 ll;
  53                struct {
  54                        u32 low, high;
  55                } l;
  56        } u, res;
  57        u64 rl, rh;
  58
  59        u.ll = a;
  60        rl = (u64)u.l.low * (u64)b;
  61        rh = (u64)u.l.high * (u64)b;
  62        rh += (rl >> 32);
  63        res.l.high = div64_u64(rh, c);
  64        res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
  65        return res.ll;
  66}
  67
  68static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
  69{
  70        struct kvm_kpit_channel_state *c =
  71                &kvm->arch.vpit->pit_state.channels[channel];
  72
  73        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  74
  75        switch (c->mode) {
  76        default:
  77        case 0:
  78        case 4:
  79                /* XXX: just disable/enable counting */
  80                break;
  81        case 1:
  82        case 2:
  83        case 3:
  84        case 5:
  85                /* Restart counting on rising edge. */
  86                if (c->gate < val)
  87                        c->count_load_time = ktime_get();
  88                break;
  89        }
  90
  91        c->gate = val;
  92}
  93
  94static int pit_get_gate(struct kvm *kvm, int channel)
  95{
  96        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  97
  98        return kvm->arch.vpit->pit_state.channels[channel].gate;
  99}
 100
 101static s64 __kpit_elapsed(struct kvm *kvm)
 102{
 103        s64 elapsed;
 104        ktime_t remaining;
 105        struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
 106
 107        if (!ps->pit_timer.period)
 108                return 0;
 109
 110        /*
 111         * The Counter does not stop when it reaches zero. In
 112         * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
 113         * the highest count, either FFFF hex for binary counting
 114         * or 9999 for BCD counting, and continues counting.
 115         * Modes 2 and 3 are periodic; the Counter reloads
 116         * itself with the initial count and continues counting
 117         * from there.
 118         */
 119        remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
 120        elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
 121        elapsed = mod_64(elapsed, ps->pit_timer.period);
 122
 123        return elapsed;
 124}
 125
 126static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
 127                        int channel)
 128{
 129        if (channel == 0)
 130                return __kpit_elapsed(kvm);
 131
 132        return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
 133}
 134
 135static int pit_get_count(struct kvm *kvm, int channel)
 136{
 137        struct kvm_kpit_channel_state *c =
 138                &kvm->arch.vpit->pit_state.channels[channel];
 139        s64 d, t;
 140        int counter;
 141
 142        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
 143
 144        t = kpit_elapsed(kvm, c, channel);
 145        d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
 146
 147        switch (c->mode) {
 148        case 0:
 149        case 1:
 150        case 4:
 151        case 5:
 152                counter = (c->count - d) & 0xffff;
 153                break;
 154        case 3:
 155                /* XXX: may be incorrect for odd counts */
 156                counter = c->count - (mod_64((2 * d), c->count));
 157                break;
 158        default:
 159                counter = c->count - mod_64(d, c->count);
 160                break;
 161        }
 162        return counter;
 163}
 164
 165static int pit_get_out(struct kvm *kvm, int channel)
 166{
 167        struct kvm_kpit_channel_state *c =
 168                &kvm->arch.vpit->pit_state.channels[channel];
 169        s64 d, t;
 170        int out;
 171
 172        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
 173
 174        t = kpit_elapsed(kvm, c, channel);
 175        d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
 176
 177        switch (c->mode) {
 178        default:
 179        case 0:
 180                out = (d >= c->count);
 181                break;
 182        case 1:
 183                out = (d < c->count);
 184                break;
 185        case 2:
 186                out = ((mod_64(d, c->count) == 0) && (d != 0));
 187                break;
