linux/arch/x86/kvm/vmx.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 *
   9 * Authors:
  10 *   Avi Kivity   <avi@qumranet.com>
  11 *   Yaniv Kamay  <yaniv@qumranet.com>
  12 *
  13 * This work is licensed under the terms of the GNU GPL, version 2.  See
  14 * the COPYING file in the top-level directory.
  15 *
  16 */
  17
  18#include "irq.h"
  19#include "mmu.h"
  20
  21#include <linux/kvm_host.h>
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/mm.h>
  25#include <linux/highmem.h>
  26#include <linux/sched.h>
  27#include <linux/moduleparam.h>
  28#include <linux/ftrace_event.h>
  29#include "kvm_cache_regs.h"
  30#include "x86.h"
  31
  32#include <asm/io.h>
  33#include <asm/desc.h>
  34#include <asm/vmx.h>
  35#include <asm/virtext.h>
  36#include <asm/mce.h>
  37
  38#include "trace.h"
  39
  40#define __ex(x) __kvm_handle_fault_on_reboot(x)
  41
  42MODULE_AUTHOR("Qumranet");
  43MODULE_LICENSE("GPL");
  44
  45static int __read_mostly bypass_guest_pf = 1;
  46module_param(bypass_guest_pf, bool, S_IRUGO);
  47
  48static int __read_mostly enable_vpid = 1;
  49module_param_named(vpid, enable_vpid, bool, 0444);
  50
  51static int __read_mostly flexpriority_enabled = 1;
  52module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  53
  54static int __read_mostly enable_ept = 1;
  55module_param_named(ept, enable_ept, bool, S_IRUGO);
  56
  57static int __read_mostly enable_unrestricted_guest = 1;
  58module_param_named(unrestricted_guest,
  59                        enable_unrestricted_guest, bool, S_IRUGO);
  60
  61static int __read_mostly emulate_invalid_guest_state = 0;
  62module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  63
  64struct vmcs {
  65        u32 revision_id;
  66        u32 abort;
  67        char data[0];
  68};
  69
  70struct vcpu_vmx {
  71        struct kvm_vcpu       vcpu;
  72        struct list_head      local_vcpus_link;
  73        unsigned long         host_rsp;
  74        int                   launched;
  75        u8                    fail;
  76        u32                   idt_vectoring_info;
  77        struct kvm_msr_entry *guest_msrs;
  78        struct kvm_msr_entry *host_msrs;
  79        int                   nmsrs;
  80        int                   save_nmsrs;
  81        int                   msr_offset_efer;
  82#ifdef CONFIG_X86_64
  83        int                   msr_offset_kernel_gs_base;
  84#endif
  85        struct vmcs          *vmcs;
  86        struct {
  87                int           loaded;
  88                u16           fs_sel, gs_sel, ldt_sel;
  89                int           gs_ldt_reload_needed;
  90                int           fs_reload_needed;
  91                int           guest_efer_loaded;
  92        } host_state;
  93        struct {
  94                int vm86_active;
  95                u8 save_iopl;
  96                struct kvm_save_segment {
  97                        u16 selector;
  98                        unsigned long base;
  99                        u32 limit;
 100                        u32 ar;
 101                } tr, es, ds, fs, gs;
 102                struct {
 103                        bool pending;
 104                        u8 vector;
 105                        unsigned rip;
 106                } irq;
 107        } rmode;
 108        int vpid;
 109        bool emulation_required;
 110        enum emulation_result invalid_state_emulation_result;
 111
 112        /* Support for vnmi-less CPUs */
 113        int soft_vnmi_blocked;
 114        ktime_t entry_time;
 115        s64 vnmi_blocked_time;
 116        u32 exit_reason;
 117};
 118
 119static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
 120{
 121        return container_of(vcpu, struct vcpu_vmx, vcpu);
 122}
 123
 124static int init_rmode(struct kvm *kvm);
 125static u64 construct_eptp(unsigned long root_hpa);
 126
 127static DEFINE_PER_CPU(struct vmcs *, vmxarea);
 128static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
 129static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
 130
 131static unsigned long *vmx_io_bitmap_a;
 132static unsigned long *vmx_io_bitmap_b;
 133static unsigned long *vmx_msr_bitmap_legacy;
 134static unsigned long *vmx_msr_bitmap_longmode;
 135
 136static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
 137static DEFINE_SPINLOCK(vmx_vpid_lock);
 138
 139static struct vmcs_config {
 140        int size;
 141        int order;
 142        u32 revision_id;
 143        u32 pin_based_exec_ctrl;
 144        u32 cpu_based_exec_ctrl;
 145        u32 cpu_based_2nd_exec_ctrl;
 146        u32 vmexit_ctrl;
 147        u32 vmentry_ctrl;
 148} vmcs_config;
 149
 150static struct vmx_capability {
 151        u32 ept;
 152        u32 vpid;
 153} vmx_capability;
 154
 155#define VMX_SEGMENT_FIELD(seg)                                  \
 156        [VCPU_SREG_##seg] = {                                   \
 157                .selector = GUEST_##seg##_SELECTOR,             \
 158                .base = GUEST_##seg##_BASE,                     \
 159                .limit = GUEST_##seg##_LIMIT,                   \
 160                .ar_bytes = GUEST_##seg##_AR_BYTES,             \
 161        }
 162
 163static struct kvm_vmx_segment_field {
 164        unsigned selector;
 165        unsigned base;
 166        unsigned limit;
 167        unsigned ar_bytes;
 168} kvm_vmx_segment_fields[] = {
 169        VMX_SEGMENT_FIELD(CS),
 170        VMX_SEGMENT_FIELD(DS),
 171        VMX_SEGMENT_FIELD(ES),
 172        VMX_SEGMENT_FIELD(FS),
 173        VMX_SEGMENT_FIELD(GS),
 174        VMX_SEGMENT_FIELD(SS),
 175        VMX_SEGMENT_FIELD(TR),
 176        VMX_SEGMENT_FIELD(LDTR),
 177};
 178
 179static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
 180
 181/*
 182 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
 183 * away by decrementing the array size.
 184 */
 185static const u32 vmx_msr_index[] = {
 186#ifdef CONFIG_X86_64
 187        MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
 188#endif
 189        MSR_EFER, MSR_K6_STAR,
 190};
 191#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
 192
 193static void load_msrs(struct kvm_msr_entry *e, int n)
 194{
 195        int i;
 196
 197        for (i = 0; i < n; ++i)
 198                wrmsrl(e[i].index, e[i].data);
 199}
 200
 201static void save_msrs(struct kvm_msr_entry *e, int n)
 202{
 203        int i;
 204
 205        for (i = 0; i < n; ++i)
 206                rdmsrl(e[i].index, e[i].data);
 207}
 208
 209static inline int is_page_fault(u32 intr_info)
 210{
 211        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 212                             INTR_INFO_VALID_MASK)) ==
 213                (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
 214}
 215
 216static inline int is_no_device(u32 intr_info)
 217{
 218        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 219                             INTR_INFO_VALID_MASK)) ==
 220                (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
 221}
 222
 223static inline int is_invalid_opcode(u32 intr_info)
 224{
 225        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 226                             INTR_INFO_VALID_MASK)) ==
 227                (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
 228}
 229
 230static inline int is_external_interrupt(u32 intr_info)
 231{
 232        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
 233                == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
 234}
 235
 236static inline int is_machine_check(u32 intr_info)
 237{
 238        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 239                             INTR_INFO_VALID_MASK)) ==
 240                (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
 241}
 242
 243static inline int cpu_has_vmx_msr_bitmap(void)
 244{
 245        return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
 246}
 247
 248static inline int cpu_has_vmx_tpr_shadow(void)
 249{
 250        return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
 251}
 252
 253static inline int vm_need_tpr_shadow(struct kvm *kvm)
 254{
 255        return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
 256}
 257
 258static inline int cpu_has_secondary_exec_ctrls(void)
 259{
 260        return vmcs_config.cpu_based_exec_ctrl &
 261                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
 262}
 263
 264static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
 265{
 266        return vmcs_config.cpu_based_2nd_exec_ctrl &
 267                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 268}
 269
 270static inline bool cpu_has_vmx_flexpriority(void)
 271{
 272        return cpu_has_vmx_tpr_shadow() &&
 273                cpu_has_vmx_virtualize_apic_accesses();
 274}
 275
 276static inline bool cpu_has_vmx_ept_execute_only(void)
 277{
 278        return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
 279}
 280
 281static inline bool cpu_has_vmx_eptp_uncacheable(void)
 282{
 283        return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
 284}
 285
 286static inline bool cpu_has_vmx_eptp_writeback(void)
 287{
 288        return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
 289}
 290
 291static inline bool cpu_has_vmx_ept_2m_page(void)
 292{
 293        return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
 294}
 295
 296static inline int cpu_has_vmx_invept_individual_addr(void)
 297{
 298        return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
 299}
 300
 301static inline int cpu_has_vmx_invept_context(void)
 302{
 303        return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
 304}
 305
 306static inline int cpu_has_vmx_invept_global(void)
 307{
 308        return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
 309}
 310
 311static inline int cpu_has_vmx_ept(void)
 312{
 313        return vmcs_config.cpu_based_2nd_exec_ctrl &
 314                SECONDARY_EXEC_ENABLE_EPT;
 315}
 316
 317static inline int cpu_has_vmx_unrestricted_guest(void)
 318{
 319        return vmcs_config.cpu_based_2nd_exec_ctrl &
 320                SECONDARY_EXEC_UNRESTRICTED_GUEST;
 321}
 322
 323static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
 324{
 325        return flexpriority_enabled &&
 326                (cpu_has_vmx_virtualize_apic_accesses()) &&
 327                (irqchip_in_kernel(kvm));
 328}
 329
 330static inline int cpu_has_vmx_vpid(void)
 331{
 332        return vmcs_config.cpu_based_2nd_exec_ctrl &
 333                SECONDARY_EXEC_ENABLE_VPID;
 334}
 335
 336static inline int cpu_has_virtual_nmis(void)
 337{
 338        return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
 339}
 340
 341static inline bool report_flexpriority(void)
 342{
 343        return flexpriority_enabled;
 344}
 345