 188        case 3:
 189                out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
 190                break;
 191        case 4:
 192        case 5:
 193                out = (d == c->count);
 194                break;
 195        }
 196
 197        return out;
 198}
 199
 200static void pit_latch_count(struct kvm *kvm, int channel)
 201{
 202        struct kvm_kpit_channel_state *c =
 203                &kvm->arch.vpit->pit_state.channels[channel];
 204
 205        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
 206
 207        if (!c->count_latched) {
 208                c->latched_count = pit_get_count(kvm, channel);
 209                c->count_latched = c->rw_mode;
 210        }
 211}
 212
 213static void pit_latch_status(struct kvm *kvm, int channel)
 214{
 215        struct kvm_kpit_channel_state *c =
 216                &kvm->arch.vpit->pit_state.channels[channel];
 217
 218        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
 219
 220        if (!c->status_latched) {
 221                /* TODO: Return NULL COUNT (bit 6). */
 222                c->status = ((pit_get_out(kvm, channel) << 7) |
 223                                (c->rw_mode << 4) |
 224                                (c->mode << 1) |
 225                                c->bcd);
 226                c->status_latched = 1;
 227        }
 228}
 229
 230int pit_has_pending_timer(struct kvm_vcpu *vcpu)
 231{
 232        struct kvm_pit *pit = vcpu->kvm->arch.vpit;
 233
 234        if (pit && kvm_vcpu_is_bsp(vcpu) && pit->pit_state.irq_ack)
 235                return atomic_read(&pit->pit_state.pit_timer.pending);
 236        return 0;
 237}
 238
 239static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
 240{
 241        struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
 242                                                 irq_ack_notifier);
 243        spin_lock(&ps->inject_lock);
 244        if (atomic_dec_return(&ps->pit_timer.pending) < 0)
 245                atomic_inc(&ps->pit_timer.pending);
 246        ps->irq_ack = 1;
 247        spin_unlock(&ps->inject_lock);
 248}
 249
 250void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
 251{
 252        struct kvm_pit *pit = vcpu->kvm->arch.vpit;
 253        struct hrtimer *timer;
 254
 255        if (!kvm_vcpu_is_bsp(vcpu) || !pit)
 256                return;
 257
 258        timer = &pit->pit_state.pit_timer.timer;
 259        if (hrtimer_cancel(timer))
 260                hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
 261}
 262
 263static void destroy_pit_timer(struct kvm_timer *pt)
 264{
 265        pr_debug("pit: execute del timer!\n");
 266        hrtimer_cancel(&pt->timer);
 267}
 268
 269static bool kpit_is_periodic(struct kvm_timer *ktimer)
 270{
 271        struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
 272                                                 pit_timer);
 273        return ps->is_periodic;
 274}
 275
 276static struct kvm_timer_ops kpit_ops = {
 277        .is_periodic = kpit_is_periodic,
 278};
 279
 280static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
 281{
 282        struct kvm_timer *pt = &ps->pit_timer;
 283        s64 interval;
 284
 285        interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
 286
 287        pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
 288
 289        /* TODO The new value only affected after the retriggered */
 290        hrtimer_cancel(&pt->timer);
 291        pt->period = interval;
 292        ps->is_periodic = is_period;
 293
 294        pt->timer.function = kvm_timer_fn;
 295        pt->t_ops = &kpit_ops;
 296        pt->kvm = ps->pit->kvm;
 297        pt->vcpu = pt->kvm->bsp_vcpu;
 298
 299        atomic_set(&pt->pending, 0);
 300        ps->irq_ack = 1;
 301
 302        hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
 303                      HRTIMER_MODE_ABS);
 304}
 305
 306static void pit_load_count(struct kvm *kvm, int channel, u32 val)
 307{
 308        struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
 309
 310        WARN_ON(!mutex_is_locked(&ps->lock));
 311
 312        pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
 313
 314        /*
 315         * The largest possible initial count is 0; this is equivalent
 316         * to 216 for binary counting and 104 for BCD counting.