 346static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
 347{
 348        int i;
 349
 350        for (i = 0; i < vmx->nmsrs; ++i)
 351                if (vmx->guest_msrs[i].index == msr)
 352                        return i;
 353        return -1;
 354}
 355
 356static inline void __invvpid(int ext, u16 vpid, gva_t gva)
 357{
 358    struct {
 359        u64 vpid : 16;
 360        u64 rsvd : 48;
 361        u64 gva;
 362    } operand = { vpid, 0, gva };
 363
 364    asm volatile (__ex(ASM_VMX_INVVPID)
 365                  /* CF==1 or ZF==1 --> rc = -1 */
 366                  "; ja 1f ; ud2 ; 1:"
 367                  : : "a"(&operand), "c"(ext) : "cc", "memory");
 368}
 369
 370static inline void __invept(int ext, u64 eptp, gpa_t gpa)
 371{
 372        struct {
 373                u64 eptp, gpa;
 374        } operand = {eptp, gpa};
 375
 376        asm volatile (__ex(ASM_VMX_INVEPT)
 377                        /* CF==1 or ZF==1 --> rc = -1 */
 378                        "; ja 1f ; ud2 ; 1:\n"
 379                        : : "a" (&operand), "c" (ext) : "cc", "memory");
 380}
 381
 382static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
 383{
 384        int i;
 385
 386        i = __find_msr_index(vmx, msr);
 387        if (i >= 0)
 388                return &vmx->guest_msrs[i];
 389        return NULL;
 390}
 391
 392static void vmcs_clear(struct vmcs *vmcs)
 393{
 394        u64 phys_addr = __pa(vmcs);
 395        u8 error;
 396
 397        asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
 398                      : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
 399                      : "cc", "memory");
 400        if (error)
 401                printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
 402                       vmcs, phys_addr);
 403}
 404
 405static void __vcpu_clear(void *arg)
 406{
 407        struct vcpu_vmx *vmx = arg;
 408        int cpu = raw_smp_processor_id();
 409
 410        if (vmx->vcpu.cpu == cpu)
 411                vmcs_clear(vmx->vmcs);
 412        if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
 413                per_cpu(current_vmcs, cpu) = NULL;
 414        rdtscll(vmx->vcpu.arch.host_tsc);
 415        list_del(&vmx->local_vcpus_link);
 416        vmx->vcpu.cpu = -1;
 417        vmx->launched = 0;
 418}
 419
 420static void vcpu_clear(struct vcpu_vmx *vmx)
 421{
 422        if (vmx->vcpu.cpu == -1)
 423                return;
 424        smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
 425}
 426
 427static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
 428{
 429        if (vmx->vpid == 0)
 430                return;
 431
 432        __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
 433}
 434
 435static inline void ept_sync_global(void)
 436{
 437        if (cpu_has_vmx_invept_global())
 438                __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
 439}
 440
 441static inline void ept_sync_context(u64 eptp)
 442{
 443        if (enable_ept) {
 444                if (cpu_has_vmx_invept_context())
 445                        __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
 446                else
 447                        ept_sync_global();
 448        }
 449}
 450
 451static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
 452{
 453        if (enable_ept) {
 454                if (cpu_has_vmx_invept_individual_addr())
 455                        __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
 456                                        eptp, gpa);
 457                else
 458                        ept_sync_context(eptp);
 459        }
 460}
 461
 462static unsigned long vmcs_readl(unsigned long field)
 463{
 464        unsigned long value;
 465
 466        asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
 467                      : "=a"(value) : "d"(field) : "cc");
 468        return value;
 469}
 470
 471static u16 vmcs_read16(unsigned long field)
 472{
 473        return vmcs_readl(field);
 474}
 475
 476static u32 vmcs_read32(unsigned long field)
 477{
 478        return vmcs_readl(field);
 479}
 480
 481static u64 vmcs_read64(unsigned long field)
 482{
 483#ifdef CONFIG_X86_64
 484        return vmcs_readl(field);
 485#else
 486        return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
 487#endif
 488}
 489
 490static noinline void vmwrite_error(unsigned long field, unsigned long value)
 491{
 492        printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
 493               field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
 494        dump_stack();
 495}
 496
 497static void vmcs_writel(unsigned long field, unsigned long value)
 498{
 499        u8 error;
 500
 501        asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
 502                       : "=q"(error) : "a"(value), "d"(field) : "cc");
 503        if (unlikely(error))
 504                vmwrite_error(field, value);
 505}
 506
 507static void vmcs_write16(unsigned long field, u16 value)
 508{
 509        vmcs_writel(field, value);
 510}
 511
 512static void vmcs_write32(unsigned long field, u32 value)
 513{
 514        vmcs_writel(field, value);
 515}
 516
 517static void vmcs_write64(unsigned long field, u64 value)
 518{
 519        vmcs_writel(field, value);
 520#ifndef CONFIG_X86_64
 521        asm volatile ("");
 522        vmcs_writel(field+1, value >> 32);
 523#endif
 524}
 525
 526static void vmcs_clear_bits(unsigned long field, u32 mask)
 527{
 528        vmcs_writel(field, vmcs_readl(field) & ~mask);
 529}
 530
 531static void vmcs_set_bits(unsigned long field, u32 mask)
 532{
 533        vmcs_writel(field, vmcs_readl(field) | mask);
 534}
 535
 536static void update_exception_bitmap(struct kvm_vcpu *vcpu)
 537{
 538        u32 eb;
 539
 540        eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
 541        if (!vcpu->fpu_active)
 542                eb |= 1u << NM_VECTOR;
 543        /*
 544         * Unconditionally intercept #DB so we can maintain dr6 without
 545         * reading it every exit.
 546         */
 547        eb |= 1u << DB_VECTOR;
 548        if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
 549                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
 550                        eb |= 1u << BP_VECTOR;
 551        }
 552        if (to_vmx(vcpu)->rmode.vm86_active)
 553                eb = ~0;
 554        if (enable_ept)
 555                eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
 556        vmcs_write32(EXCEPTION_BITMAP, eb);
 557}
 558
 559static void reload_tss(void)
 560{
 561        /*
 562         * VT restores TR but not its size.  Useless.
 563         */
 564        struct descriptor_table gdt;
 565        struct desc_struct *descs;
 566
 567        kvm_get_gdt(&gdt);
 568        descs = (void *)gdt.base;
 569        descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
 570        load_TR_desc();
 571}
 572
 573static void load_transition_efer(struct vcpu_vmx *vmx)
 574{
 575        int efer_offset = vmx->msr_offset_efer;
 576        u64 host_efer;
 577        u64 guest_efer;
 578        u64 ignore_bits;
 579
 580        if (efer_offset < 0)
 581                return;
 582        host_efer = vmx->host_msrs[efer_offset].data;
 583        guest_efer = vmx->guest_msrs[efer_offset].data;
 584
 585        /*
 586         * NX is emulated; LMA and LME handled by hardware; SCE meaninless
 587         * outside long mode
 588         */
 589        ignore_bits = EFER_NX | EFER_SCE;
 590#ifdef CONFIG_X86_64
 591        ignore_bits |= EFER_LMA | EFER_LME;
 592        /* SCE is meaningful only in long mode on Intel */
 593        if (guest_efer & EFER_LMA)
 594                ignore_bits &= ~(u64)EFER_SCE;
 595#endif
 596        if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
 597                return;
 598
 599        vmx->host_state.guest_efer_loaded = 1;
 600        guest_efer &= ~ignore_bits;
 601        guest_efer |= host_efer & ignore_bits;
 602        wrmsrl(MSR_EFER, guest_efer);
 603        vmx->vcpu.stat.efer_reload++;
 604}
 605
 606static void reload_host_efer(struct vcpu_vmx *vmx)
 607{
 608        if (vmx->host_state.guest_efer_loaded) {
 609                vmx->host_state.guest_efer_loaded = 0;
 610                load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
 611        }
 612}
 613
 614static void vmx_save_host_state(struct kvm_vcpu *vcpu)
 615{
 616        struct vcpu_vmx *vmx = to_vmx(vcpu);
 617
 618        if (vmx->host_state.loaded)
 619                return;
 620
 621        vmx->host_state.loaded = 1;
 622        /*
 623         * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
 624         * allow segment selectors with cpl > 0 or ti == 1.
 625         */
 626        vmx->host_state.ldt_sel = kvm_read_ldt();
 627        vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
 628        vmx->host_state.fs_sel = kvm_read_fs();
 629        if (!(vmx->host_state.fs_sel & 7)) {
 630                vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
 631                vmx->host_state.fs_reload_needed = 0;
 632        } else {
 633                vmcs_write16(HOST_FS_SELECTOR, 0);
 634                vmx->host_state.fs_reload_needed = 1;
 635        }
 636        vmx->host_state.gs_sel = kvm_read_gs();
 637        if (!(vmx->host_state.gs_sel & 7))
 638                vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
 639        else {
 640                vmcs_write16(HOST_GS_SELECTOR, 0);
 641                vmx->host_state.gs_ldt_reload_needed = 1;
 642        }
 643
 644#ifdef CONFIG_X86_64
 645        vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
 646        vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
 647#else
 648        vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
 649        vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
 650#endif
 651
 652#ifdef CONFIG_X86_64
 653        if (is_long_mode(&vmx->vcpu))
 654                save_msrs(vmx->host_msrs +
 655                          vmx->msr_offset_kernel_gs_base, 1);
 656
 657#endif
 658        load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
 659        load_transition_efer(vmx);
 660}
 661
 662static void __vmx_load_host_state(struct vcpu_vmx *vmx)
 663{
 664        unsigned long flags;
 665
 666        if (!vmx->host_state.loaded)
 667                return;
 668
 669        ++vmx->vcpu.stat.host_state_reload;
 670        vmx->host_state.loaded = 0;
 671        if (vmx->host_state.fs_reload_needed)
 672                kvm_load_fs(vmx->host_state.fs_sel);
 673        if (vmx->host_state.gs_ldt_reload_needed) {
 674                kvm_load_ldt(vmx->host_state.ldt_sel);
 675                /*
 676                 * If we have to reload gs, we must take care to
 677                 * preserve our gs base.
 678                 */
 679                local_irq_save(flags);
 680                kvm_load_gs(vmx->host_state.gs_sel);
 681#ifdef CONFIG_X86_64
 682                wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
 683#endif
 684                local_irq_restore(flags);
 685        }
 686        reload_tss();
 687        save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
 688        load_msrs(vmx->host_msrs, vmx->save_nmsrs);
 689        reload_host_efer(vmx);
 690}
 691
 692static void vmx_load_host_state(struct vcpu_vmx *vmx)
 693{
 694        preempt_disable();
 695        __vmx_load_host_state(vmx);
 696        preempt_enable();
 697}
 698
 699/*
 700 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
 701 * vcpu mutex is already taken.
 702 */
 703static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 704{
 705        struct vcpu_vmx *vmx = to_vmx(vcpu);
 706        u64 phys_addr = __pa(vmx->vmcs);
 707        u64 tsc_this, delta, new_offset;
 708
 709        if (vcpu->cpu != cpu) {
 710                vcpu_clear(vmx);
 711                kvm_migrate_timers(vcpu);
 712                set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
 713                local_irq_disable();
 714                list_add(&vmx->local_vcpus_link,
 715                         &per_cpu(vcpus_on_cpu, cpu));
 716                local_irq_enable();
 717        }
 718
 719        if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
 720                u8 error;
 721
 722                per_cpu(current_vmcs, cpu) = vmx->vmcs;
 723                asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
 724                              : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
 725                              : "cc");
 726                if (error)
 727                        printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
 728                               vmx->vmcs, phys_addr);
 729        }
 730
 731        if (vcpu->cpu != cpu) {
 732                struct descriptor_table dt;
 733                unsigned long sysenter_esp;
 734
 735                vcpu->cpu = cpu;
 736                /*
 737                 * Linux uses per-cpu TSS and GDT, so set these when switching
 738                 * processors.
 739                 */
 740                vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
 741                kvm_get_gdt(&dt);
 742                vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
 743
 744                rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
 745                vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
 746
 747                /*
 748                 * Make sure the time stamp counter is monotonous.
 749                 */
 750                rdtscll(tsc_this);
 751                if (tsc_this < vcpu->arch.host_tsc) {
 752                        delta = vcpu->arch.host_tsc - tsc_this;
 753                        new_offset = vmcs_read64(TSC_OFFSET) + delta;
 754                        vmcs_write64(TSC_OFFSET, new_offset);
 755                }
 756        }
 757}
 758
 759static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
 760{
 761        __vmx_load_host_state(to_vmx(vcpu));
 762}
 763
 764static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
 765{
 766        if (vcpu->fpu_active)
 767                return;
 768        vcpu->fpu_active = 1;
 769        vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
 770        if (vcpu->arch.cr0 & X86_CR0_TS)
 771                vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
 772        update_exception_bitmap(vcpu);
 773}
 774
 775static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
 776{
 777        if (!vcpu->fpu_active)
 778                return;
 779        vcpu->fpu_active = 0;
 780        vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
 781        update_exception_bitmap(vcpu);
 782}
 783
 784static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
 785{
 786        unsigned long rflags;
 787
 788        rflags = vmcs_readl(GUEST_RFLAGS);
 789        if (to_vmx(vcpu)->rmode.vm86_active)
 790                rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
 791        return rflags;
 792}
 793
 794static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
 795{
 796        if (to_vmx(vcpu)->rmode.vm86_active)
 797                rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
 798        vmcs_writel(GUEST_RFLAGS, rflags);
 799}
 800
 801static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 802{
 803        u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
 804        int ret = 0;
 805
 806        if (interruptibility & GUEST_INTR_STATE_STI)
 807                ret |= X86_SHADOW_INT_STI;
 808        if (interruptibility & GUEST_INTR_STATE_MOV_SS)
 809                ret |= X86_SHADOW_INT_MOV_SS;
 810
 811        return ret & mask;
 812}
 813
 814static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 815{
 816        u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
 817        u32 interruptibility = interruptibility_old;
 818
 819        interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
 820
 821        if (mask & X86_SHADOW_INT_MOV_SS)
 822                interruptibility |= GUEST_INTR_STATE_MOV_SS;
 823        if (mask & X86_SHADOW_INT_STI)
 824                interruptibility |= GUEST_INTR_STATE_STI;
 825
 826        if ((interruptibility != interruptibility_old))
 827                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
 828}
 829
 830static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
 831{
 832        unsigned long rip;
 833
 834        rip = kvm_rip_read(vcpu);
 835        rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
 836        kvm_rip_write(vcpu, rip);
 837
 838        /* skipping an emulated instruction also counts */
 839        vmx_set_interrupt_shadow(vcpu, 0);
 840}
 841
 842static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
 843                                bool has_error_code, u32 error_code)
 844{
 845        struct vcpu_vmx *vmx = to_vmx(vcpu);
 846        u32 intr_info = nr | INTR_INFO_VALID_MASK;
 847
 848        if (has_error_code) {
 849                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
 850                intr_info |= INTR_INFO_DELIVER_CODE_MASK;
 851        }
 852
 853        if (vmx->rmode.vm86_active) {
 854                vmx->rmode.irq.pending = true;
 855                vmx->rmode.irq.vector = nr;
 856                vmx->rmode.irq.rip = kvm_rip_read(vcpu);
 857                if (kvm_exception_is_soft(nr))
 858                        vmx->rmode.irq.rip +=
 859                                vmx->vcpu.arch.event_exit_inst_len;
 860                intr_info |= INTR_TYPE_SOFT_INTR;
 861                vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
 862                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
 863                kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
 864                return;
 865        }
 866
 867        if (kvm_exception_is_soft(nr)) {
 868                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
 869                             vmx->vcpu.arch.event_exit_inst_len);
 870                intr_info |= INTR_TYPE_SOFT_EXCEPTION;
 871        } else
 872                intr_info |= INTR_TYPE_HARD_EXCEPTION;
 873
 874        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
 875}
 876
 877/*
 878 * Swap MSR entry in host/guest MSR entry array.
 879 */
 880#ifdef CONFIG_X86_64
 881static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
 882{
 883        struct kvm_msr_entry tmp;
 884
 885        tmp = vmx->guest_msrs[to];
 886        vmx->guest_msrs[to] = vmx->guest_msrs[from];
 887        vmx->guest_msrs[from] = tmp;
 888        tmp = vmx->host_msrs[to];
 889        vmx->host_msrs[to] = vmx->host_msrs[from];
 890        vmx->host_msrs[from] = tmp;
 891}
 892#endif
 893
 894/*
 895 * Set up the vmcs to automatically save and restore system
 896 * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
 897 * mode, as fiddling with msrs is very expensive.
 898 */
 899static void setup_msrs(struct vcpu_vmx *vmx)
 900{
 901        int save_nmsrs;
 902        unsigned long *msr_bitmap;
 903
 904        vmx_load_host_state(vmx);
 905        save_nmsrs = 0;
 906#ifdef CONFIG_X86_64
 907        if (is_long_mode(&vmx->vcpu)) {
 908                int index;
 909
 910                index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
 911                if (index >= 0)
 912                        move_msr_up(vmx, index, save_nmsrs++);
 913                index = __find_msr_index(vmx, MSR_LSTAR);
 914                if (index >= 0)
 915                        move_msr_up(vmx, index, save_nmsrs++);
 916                index = __find_msr_index(vmx, MSR_CSTAR);
 917                if (index >= 0)
 918                        move_msr_up(vmx, index, save_nmsrs++);
 919                index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
 920                if (index >= 0)
 921                        move_msr_up(vmx, index, save_nmsrs++);
 922                /*
 923                 * MSR_K6_STAR is only needed on long mode guests, and only
 924                 * if efer.sce is enabled.
 925                 */
 926                index = __find_msr_index(vmx, MSR_K6_STAR);
 927                if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
 928                        move_msr_up(vmx, index, save_nmsrs++);
 929        }
 930#endif
 931        vmx->save_nmsrs = save_nmsrs;
 932
 933#ifdef CONFIG_X86_64
 934        vmx->msr_offset_kernel_gs_base =
 935                __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
 936#endif
 937        vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
 938
 939        if (cpu_has_vmx_msr_bitmap()) {
 940                if (is_long_mode(&vmx->vcpu))
 941                        msr_bitmap = vmx_msr_bitmap_longmode;
 942                else
 943                        msr_bitmap = vmx_msr_bitmap_legacy;
 944
 945                vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
 946        }
 947}
 948
 949/*
 950 * reads and returns guest's timestamp counter "register"
 951 * guest_tsc = host_tsc + tsc_offset    -- 21.3
 952 */
 953static u64 guest_read_tsc(void)
 954{
 955        u64 host_tsc, tsc_offset;
 956
 957        rdtscll(host_tsc);
 958        tsc_offset = vmcs_read64(TSC_OFFSET);
 959        return host_tsc + tsc_offset;
 960}
 961
 962/*
 963 * writes 'guest_tsc' into guest's timestamp counter "register"
 964 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
 965 */
 966static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
 967{
 968        vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
 969}
 970
 971/*
 972 * Reads an msr value (of 'msr_index') into 'pdata'.
 973 * Returns 0 on success, non-0 otherwise.
 974 * Assumes vcpu_load() was already called.