 317         */
 318        if (val == 0)
 319                val = 0x10000;
 320
 321        ps->channels[channel].count = val;
 322
 323        if (channel != 0) {
 324                ps->channels[channel].count_load_time = ktime_get();
 325                return;
 326        }
 327
 328        /* Two types of timer
 329         * mode 1 is one shot, mode 2 is period, otherwise del timer */
 330        switch (ps->channels[0].mode) {
 331        case 0:
 332        case 1:
 333        /* FIXME: enhance mode 4 precision */
 334        case 4:
 335                if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)) {
 336                        create_pit_timer(ps, val, 0);
 337                }
 338                break;
 339        case 2:
 340        case 3:
 341                if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)){
 342                        create_pit_timer(ps, val, 1);
 343                }
 344                break;
 345        default:
 346                destroy_pit_timer(&ps->pit_timer);
 347        }
 348}
 349
 350void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
 351{
 352        u8 saved_mode;
 353        if (hpet_legacy_start) {
 354                /* save existing mode for later reenablement */
 355                saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
 356                kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
 357                pit_load_count(kvm, channel, val);
 358                kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
 359        } else {
 360                pit_load_count(kvm, channel, val);
 361        }
 362}
 363
 364static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
 365{
 366        return container_of(dev, struct kvm_pit, dev);
 367}
 368
 369static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
 370{
 371        return container_of(dev, struct kvm_pit, speaker_dev);
 372}
 373
 374static inline int pit_in_range(gpa_t addr)
 375{
 376        return ((addr >= KVM_PIT_BASE_ADDRESS) &&
 377                (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
 378}
 379
 380static int pit_ioport_write(struct kvm_io_device *this,
 381                            gpa_t addr, int len, const void *data)
 382{
 383        struct kvm_pit *pit = dev_to_pit(this);
 384        struct kvm_kpit_state *pit_state = &pit->pit_state;
 385        struct kvm *kvm = pit->kvm;
 386        int channel, access;
 387        struct kvm_kpit_channel_state *s;
 388        u32 val = *(u32 *) data;
 389        if (!pit_in_range(addr))
 390                return -EOPNOTSUPP;
 391
 392        val  &= 0xff;
 393        addr &= KVM_PIT_CHANNEL_MASK;
 394
 395        mutex_lock(&pit_state->lock);
 396
 397        if (val != 0)
 398                pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
 399                          (unsigned int)addr, len, val);
 400
 401        if (addr == 3) {
 402                channel = val >> 6;
 403                if (channel == 3) {
 404                        /* Read-Back Command. */
 405                        for (channel = 0; channel < 3; channel++) {
 406                                s = &pit_state->channels[channel];
 407                                if (val & (2 << channel)) {
 408                                        if (!(val & 0x20))
 409                                                pit_latch_count(kvm, channel);
 410                                        if (!(val & 0x10))
 411                                                pit_latch_status(kvm, channel);
 412                                }
 413                        }
 414                } else {
 415                        /* Select Counter <channel>. */
 416                        s = &pit_state->channels[channel];
 417                        access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
 418                        if (access == 0) {
 419                                pit_latch_count(kvm, channel);
 420                        } else {
 421                                s->rw_mode = access;
 422                                s->read_state = access;
 423                                s->write_state = access;
 424                                s->mode = (val >> 1) & 7;
 425                                if (s->mode > 5)
 426                                        s->mode -= 4;
 427                                s->bcd = val & 1;
 428                        }
 429                }
 430        } else {
 431                /* Write Count. */
 432                s = &pit_state->channels[addr];
 433                switch (s->write_state) {
 434                default:
 435                case RW_STATE_LSB:
 436                        pit_load_count(kvm, addr, val);
 437                        break;
 438                case RW_STATE_MSB:
 439                        pit_load_count(kvm, addr, val << 8);
 440                        break;
 441                case RW_STATE_WORD0:
 442                        s->write_latch = val;
 443                        s->write_state = RW_STATE_WORD1;
 444                        break;
 445                case RW_STATE_WORD1:
 446                        pit_load_count(kvm, addr, s->write_latch | (val << 8));