 975 */
 976static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
 977{
 978        u64 data;
 979        struct kvm_msr_entry *msr;
 980
 981        if (!pdata) {
 982                printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
 983                return -EINVAL;
 984        }
 985
 986        switch (msr_index) {
 987#ifdef CONFIG_X86_64
 988        case MSR_FS_BASE:
 989                data = vmcs_readl(GUEST_FS_BASE);
 990                break;
 991        case MSR_GS_BASE:
 992                data = vmcs_readl(GUEST_GS_BASE);
 993                break;
 994        case MSR_EFER:
 995                return kvm_get_msr_common(vcpu, msr_index, pdata);
 996#endif
 997        case MSR_IA32_TSC:
 998                data = guest_read_tsc();
 999                break;
1000        case MSR_IA32_SYSENTER_CS:
1001                data = vmcs_read32(GUEST_SYSENTER_CS);
1002                break;
1003        case MSR_IA32_SYSENTER_EIP:
1004                data = vmcs_readl(GUEST_SYSENTER_EIP);
1005                break;
1006        case MSR_IA32_SYSENTER_ESP:
1007                data = vmcs_readl(GUEST_SYSENTER_ESP);
1008                break;
1009        default:
1010                msr = find_msr_entry(to_vmx(vcpu), msr_index);
1011                if (msr) {
1012                        vmx_load_host_state(to_vmx(vcpu));
1013                        data = msr->data;
1014                        break;
1015                }
1016                return kvm_get_msr_common(vcpu, msr_index, pdata);
1017        }
1018
1019        *pdata = data;
1020        return 0;
1021}
1022
1023/*
1024 * Writes msr value into into the appropriate "register".
1025 * Returns 0 on success, non-0 otherwise.
1026 * Assumes vcpu_load() was already called.
1027 */
1028static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1029{
1030        struct vcpu_vmx *vmx = to_vmx(vcpu);
1031        struct kvm_msr_entry *msr;
1032        u64 host_tsc;
1033        int ret = 0;
1034
1035        switch (msr_index) {
1036        case MSR_EFER:
1037                vmx_load_host_state(vmx);
1038                ret = kvm_set_msr_common(vcpu, msr_index, data);
1039                break;
1040#ifdef CONFIG_X86_64
1041        case MSR_FS_BASE:
1042                vmcs_writel(GUEST_FS_BASE, data);
1043                break;
1044        case MSR_GS_BASE:
1045                vmcs_writel(GUEST_GS_BASE, data);
1046                break;
1047#endif
1048        case MSR_IA32_SYSENTER_CS:
1049                vmcs_write32(GUEST_SYSENTER_CS, data);
1050                break;
1051        case MSR_IA32_SYSENTER_EIP:
1052                vmcs_writel(GUEST_SYSENTER_EIP, data);
1053                break;
1054        case MSR_IA32_SYSENTER_ESP:
1055                vmcs_writel(GUEST_SYSENTER_ESP, data);
1056                break;
1057        case MSR_IA32_TSC:
1058                rdtscll(host_tsc);
1059                guest_write_tsc(data, host_tsc);
1060                break;
1061        case MSR_IA32_CR_PAT:
1062                if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1063                        vmcs_write64(GUEST_IA32_PAT, data);
1064                        vcpu->arch.pat = data;
1065                        break;
1066                }
1067                /* Otherwise falls through to kvm_set_msr_common */
1068        default:
1069                msr = find_msr_entry(vmx, msr_index);
1070                if (msr) {
1071                        vmx_load_host_state(vmx);
1072                        msr->data = data;
1073                        break;
1074                }
1075                ret = kvm_set_msr_common(vcpu, msr_index, data);
1076        }
1077
1078        return ret;
1079}
1080
1081static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1082{
1083        __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1084        switch (reg) {
1085        case VCPU_REGS_RSP:
1086                vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1087                break;
1088        case VCPU_REGS_RIP:
1089                vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1090                break;
1091        case VCPU_EXREG_PDPTR:
1092                if (enable_ept)
1093                        ept_save_pdptrs(vcpu);
1094                break;
1095        default:
1096                break;
1097        }
1098}
1099
1100static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1101{
1102        int old_debug = vcpu->guest_debug;
1103        unsigned long flags;
1104
1105        vcpu->guest_debug = dbg->control;
1106        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
1107                vcpu->guest_debug = 0;
1108
1109        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1110                vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1111        else
1112                vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1113
1114        flags = vmcs_readl(GUEST_RFLAGS);
1115        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1116                flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1117        else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1118                flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1119        vmcs_writel(GUEST_RFLAGS, flags);
1120
1121        update_exception_bitmap(vcpu);
1122
1123        return 0;
1124}
1125
1126static __init int cpu_has_kvm_support(void)
1127{
1128        return cpu_has_vmx();
1129}
1130
1131static __init int vmx_disabled_by_bios(void)
1132{
1133        u64 msr;
1134
1135        rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1136        return (msr & (FEATURE_CONTROL_LOCKED |
1137                       FEATURE_CONTROL_VMXON_ENABLED))
1138            == FEATURE_CONTROL_LOCKED;
1139        /* locked but not enabled */
1140}
1141
1142static void hardware_enable(void *garbage)
1143{
1144        int cpu = raw_smp_processor_id();
1145        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1146        u64 old;
1147
1148        INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1149        rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1150        if ((old & (FEATURE_CONTROL_LOCKED |
1151                    FEATURE_CONTROL_VMXON_ENABLED))
1152            != (FEATURE_CONTROL_LOCKED |
1153                FEATURE_CONTROL_VMXON_ENABLED))
1154                /* enable and lock */
1155                wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1156                       FEATURE_CONTROL_LOCKED |
1157                       FEATURE_CONTROL_VMXON_ENABLED);
1158        write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1159        asm volatile (ASM_VMX_VMXON_RAX
1160                      : : "a"(&phys_addr), "m"(phys_addr)
1161                      : "memory", "cc");
1162}
1163
1164static void vmclear_local_vcpus(void)
1165{
1166        int cpu = raw_smp_processor_id();
1167        struct vcpu_vmx *vmx, *n;
1168
1169        list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1170                                 local_vcpus_link)
1171                __vcpu_clear(vmx);
1172}
1173
1174
1175/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1176 * tricks.
1177 */
1178static void kvm_cpu_vmxoff(void)
1179{
1180        asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1181        write_cr4(read_cr4() & ~X86_CR4_VMXE);
1182}
1183
1184static void hardware_disable(void *garbage)
1185{
1186        vmclear_local_vcpus();
1187        kvm_cpu_vmxoff();
1188}
1189
1190static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1191                                      u32 msr, u32 *result)
1192{
1193        u32 vmx_msr_low, vmx_msr_high;
1194        u32 ctl = ctl_min | ctl_opt;
1195
1196        rdmsr(msr, vmx_msr_low, vmx_msr_high);
1197
1198        ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1199        ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1200
1201        /* Ensure minimum (required) set of control bits are supported. */
1202        if (ctl_min & ~ctl)
1203                return -EIO;
1204
1205        *result = ctl;
1206        return 0;
1207}
1208
1209static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1210{
1211        u32 vmx_msr_low, vmx_msr_high;
1212        u32 min, opt, min2, opt2;
1213        u32 _pin_based_exec_control = 0;
1214        u32 _cpu_based_exec_control = 0;
1215        u32 _cpu_based_2nd_exec_control = 0;
1216        u32 _vmexit_control = 0;
1217        u32 _vmentry_control = 0;
1218
1219        min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1220        opt = PIN_BASED_VIRTUAL_NMIS;
1221        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1222                                &_pin_based_exec_control) < 0)
1223                return -EIO;
1224
1225        min = CPU_BASED_HLT_EXITING |
1226#ifdef CONFIG_X86_64
1227              CPU_BASED_CR8_LOAD_EXITING |
1228              CPU_BASED_CR8_STORE_EXITING |
1229#endif
1230              CPU_BASED_CR3_LOAD_EXITING |
1231              CPU_BASED_CR3_STORE_EXITING |
1232              CPU_BASED_USE_IO_BITMAPS |
1233              CPU_BASED_MOV_DR_EXITING |
1234              CPU_BASED_USE_TSC_OFFSETING |
1235              CPU_BASED_INVLPG_EXITING;
1236        opt = CPU_BASED_TPR_SHADOW |
1237              CPU_BASED_USE_MSR_BITMAPS |
1238              CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1239        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1240                                &_cpu_based_exec_control) < 0)
1241                return -EIO;
1242#ifdef CONFIG_X86_64
1243        if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1244                _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1245                                           ~CPU_BASED_CR8_STORE_EXITING;
1246#endif
1247        if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1248                min2 = 0;
1249                opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1250                        SECONDARY_EXEC_WBINVD_EXITING |
1251                        SECONDARY_EXEC_ENABLE_VPID |
1252                        SECONDARY_EXEC_ENABLE_EPT |
1253                        SECONDARY_EXEC_UNRESTRICTED_GUEST;
1254                if (adjust_vmx_controls(min2, opt2,
1255                                        MSR_IA32_VMX_PROCBASED_CTLS2,
1256                                        &_cpu_based_2nd_exec_control) < 0)
1257                        return -EIO;
1258        }
1259#ifndef CONFIG_X86_64
1260        if (!(_cpu_based_2nd_exec_control &
1261                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1262                _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1263#endif
1264        if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1265                /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1266                   enabled */
1267                _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1268                                             CPU_BASED_CR3_STORE_EXITING |
1269                                             CPU_BASED_INVLPG_EXITING);
1270                rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1271                      vmx_capability.ept, vmx_capability.vpid);
1272        }
1273
1274        min = 0;
1275#ifdef CONFIG_X86_64
1276        min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1277#endif
1278        opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1279        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1280                                &_vmexit_control) < 0)
1281                return -EIO;
1282
1283        min = 0;
1284        opt = VM_ENTRY_LOAD_IA32_PAT;
1285        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1286                                &_vmentry_control) < 0)
1287                return -EIO;
1288
1289        rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1290
1291        /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1292        if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1293                return -EIO;
1294
1295#ifdef CONFIG_X86_64
1296        /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1297        if (vmx_msr_high & (1u<<16))
1298                return -EIO;
1299#endif
1300
1301        /* Require Write-Back (WB) memory type for VMCS accesses. */
1302        if (((vmx_msr_high >> 18) & 15) != 6)
1303                return -EIO;
1304
1305        vmcs_conf->size = vmx_msr_high & 0x1fff;
1306        vmcs_conf->order = get_order(vmcs_config.size);
1307        vmcs_conf->revision_id = vmx_msr_low;
1308
1309        vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1310        vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1311        vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1312        vmcs_conf->vmexit_ctrl         = _vmexit_control;
1313        vmcs_conf->vmentry_ctrl        = _vmentry_control;
1314
1315        return 0;
1316}
1317
1318static struct vmcs *alloc_vmcs_cpu(int cpu)
1319{
1320        int node = cpu_to_node(cpu);
1321        struct page *pages;
1322        struct vmcs *vmcs;
1323
1324        pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1325        if (!pages)
1326                return NULL;
1327        vmcs = page_address(pages);
1328        memset(vmcs, 0, vmcs_config.size);
1329        vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1330        return vmcs;
1331}
1332
1333static struct vmcs *alloc_vmcs(void)
1334{
1335        return alloc_vmcs_cpu(raw_smp_processor_id());
1336}
1337
1338static void free_vmcs(struct vmcs *vmcs)
1339{
1340        free_pages((unsigned long)vmcs, vmcs_config.order);
1341}
1342
1343static void free_kvm_area(void)
1344{
1345        int cpu;
1346
1347        for_each_online_cpu(cpu)
1348                free_vmcs(per_cpu(vmxarea, cpu));
1349}
1350
1351static __init int alloc_kvm_area(void)
1352{
1353        int cpu;
1354
1355        for_each_online_cpu(cpu) {
1356                struct vmcs *vmcs;
1357
1358                vmcs = alloc_vmcs_cpu(cpu);
1359                if (!vmcs) {
1360                        free_kvm_area();
1361                        return -ENOMEM;
1362                }
1363
1364                per_cpu(vmxarea, cpu) = vmcs;
1365        }
1366        return 0;
1367}
1368
1369static __init int hardware_setup(void)
1370{
1371        if (setup_vmcs_config(&vmcs_config) < 0)
1372                return -EIO;
1373
1374        if (boot_cpu_has(X86_FEATURE_NX))
1375                kvm_enable_efer_bits(EFER_NX);
1376
1377        if (!cpu_has_vmx_vpid())
1378                enable_vpid = 0;
1379
1380        if (!cpu_has_vmx_ept()) {
1381                enable_ept = 0;
1382                enable_unrestricted_guest = 0;
1383        }
1384
1385        if (!cpu_has_vmx_unrestricted_guest())
1386                enable_unrestricted_guest = 0;
1387
1388        if (!cpu_has_vmx_flexpriority())
1389                flexpriority_enabled = 0;
1390
1391        if (!cpu_has_vmx_tpr_shadow())
1392                kvm_x86_ops->update_cr8_intercept = NULL;
1393
1394        if (enable_ept && !cpu_has_vmx_ept_2m_page())
1395                kvm_disable_largepages();
1396
1397        return alloc_kvm_area();
1398}
1399
1400static __exit void hardware_unsetup(void)
1401{
1402        free_kvm_area();
1403}
1404
1405static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1406{
1407        struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1408
1409        if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1410                vmcs_write16(sf->selector, save->selector);
1411                vmcs_writel(sf->base, save->base);
1412                vmcs_write32(sf->limit, save->limit);
1413                vmcs_write32(sf->ar_bytes, save->ar);
1414        } else {
1415                u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1416                        << AR_DPL_SHIFT;
1417                vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1418        }
1419}
1420
1421static void enter_pmode(struct kvm_vcpu *vcpu)
1422{
1423        unsigned long flags;
1424        struct vcpu_vmx *vmx = to_vmx(vcpu);
1425
1426        vmx->emulation_required = 1;
1427        vmx->rmode.vm86_active = 0;
1428
1429        vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1430        vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1431        vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1432
1433        flags = vmcs_readl(GUEST_RFLAGS);
1434        flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1435        flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1436        vmcs_writel(GUEST_RFLAGS, flags);
1437
1438        vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1439                        (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1440
1441        update_exception_bitmap(vcpu);
1442
1443        if (emulate_invalid_guest_state)
1444                return;
1445
1446        fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1447        fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1448        fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1449        fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1450
1451        vmcs_write16(GUEST_SS_SELECTOR, 0);
1452        vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1453
1454        vmcs_write16(GUEST_CS_SELECTOR,
1455                     vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1456        vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1457}
1458
1459static gva_t rmode_tss_base(struct kvm *kvm)
1460{
1461        if (!kvm->arch.tss_addr) {
1462                gfn_t base_gfn = kvm->memslots[0].base_gfn +
1463                                 kvm->memslots[0].npages - 3;
1464                return base_gfn << PAGE_SHIFT;
1465        }
1466        return kvm->arch.tss_addr;
1467}
1468
1469static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1470{
1471        struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1472
1473        save->selector = vmcs_read16(sf->selector);
1474        save->base = vmcs_readl(sf->base);
1475        save->limit = vmcs_read32(sf->limit);
1476        save->ar = vmcs_read32(sf->ar_bytes);
1477        vmcs_write16(sf->selector, save->base >> 4);
1478        vmcs_write32(sf->base, save->base & 0xfffff);
1479        vmcs_write32(sf->limit, 0xffff);
1480        vmcs_write32(sf->ar_bytes, 0xf3);
1481}
1482
1483static void enter_rmode(struct kvm_vcpu *vcpu)
1484{
1485        unsigned long flags;
1486        struct vcpu_vmx *vmx = to_vmx(vcpu);
1487
1488        if (enable_unrestricted_guest)
1489                return;
1490
1491        vmx->emulation_required = 1;
1492        vmx->rmode.vm86_active = 1;
1493
1494        vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1495        vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1496
1497        vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1498        vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1499
1500        vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1501        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1502
1503        flags = vmcs_readl(GUEST_RFLAGS);
1504        vmx->rmode.save_iopl
1505                = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1506
1507        flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1508
1509        vmcs_writel(GUEST_RFLAGS, flags);
1510        vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1511        update_exception_bitmap(vcpu);
1512
1513        if (emulate_invalid_guest_state)
1514                goto continue_rmode;
1515
1516        vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1517        vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1518        vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1519
1520        vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1521        vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1522        if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1523                vmcs_writel(GUEST_CS_BASE, 0xf0000);
1524        vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1525
1526        fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1527        fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1528        fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1529        fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1530
1531continue_rmode:
1532        kvm_mmu_reset_context(vcpu);
1533        init_rmode(vcpu->kvm);
1534}
1535
1536static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1537{
1538        struct vcpu_vmx *vmx = to_vmx(vcpu);
1539        struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1540
1541        vcpu->arch.shadow_efer = efer;
1542        if (!msr)
1543                return;
1544        if (efer & EFER_LMA) {
1545                vmcs_write32(VM_ENTRY_CONTROLS,
1546                             vmcs_read32(VM_ENTRY_CONTROLS) |
1547                             VM_ENTRY_IA32E_MODE);
1548                msr->data = efer;
1549        } else {
1550                vmcs_write32(VM_ENTRY_CONTROLS,
1551                             vmcs_read32(VM_ENTRY_CONTROLS) &
1552                             ~VM_ENTRY_IA32E_MODE);
1553
1554                msr->data = efer & ~EFER_LME;
1555        }
1556        setup_msrs(vmx);
1557}
1558
1559#ifdef CONFIG_X86_64
1560
1561static void enter_lmode(struct kvm_vcpu *vcpu)
1562{
1563        u32 guest_tr_ar;
1564
1565        guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1566        if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1567                printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1568                       __func__);
1569                vmcs_write32(GUEST_TR_AR_BYTES,
1570                             (guest_tr_ar & ~AR_TYPE_MASK)
1571                             | AR_TYPE_BUSY_64_TSS);
1572        }
1573        vcpu->arch.shadow_efer |= EFER_LMA;
1574        vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1575}
1576
1577static void exit_lmode(struct kvm_vcpu *vcpu)
1578{
1579        vcpu->arch.shadow_efer &= ~EFER_LMA;
1580
1581        vmcs_write32(VM_ENTRY_CONTROLS,
1582                     vmcs_read32(VM_ENTRY_CONTROLS)
1583                     & ~VM_ENTRY_IA32E_MODE);
1584}
1585
1586#endif
1587
1588static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1589{
1590        vpid_sync_vcpu_all(to_vmx(vcpu));
1591        if (enable_ept)
1592                ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1593}
1594
1595static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1596{
1597        vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1598        vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1599}
1600
1601static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1602{
1603        if (!test_bit(VCPU_EXREG_PDPTR,
1604                      (unsigned long *)&vcpu->arch.regs_dirty))
1605                return;
1606
1607        if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1608                vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1609                vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1610                vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1611                vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1612        }
1613}
1614
1615static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1616{
1617        if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1618                vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1619                vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1620                vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1621                vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1622        }
1623
1624        __set_bit(VCPU_EXREG_PDPTR,
1625                  (unsigned long *)&vcpu->arch.regs_avail);
1626        __set_bit(VCPU_EXREG_PDPTR,
1627                  (unsigned long *)&vcpu->arch.regs_dirty);
1628}
1629
1630static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1631
1632static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1633                                        unsigned long cr0,
1634                                        struct kvm_vcpu *vcpu)
1635{
1636        if (!(cr0 & X86_CR0_PG)) {
1637                /* From paging/starting to nonpaging */
1638                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1639                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1640                             (CPU_BASED_CR3_LOAD_EXITING |
1641                              CPU_BASED_CR3_STORE_EXITING));
1642                vcpu->arch.cr0 = cr0;
1643                vmx_set_cr4(vcpu, vcpu->arch.cr4);
1644        } else if (!is_paging(vcpu)) {
1645                /* From nonpaging to paging */
1646                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1647                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1648                             ~(CPU_BASED_CR3_LOAD_EXITING |
1649                               CPU_BASED_CR3_STORE_EXITING));
1650                vcpu->arch.cr0 = cr0;
1651                vmx_set_cr4(vcpu, vcpu->arch.cr4);
1652        }
1653
1654        if (!(cr0 & X86_CR0_WP))
1655                *hw_cr0 &= ~X86_CR0_WP;
1656}
1657