 447                        s->write_state = RW_STATE_WORD0;
 448                        break;
 449                }
 450        }
 451
 452        mutex_unlock(&pit_state->lock);
 453        return 0;
 454}
 455
 456static int pit_ioport_read(struct kvm_io_device *this,
 457                           gpa_t addr, int len, void *data)
 458{
 459        struct kvm_pit *pit = dev_to_pit(this);
 460        struct kvm_kpit_state *pit_state = &pit->pit_state;
 461        struct kvm *kvm = pit->kvm;
 462        int ret, count;
 463        struct kvm_kpit_channel_state *s;
 464        if (!pit_in_range(addr))
 465                return -EOPNOTSUPP;
 466
 467        addr &= KVM_PIT_CHANNEL_MASK;
 468        s = &pit_state->channels[addr];
 469
 470        mutex_lock(&pit_state->lock);
 471
 472        if (s->status_latched) {
 473                s->status_latched = 0;
 474                ret = s->status;
 475        } else if (s->count_latched) {
 476                switch (s->count_latched) {
 477                default:
 478                case RW_STATE_LSB:
 479                        ret = s->latched_count & 0xff;
 480                        s->count_latched = 0;
 481                        break;
 482                case RW_STATE_MSB:
 483                        ret = s->latched_count >> 8;
 484                        s->count_latched = 0;
 485                        break;
 486                case RW_STATE_WORD0:
 487                        ret = s->latched_count & 0xff;
 488                        s->count_latched = RW_STATE_MSB;
 489                        break;
 490                }
 491        } else {
 492                switch (s->read_state) {
 493                default:
 494                case RW_STATE_LSB:
 495                        count = pit_get_count(kvm, addr);
 496                        ret = count & 0xff;
 497                        break;
 498                case RW_STATE_MSB:
 499                        count = pit_get_count(kvm, addr);
 500                        ret = (count >> 8) & 0xff;
 501                        break;
 502                case RW_STATE_WORD0:
 503                        count = pit_get_count(kvm, addr);
 504                        ret = count & 0xff;
 505                        s->read_state = RW_STATE_WORD1;
 506                        break;
 507                case RW_STATE_WORD1:
 508                        count = pit_get_count(kvm, addr);
 509                        ret = (count >> 8) & 0xff;
 510                        s->read_state = RW_STATE_WORD0;
 511                        break;
 512                }
 513        }
 514
 515        if (len > sizeof(ret))
 516                len = sizeof(ret);
 517        memcpy(data, (char *)&ret, len);
 518
 519        mutex_unlock(&pit_state->lock);
 520        return 0;
 521}
 522
 523static int speaker_ioport_write(struct kvm_io_device *this,
 524                                gpa_t addr, int len, const void *data)
 525{
 526        struct kvm_pit *pit = speaker_to_pit(this);
 527        struct kvm_kpit_state *pit_state = &pit->pit_state;
 528        struct kvm *kvm = pit->kvm;
 529        u32 val = *(u32 *) data;
 530        if (addr != KVM_SPEAKER_BASE_ADDRESS)
 531                return -EOPNOTSUPP;
 532
 533        mutex_lock(&pit_state->lock);
 534        pit_state->speaker_data_on = (val >> 1) & 1;
 535        pit_set_gate(kvm, 2, val & 1);
 536        mutex_unlock(&pit_state->lock);
 537        return 0;
 538}
 539
 540static int speaker_ioport_read(struct kvm_io_device *this,
 541                               gpa_t addr, int len, void *data)
 542{
 543        struct kvm_pit *pit = speaker_to_pit(this);
 544        struct kvm_kpit_state *pit_state = &pit->pit_state;
 545        struct kvm *kvm = pit->kvm;
 546        unsigned int refresh_clock;
 547        int ret;
 548        if (addr != KVM_SPEAKER_BASE_ADDRESS)
 549                return -EOPNOTSUPP;
 550
 551        /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
 552        refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
 553
 554        mutex_lock(&pit_state->lock);
 555        ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
 556                (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
 557        if (len > sizeof(ret))
 558                len = sizeof(ret);
 559        memcpy(data, (char *)&ret, len);
 560        mutex_unlock(&pit_state->lock);
 561        return 0;
 562}
 563
 564void kvm_pit_reset(struct kvm_pit *pit)
 565{
 566        int i;
 567        struct kvm_kpit_channel_state *c;
 568
 569        mutex_lock(&pit->pit_state.lock);
 570        pit->pit_state.flags = 0;
 571        for (i = 0; i < 3; i++) {
 572                c = &pit->pit_state.channels[i];
 573                c->mode = 0xff;
 574                c->gate = (i != 2);
 575                pit_load_count(pit->kvm, i, 0);
 576        }
 577        mutex_unlock(&pit->pit_state.lock);
 578
 579        atomic_set(&pit->pit_state.pit_timer.pending, 0);
 580        pit->pit_state.irq_ack = 1;
 581}
 582
 583static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
 584{
 585        struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
 586
 587        if (!mask) {
 588                atomic_set(&pit->pit_state.pit_timer.pending, 0);