1658static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1659                                        struct kvm_vcpu *vcpu)
1660{
1661        if (!is_paging(vcpu)) {
1662                *hw_cr4 &= ~X86_CR4_PAE;
1663                *hw_cr4 |= X86_CR4_PSE;
1664        } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1665                *hw_cr4 &= ~X86_CR4_PAE;
1666}
1667
1668static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1669{
1670        struct vcpu_vmx *vmx = to_vmx(vcpu);
1671        unsigned long hw_cr0;
1672
1673        if (enable_unrestricted_guest)
1674                hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1675                        | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1676        else
1677                hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1678
1679        vmx_fpu_deactivate(vcpu);
1680
1681        if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1682                enter_pmode(vcpu);
1683
1684        if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1685                enter_rmode(vcpu);
1686
1687#ifdef CONFIG_X86_64
1688        if (vcpu->arch.shadow_efer & EFER_LME) {
1689                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1690                        enter_lmode(vcpu);
1691                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1692                        exit_lmode(vcpu);
1693        }
1694#endif
1695
1696        if (enable_ept)
1697                ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1698
1699        vmcs_writel(CR0_READ_SHADOW, cr0);
1700        vmcs_writel(GUEST_CR0, hw_cr0);
1701        vcpu->arch.cr0 = cr0;
1702
1703        if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1704                vmx_fpu_activate(vcpu);
1705}
1706
1707static u64 construct_eptp(unsigned long root_hpa)
1708{
1709        u64 eptp;
1710
1711        /* TODO write the value reading from MSR */
1712        eptp = VMX_EPT_DEFAULT_MT |
1713                VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1714        eptp |= (root_hpa & PAGE_MASK);
1715
1716        return eptp;
1717}
1718
1719static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1720{
1721        unsigned long guest_cr3;
1722        u64 eptp;
1723
1724        guest_cr3 = cr3;
1725        if (enable_ept) {
1726                eptp = construct_eptp(cr3);
1727                vmcs_write64(EPT_POINTER, eptp);
1728                guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1729                        vcpu->kvm->arch.ept_identity_map_addr;
1730        }
1731
1732        vmx_flush_tlb(vcpu);
1733        vmcs_writel(GUEST_CR3, guest_cr3);
1734        if (vcpu->arch.cr0 & X86_CR0_PE)
1735                vmx_fpu_deactivate(vcpu);
1736}
1737
1738static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1739{
1740        unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1741                    KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1742
1743        vcpu->arch.cr4 = cr4;
1744        if (enable_ept)
1745                ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1746
1747        vmcs_writel(CR4_READ_SHADOW, cr4);
1748        vmcs_writel(GUEST_CR4, hw_cr4);
1749}
1750
1751static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1752{
1753        struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1754
1755        return vmcs_readl(sf->base);
1756}
1757
1758static void vmx_get_segment(struct kvm_vcpu *vcpu,
1759                            struct kvm_segment *var, int seg)
1760{
1761        struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1762        u32 ar;
1763
1764        var->base = vmcs_readl(sf->base);
1765        var->limit = vmcs_read32(sf->limit);
1766        var->selector = vmcs_read16(sf->selector);
1767        ar = vmcs_read32(sf->ar_bytes);
1768        if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1769                ar = 0;
1770        var->type = ar & 15;
1771        var->s = (ar >> 4) & 1;
1772        var->dpl = (ar >> 5) & 3;
1773        var->present = (ar >> 7) & 1;
1774        var->avl = (ar >> 12) & 1;
1775        var->l = (ar >> 13) & 1;
1776        var->db = (ar >> 14) & 1;
1777        var->g = (ar >> 15) & 1;
1778        var->unusable = (ar >> 16) & 1;
1779}
1780
1781static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1782{
1783        if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1784                return 0;
1785
1786        if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1787                return 3;
1788
1789        return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1790}
1791
1792static u32 vmx_segment_access_rights(struct kvm_segment *var)
1793{
1794        u32 ar;
1795
1796        if (var->unusable)
1797                ar = 1 << 16;
1798        else {
1799                ar = var->type & 15;
1800                ar |= (var->s & 1) << 4;
1801                ar |= (var->dpl & 3) << 5;
1802                ar |= (var->present & 1) << 7;
1803                ar |= (var->avl & 1) << 12;
1804                ar |= (var->l & 1) << 13;
1805                ar |= (var->db & 1) << 14;
1806                ar |= (var->g & 1) << 15;
1807        }
1808        if (ar == 0) /* a 0 value means unusable */
1809                ar = AR_UNUSABLE_MASK;
1810
1811        return ar;
1812}
1813
1814static void vmx_set_segment(struct kvm_vcpu *vcpu,
1815                            struct kvm_segment *var, int seg)
1816{
1817        struct vcpu_vmx *vmx = to_vmx(vcpu);
1818        struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1819        u32 ar;
1820
1821        if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1822                vmx->rmode.tr.selector = var->selector;
1823                vmx->rmode.tr.base = var->base;
1824                vmx->rmode.tr.limit = var->limit;
1825                vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1826                return;
1827        }
1828        vmcs_writel(sf->base, var->base);
1829        vmcs_write32(sf->limit, var->limit);
1830        vmcs_write16(sf->selector, var->selector);
1831        if (vmx->rmode.vm86_active && var->s) {
1832                /*
1833                 * Hack real-mode segments into vm86 compatibility.
1834                 */
1835                if (var->base == 0xffff0000 && var->selector == 0xf000)
1836                        vmcs_writel(sf->base, 0xf0000);
1837                ar = 0xf3;
1838        } else
1839                ar = vmx_segment_access_rights(var);
1840
1841        /*
1842         *   Fix the "Accessed" bit in AR field of segment registers for older
1843         * qemu binaries.
1844         *   IA32 arch specifies that at the time of processor reset the
1845         * "Accessed" bit in the AR field of segment registers is 1. And qemu
1846         * is setting it to 0 in the usedland code. This causes invalid guest
1847         * state vmexit when "unrestricted guest" mode is turned on.
1848         *    Fix for this setup issue in cpu_reset is being pushed in the qemu
1849         * tree. Newer qemu binaries with that qemu fix would not need this
1850         * kvm hack.
1851         */
1852        if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1853                ar |= 0x1; /* Accessed */
1854
1855        vmcs_write32(sf->ar_bytes, ar);
1856}
1857
1858static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1859{
1860        u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1861
1862        *db = (ar >> 14) & 1;
1863        *l = (ar >> 13) & 1;
1864}
1865
1866static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1867{
1868        dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1869        dt->base = vmcs_readl(GUEST_IDTR_BASE);
1870}
1871
1872static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1873{
1874        vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1875        vmcs_writel(GUEST_IDTR_BASE, dt->base);
1876}
1877
1878static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1879{
1880        dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1881        dt->base = vmcs_readl(GUEST_GDTR_BASE);
1882}
1883
1884static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1885{
1886        vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1887        vmcs_writel(GUEST_GDTR_BASE, dt->base);
1888}
1889
1890static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1891{
1892        struct kvm_segment var;
1893        u32 ar;
1894
1895        vmx_get_segment(vcpu, &var, seg);
1896        ar = vmx_segment_access_rights(&var);
1897
1898        if (var.base != (var.selector << 4))
1899                return false;
1900        if (var.limit != 0xffff)
1901                return false;
1902        if (ar != 0xf3)
1903                return false;
1904
1905        return true;
1906}
1907
1908static bool code_segment_valid(struct kvm_vcpu *vcpu)
1909{
1910        struct kvm_segment cs;
1911        unsigned int cs_rpl;
1912
1913        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1914        cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1915
1916        if (cs.unusable)
1917                return false;
1918        if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1919                return false;
1920        if (!cs.s)
1921                return false;
1922        if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1923                if (cs.dpl > cs_rpl)
1924                        return false;
1925        } else {
1926                if (cs.dpl != cs_rpl)
1927                        return false;
1928        }
1929        if (!cs.present)
1930                return false;
1931
1932        /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1933        return true;
1934}
1935
1936static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1937{
1938        struct kvm_segment ss;
1939        unsigned int ss_rpl;
1940
1941        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1942        ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1943
1944        if (ss.unusable)
1945                return true;
1946        if (ss.type != 3 && ss.type != 7)
1947                return false;
1948        if (!ss.s)
1949                return false;
1950        if (ss.dpl != ss_rpl) /* DPL != RPL */
1951                return false;
1952        if (!ss.present)
1953                return false;
1954
1955        return true;
1956}
1957
1958static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1959{
1960        struct kvm_segment var;
1961        unsigned int rpl;
1962
1963        vmx_get_segment(vcpu, &var, seg);
1964        rpl = var.selector & SELECTOR_RPL_MASK;
1965
1966        if (var.unusable)
1967                return true;
1968        if (!var.s)
1969                return false;
1970        if (!var.present)
1971                return false;
1972        if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1973                if (var.dpl < rpl) /* DPL < RPL */
1974                        return false;
1975        }
1976
1977        /* TODO: Add other members to kvm_segment_field to allow checking for other access
1978         * rights flags
1979         */
1980        return true;
1981}
1982
1983static bool tr_valid(struct kvm_vcpu *vcpu)
1984{
1985        struct kvm_segment tr;
1986
1987        vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1988
1989        if (tr.unusable)
1990                return false;
1991        if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
1992                return false;
1993        if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1994                return false;
1995        if (!tr.present)
1996                return false;
1997
1998        return true;
1999}
2000
2001static bool ldtr_valid(struct kvm_vcpu *vcpu)
2002{
2003        struct kvm_segment ldtr;
2004
2005        vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2006
2007        if (ldtr.unusable)
2008                return true;
2009        if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2010                return false;
2011        if (ldtr.type != 2)
2012                return false;
2013        if (!ldtr.present)
2014                return false;
2015
2016        return true;
2017}
2018
2019static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2020{
2021        struct kvm_segment cs, ss;
2022
2023        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2024        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2025
2026        return ((cs.selector & SELECTOR_RPL_MASK) ==
2027                 (ss.selector & SELECTOR_RPL_MASK));
2028}
2029
2030/*
2031 * Check if guest state is valid. Returns true if valid, false if
2032 * not.
2033 * We assume that registers are always usable
2034 */
2035static bool guest_state_valid(struct kvm_vcpu *vcpu)
2036{
2037        /* real mode guest state checks */
2038        if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2039                if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2040                        return false;
2041                if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2042                        return false;
2043                if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2044                        return false;
2045                if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2046                        return false;
2047                if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2048                        return false;
2049                if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2050                        return false;
2051        } else {
2052        /* protected mode guest state checks */
2053                if (!cs_ss_rpl_check(vcpu))
2054                        return false;
2055                if (!code_segment_valid(vcpu))
2056                        return false;
2057                if (!stack_segment_valid(vcpu))
2058                        return false;
2059                if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2060                        return false;
2061                if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2062                        return false;
2063                if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2064                        return false;
2065                if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2066                        return false;
2067                if (!tr_valid(vcpu))
2068                        return false;
2069                if (!ldtr_valid(vcpu))
2070                        return false;
2071        }
2072        /* TODO:
2073         * - Add checks on RIP
2074         * - Add checks on RFLAGS
2075         */
2076
2077        return true;
2078}
2079
2080static int init_rmode_tss(struct kvm *kvm)
2081{
2082        gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2083        u16 data = 0;
2084        int ret = 0;
2085        int r;
2086
2087        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2088        if (r < 0)
2089                goto out;
2090        data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2091        r = kvm_write_guest_page(kvm, fn++, &data,
2092                        TSS_IOPB_BASE_OFFSET, sizeof(u16));
2093        if (r < 0)
2094                goto out;
2095        r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2096        if (r < 0)
2097                goto out;
2098        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2099        if (r < 0)
2100                goto out;
2101        data = ~0;
2102        r = kvm_write_guest_page(kvm, fn, &data,
2103                                 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2104                                 sizeof(u8));
2105        if (r < 0)
2106                goto out;
2107
2108        ret = 1;
2109out:
2110        return ret;
2111}
2112
2113static int init_rmode_identity_map(struct kvm *kvm)
2114{
2115        int i, r, ret;
2116        pfn_t identity_map_pfn;
2117        u32 tmp;
2118
2119        if (!enable_ept)
2120                return 1;
2121        if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2122                printk(KERN_ERR "EPT: identity-mapping pagetable "
2123                        "haven't been allocated!\n");
2124                return 0;
2125        }
2126        if (likely(kvm->arch.ept_identity_pagetable_done))
2127                return 1;
2128        ret = 0;
2129        identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2130        r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2131        if (r < 0)
2132                goto out;
2133        /* Set up identity-mapping pagetable for EPT in real mode */
2134        for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2135                tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2136                        _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2137                r = kvm_write_guest_page(kvm, identity_map_pfn,
2138                                &tmp, i * sizeof(tmp), sizeof(tmp));
2139                if (r < 0)
2140                        goto out;
2141        }
2142        kvm->arch.ept_identity_pagetable_done = true;
2143        ret = 1;
2144out:
2145        return ret;
2146}
2147
2148static void seg_setup(int seg)
2149{
2150        struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2151        unsigned int ar;
2152
2153        vmcs_write16(sf->selector, 0);
2154        vmcs_writel(sf->base, 0);
2155        vmcs_write32(sf->limit, 0xffff);
2156        if (enable_unrestricted_guest) {
2157                ar = 0x93;
2158                if (seg == VCPU_SREG_CS)
2159                        ar |= 0x08; /* code segment */
2160        } else
2161                ar = 0xf3;
2162
2163        vmcs_write32(sf->ar_bytes, ar);
2164}
2165
2166static int alloc_apic_access_page(struct kvm *kvm)
2167{
2168        struct kvm_userspace_memory_region kvm_userspace_mem;
2169        int r = 0;
2170
2171        down_write(&kvm->slots_lock);
2172        if (kvm->arch.apic_access_page)
2173                goto out;
2174        kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2175        kvm_userspace_mem.flags = 0;
2176        kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2177        kvm_userspace_mem.memory_size = PAGE_SIZE;
2178        r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2179        if (r)
2180                goto out;
2181
2182        kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2183out:
2184        up_write(&kvm->slots_lock);
2185        return r;
2186}
2187
2188static int alloc_identity_pagetable(struct kvm *kvm)
2189{
2190        struct kvm_userspace_memory_region kvm_userspace_mem;
2191        int r = 0;
2192
2193        down_write(&kvm->slots_lock);
2194        if (kvm->arch.ept_identity_pagetable)
2195                goto out;
2196        kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2197        kvm_userspace_mem.flags = 0;
2198        kvm_userspace_mem.guest_phys_addr =
2199                kvm->arch.ept_identity_map_addr;
2200        kvm_userspace_mem.memory_size = PAGE_SIZE;
2201        r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2202        if (r)
2203                goto out;
2204
2205        kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2206                        kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2207out:
2208        up_write(&kvm->slots_lock);
2209        return r;
2210}
2211
2212static void allocate_vpid(struct vcpu_vmx *vmx)
2213{
2214        int vpid;
2215
2216        vmx->vpid = 0;
2217        if (!enable_vpid)
2218                return;
2219        spin_lock(&vmx_vpid_lock);
2220        vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2221        if (vpid < VMX_NR_VPIDS) {
2222                vmx->vpid = vpid;
2223                __set_bit(vpid, vmx_vpid_bitmap);
2224        }
2225        spin_unlock(&vmx_vpid_lock);
2226}
2227
2228static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2229{
2230        int f = sizeof(unsigned long);
2231
2232        if (!cpu_has_vmx_msr_bitmap())
2233                return;
2234
2235        /*
2236         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2237         * have the write-low and read-high bitmap offsets the wrong way round.
2238         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2239         */
2240        if (msr <= 0x1fff) {
2241                __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2242                __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2243        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2244                msr &= 0x1fff;
2245                __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2246                __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2247        }
2248}
2249
2250static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2251{
2252        if (!longmode_only)
2253                __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2254        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2255}
2256
2257/*
2258 * Sets up the vmcs for emulated real mode.
2259 */
2260static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2261{
2262        u32 host_sysenter_cs, msr_low, msr_high;
2263        u32 junk;
2264        u64 host_pat, tsc_this, tsc_base;
2265        unsigned long a;
2266        struct descriptor_table dt;
2267        int i;
2268        unsigned long kvm_vmx_return;
2269        u32 exec_control;
2270
2271        /* I/O */
2272        vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2273        vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2274
2275        if (cpu_has_vmx_msr_bitmap())
2276                vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2277
2278        vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2279
2280        /* Control */
2281        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2282                vmcs_config.pin_based_exec_ctrl);
2283
2284        exec_control = vmcs_config.cpu_based_exec_ctrl;
2285        if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2286                exec_control &= ~CPU_BASED_TPR_SHADOW;
2287#ifdef CONFIG_X86_64
2288                exec_control |= CPU_BASED_CR8_STORE_EXITING |
2289                                CPU_BASED_CR8_LOAD_EXITING;
2290#endif
2291        }
2292        if (!enable_ept)
2293                exec_control |= CPU_BASED_CR3_STORE_EXITING |
2294                                CPU_BASED_CR3_LOAD_EXITING  |
2295                                CPU_BASED_INVLPG_EXITING;
2296        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2297
2298        if (cpu_has_secondary_exec_ctrls()) {
2299                exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2300                if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2301                        exec_control &=
2302                                ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2303                if (vmx->vpid == 0)
2304                        exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2305                if (!enable_ept)
2306                        exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2307                if (!enable_unrestricted_guest)
2308                        exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2309                vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2310        }
2311
2312        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2313        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2314        vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2315
2316        vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2317        vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2318        vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2319
2320        vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2321        vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2322        vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2323        vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2324        vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2325        vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2326#ifdef CONFIG_X86_64
2327        rdmsrl(MSR_FS_BASE, a);
2328        vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2329        rdmsrl(MSR_GS_BASE, a);
2330        vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2331#else
2332        vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2333        vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2334#endif
2335
2336        vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2337
2338        kvm_get_idt(&dt);
2339        vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2340
2341        asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2342        vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2343        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2344        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2345        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2346
2347        rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2348        vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2349        rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2350        vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2351        rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2352        vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2353
2354        if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2355                rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2356                host_pat = msr_low | ((u64) msr_high << 32);
2357                vmcs_write64(HOST_IA32_PAT, host_pat);
2358        }
2359        if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2360                rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2361                host_pat = msr_low | ((u64) msr_high << 32);
2362                /* Write the default value follow host pat */
2363                vmcs_write64(GUEST_IA32_PAT, host_pat);
2364                /* Keep arch.pat sync with GUEST_IA32_PAT */
2365                vmx->vcpu.arch.pat = host_pat;
2366        }
2367
2368        for (i = 0; i < NR_VMX_MSR; ++i) {
2369                u32 index = vmx_msr_index[i];
2370                u32 data_low, data_high;
2371                u64 data;
2372                int j = vmx->nmsrs;
2373
2374                if (rdmsr_safe(index, &data_low, &data_high) < 0)
2375                        continue;
2376                if (wrmsr_safe(index, data_low, data_high) < 0)
2377                        continue;
2378                data = data_low | ((u64)data_high << 32);
2379                vmx->host_msrs[j].index = index;
2380                vmx->host_msrs[j].reserved = 0;
2381                vmx->host_msrs[j].data = data;