 589                pit->pit_state.irq_ack = 1;
 590        }
 591}
 592
 593static const struct kvm_io_device_ops pit_dev_ops = {
 594        .read     = pit_ioport_read,
 595        .write    = pit_ioport_write,
 596};
 597
 598static const struct kvm_io_device_ops speaker_dev_ops = {
 599        .read     = speaker_ioport_read,
 600        .write    = speaker_ioport_write,
 601};
 602
 603/* Caller must have writers lock on slots_lock */
 604struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
 605{
 606        struct kvm_pit *pit;
 607        struct kvm_kpit_state *pit_state;
 608        int ret;
 609
 610        pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
 611        if (!pit)
 612                return NULL;
 613
 614        pit->irq_source_id = kvm_request_irq_source_id(kvm);
 615        if (pit->irq_source_id < 0) {
 616                kfree(pit);
 617                return NULL;
 618        }
 619
 620        mutex_init(&pit->pit_state.lock);
 621        mutex_lock(&pit->pit_state.lock);
 622        spin_lock_init(&pit->pit_state.inject_lock);
 623
 624        kvm->arch.vpit = pit;
 625        pit->kvm = kvm;
 626
 627        pit_state = &pit->pit_state;
 628        pit_state->pit = pit;
 629        hrtimer_init(&pit_state->pit_timer.timer,
 630                     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 631        pit_state->irq_ack_notifier.gsi = 0;
 632        pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
 633        kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
 634        pit_state->pit_timer.reinject = true;
 635        mutex_unlock(&pit->pit_state.lock);
 636
 637        kvm_pit_reset(pit);
 638
 639        pit->mask_notifier.func = pit_mask_notifer;
 640        kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
 641
 642        kvm_iodevice_init(&pit->dev, &pit_dev_ops);
 643        ret = __kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
 644        if (ret < 0)
 645                goto fail;
 646
 647        if (flags & KVM_PIT_SPEAKER_DUMMY) {
 648                kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
 649                ret = __kvm_io_bus_register_dev(&kvm->pio_bus,
 650                                                &pit->speaker_dev);
 651                if (ret < 0)
 652                        goto fail_unregister;
 653        }
 654
 655        return pit;
 656
 657fail_unregister:
 658        __kvm_io_bus_unregister_dev(&kvm->pio_bus, &pit->dev);
 659
 660fail:
 661        if (pit->irq_source_id >= 0)
 662                kvm_free_irq_source_id(kvm, pit->irq_source_id);
 663
 664        kfree(pit);
 665        return NULL;
 666}
 667
 668void kvm_free_pit(struct kvm *kvm)
 669{
 670        struct hrtimer *timer;
 671
 672        if (kvm->arch.vpit) {
 673                kvm_unregister_irq_mask_notifier(kvm, 0,
 674                                               &kvm->arch.vpit->mask_notifier);
 675                kvm_unregister_irq_ack_notifier(kvm,
 676                                &kvm->arch.vpit->pit_state.irq_ack_notifier);
 677                mutex_lock(&kvm->arch.vpit->pit_state.lock);
 678                timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
 679                hrtimer_cancel(timer);
 680                kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
 681                mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 682                kfree(kvm->arch.vpit);
 683        }
 684}
 685
 686static void __inject_pit_timer_intr(struct kvm *kvm)
 687{
 688        struct kvm_vcpu *vcpu;
 689        int i;
 690
 691        mutex_lock(&kvm->irq_lock);
 692        kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
 693        kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
 694        mutex_unlock(&kvm->irq_lock);
 695
 696        /*
 697         * Provides NMI watchdog support via Virtual Wire mode.
 698         * The route is: PIT -> PIC -> LVT0 in NMI mode.
 699         *
 700         * Note: Our Virtual Wire implementation is simplified, only
 701         * propagating PIT interrupts to all VCPUs when they have set
 702         * LVT0 to NMI delivery. Other PIC interrupts are just sent to
 703         * VCPU0, and only if its LVT0 is in EXTINT mode.
 704         */
 705        if (kvm->arch.vapics_in_nmi_mode > 0)
 706                kvm_for_each_vcpu(i, vcpu, kvm)
 707                        kvm_apic_nmi_wd_deliver(vcpu);
 708}
 709
 710void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
 711{
 712        struct kvm_pit *pit = vcpu->kvm->arch.vpit;
 713        struct kvm *kvm = vcpu->kvm;
 714        struct kvm_kpit_state *ps;
 715
 716        if (pit) {
 717                int inject = 0;
 718                ps = &pit->pit_state;
 719
 720                /* Try to inject pending interrupts when
 721                 * last one has been acked.
 722                 */
 723                spin_lock(&ps->inject_lock);
 724                if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
 725                        ps->irq_ack = 0;
 726                        inject = 1;
 727                }
 728                spin_unlock(&ps->inject_lock);
 729                if (inject)
 730                        __inject_pit_timer_intr(kvm);
 731        }
 732}
 733