2382                vmx->guest_msrs[j] = vmx->host_msrs[j];
2383                ++vmx->nmsrs;
2384        }
2385
2386        vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2387
2388        /* 22.2.1, 20.8.1 */
2389        vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2390
2391        vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2392        vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2393
2394        tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2395        rdtscll(tsc_this);
2396        if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2397                tsc_base = tsc_this;
2398
2399        guest_write_tsc(0, tsc_base);
2400
2401        return 0;
2402}
2403
2404static int init_rmode(struct kvm *kvm)
2405{
2406        if (!init_rmode_tss(kvm))
2407                return 0;
2408        if (!init_rmode_identity_map(kvm))
2409                return 0;
2410        return 1;
2411}
2412
2413static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2414{
2415        struct vcpu_vmx *vmx = to_vmx(vcpu);
2416        u64 msr;
2417        int ret;
2418
2419        vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2420        down_read(&vcpu->kvm->slots_lock);
2421        if (!init_rmode(vmx->vcpu.kvm)) {
2422                ret = -ENOMEM;
2423                goto out;
2424        }
2425
2426        vmx->rmode.vm86_active = 0;
2427
2428        vmx->soft_vnmi_blocked = 0;
2429
2430        vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2431        kvm_set_cr8(&vmx->vcpu, 0);
2432        msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2433        if (kvm_vcpu_is_bsp(&vmx->vcpu))
2434                msr |= MSR_IA32_APICBASE_BSP;
2435        kvm_set_apic_base(&vmx->vcpu, msr);
2436
2437        fx_init(&vmx->vcpu);
2438
2439        seg_setup(VCPU_SREG_CS);
2440        /*
2441         * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2442         * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2443         */
2444        if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2445                vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2446                vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2447        } else {
2448                vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2449                vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2450        }
2451
2452        seg_setup(VCPU_SREG_DS);
2453        seg_setup(VCPU_SREG_ES);
2454        seg_setup(VCPU_SREG_FS);
2455        seg_setup(VCPU_SREG_GS);
2456        seg_setup(VCPU_SREG_SS);
2457
2458        vmcs_write16(GUEST_TR_SELECTOR, 0);
2459        vmcs_writel(GUEST_TR_BASE, 0);
2460        vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2461        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2462
2463        vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2464        vmcs_writel(GUEST_LDTR_BASE, 0);
2465        vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2466        vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2467
2468        vmcs_write32(GUEST_SYSENTER_CS, 0);
2469        vmcs_writel(GUEST_SYSENTER_ESP, 0);
2470        vmcs_writel(GUEST_SYSENTER_EIP, 0);
2471
2472        vmcs_writel(GUEST_RFLAGS, 0x02);
2473        if (kvm_vcpu_is_bsp(&vmx->vcpu))
2474                kvm_rip_write(vcpu, 0xfff0);
2475        else
2476                kvm_rip_write(vcpu, 0);
2477        kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2478
2479        vmcs_writel(GUEST_DR7, 0x400);
2480
2481        vmcs_writel(GUEST_GDTR_BASE, 0);
2482        vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2483
2484        vmcs_writel(GUEST_IDTR_BASE, 0);
2485        vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2486
2487        vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2488        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2489        vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2490
2491        /* Special registers */
2492        vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2493
2494        setup_msrs(vmx);
2495
2496        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2497
2498        if (cpu_has_vmx_tpr_shadow()) {
2499                vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2500                if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2501                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2502                                page_to_phys(vmx->vcpu.arch.apic->regs_page));
2503                vmcs_write32(TPR_THRESHOLD, 0);
2504        }
2505
2506        if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2507                vmcs_write64(APIC_ACCESS_ADDR,
2508                             page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2509
2510        if (vmx->vpid != 0)
2511                vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2512
2513        vmx->vcpu.arch.cr0 = 0x60000010;
2514        vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2515        vmx_set_cr4(&vmx->vcpu, 0);
2516        vmx_set_efer(&vmx->vcpu, 0);
2517        vmx_fpu_activate(&vmx->vcpu);
2518        update_exception_bitmap(&vmx->vcpu);
2519
2520        vpid_sync_vcpu_all(vmx);
2521
2522        ret = 0;
2523
2524        /* HACK: Don't enable emulation on guest boot/reset */
2525        vmx->emulation_required = 0;
2526
2527out:
2528        up_read(&vcpu->kvm->slots_lock);
2529        return ret;
2530}
2531
2532static void enable_irq_window(struct kvm_vcpu *vcpu)
2533{
2534        u32 cpu_based_vm_exec_control;
2535
2536        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2537        cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2538        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2539}
2540
2541static void enable_nmi_window(struct kvm_vcpu *vcpu)
2542{
2543        u32 cpu_based_vm_exec_control;
2544
2545        if (!cpu_has_virtual_nmis()) {
2546                enable_irq_window(vcpu);
2547                return;
2548        }
2549
2550        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2551        cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2552        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2553}
2554
2555static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2556{
2557        struct vcpu_vmx *vmx = to_vmx(vcpu);
2558        uint32_t intr;
2559        int irq = vcpu->arch.interrupt.nr;
2560
2561        trace_kvm_inj_virq(irq);
2562
2563        ++vcpu->stat.irq_injections;
2564        if (vmx->rmode.vm86_active) {
2565                vmx->rmode.irq.pending = true;
2566                vmx->rmode.irq.vector = irq;
2567                vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2568                if (vcpu->arch.interrupt.soft)
2569                        vmx->rmode.irq.rip +=
2570                                vmx->vcpu.arch.event_exit_inst_len;
2571                vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2572                             irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2573                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2574                kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2575                return;
2576        }
2577        intr = irq | INTR_INFO_VALID_MASK;
2578        if (vcpu->arch.interrupt.soft) {
2579                intr |= INTR_TYPE_SOFT_INTR;
2580                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2581                             vmx->vcpu.arch.event_exit_inst_len);
2582        } else
2583                intr |= INTR_TYPE_EXT_INTR;
2584        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2585}
2586
2587static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2588{
2589        struct vcpu_vmx *vmx = to_vmx(vcpu);
2590
2591        if (!cpu_has_virtual_nmis()) {
2592                /*
2593                 * Tracking the NMI-blocked state in software is built upon
2594                 * finding the next open IRQ window. This, in turn, depends on
2595                 * well-behaving guests: They have to keep IRQs disabled at
2596                 * least as long as the NMI handler runs. Otherwise we may
2597                 * cause NMI nesting, maybe breaking the guest. But as this is
2598                 * highly unlikely, we can live with the residual risk.
2599                 */
2600                vmx->soft_vnmi_blocked = 1;
2601                vmx->vnmi_blocked_time = 0;
2602        }
2603
2604        ++vcpu->stat.nmi_injections;
2605        if (vmx->rmode.vm86_active) {
2606                vmx->rmode.irq.pending = true;
2607                vmx->rmode.irq.vector = NMI_VECTOR;
2608                vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2609                vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2610                             NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2611                             INTR_INFO_VALID_MASK);
2612                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2613                kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2614                return;
2615        }
2616        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2617                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2618}
2619
2620static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2621{
2622        if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2623                return 0;
2624
2625        return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2626                        (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2627                                GUEST_INTR_STATE_NMI));
2628}
2629
2630static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2631{
2632        return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2633                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2634                        (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2635}
2636
2637static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2638{
2639        int ret;
2640        struct kvm_userspace_memory_region tss_mem = {
2641                .slot = TSS_PRIVATE_MEMSLOT,
2642                .guest_phys_addr = addr,
2643                .memory_size = PAGE_SIZE * 3,
2644                .flags = 0,
2645        };
2646
2647        ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2648        if (ret)
2649                return ret;
2650        kvm->arch.tss_addr = addr;
2651        return 0;
2652}
2653
2654static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2655                                  int vec, u32 err_code)
2656{
2657        /*
2658         * Instruction with address size override prefix opcode 0x67
2659         * Cause the #SS fault with 0 error code in VM86 mode.
2660         */
2661        if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2662                if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2663                        return 1;
2664        /*
2665         * Forward all other exceptions that are valid in real mode.
2666         * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2667         *        the required debugging infrastructure rework.
2668         */
2669        switch (vec) {
2670        case DB_VECTOR:
2671                if (vcpu->guest_debug &
2672                    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2673                        return 0;
2674                kvm_queue_exception(vcpu, vec);
2675                return 1;
2676        case BP_VECTOR:
2677                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2678                        return 0;
2679                /* fall through */
2680        case DE_VECTOR:
2681        case OF_VECTOR:
2682        case BR_VECTOR:
2683        case UD_VECTOR:
2684        case DF_VECTOR:
2685        case SS_VECTOR:
2686        case GP_VECTOR:
2687        case MF_VECTOR:
2688                kvm_queue_exception(vcpu, vec);
2689                return 1;
2690        }
2691        return 0;
2692}
2693
2694/*
2695 * Trigger machine check on the host. We assume all the MSRs are already set up
2696 * by the CPU and that we still run on the same CPU as the MCE occurred on.
2697 * We pass a fake environment to the machine check handler because we want
2698 * the guest to be always treated like user space, no matter what context
2699 * it used internally.
2700 */
2701static void kvm_machine_check(void)
2702{
2703#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2704        struct pt_regs regs = {
2705                .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2706                .flags = X86_EFLAGS_IF,
2707        };
2708
2709        do_machine_check(&regs, 0);
2710#endif
2711}
2712
2713static int handle_machine_check(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2714{
2715        /* already handled by vcpu_run */
2716        return 1;
2717}
2718
2719static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2720{
2721        struct vcpu_vmx *vmx = to_vmx(vcpu);
2722        u32 intr_info, ex_no, error_code;
2723        unsigned long cr2, rip, dr6;
2724        u32 vect_info;
2725        enum emulation_result er;
2726
2727        vect_info = vmx->idt_vectoring_info;
2728        intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2729
2730        if (is_machine_check(intr_info))
2731                return handle_machine_check(vcpu, kvm_run);
2732
2733        if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2734                                                !is_page_fault(intr_info))
2735                printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2736                       "intr info 0x%x\n", __func__, vect_info, intr_info);
2737
2738        if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2739                return 1;  /* already handled by vmx_vcpu_run() */
2740
2741        if (is_no_device(intr_info)) {
2742                vmx_fpu_activate(vcpu);
2743                return 1;
2744        }
2745
2746        if (is_invalid_opcode(intr_info)) {
2747                er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2748                if (er != EMULATE_DONE)
2749                        kvm_queue_exception(vcpu, UD_VECTOR);
2750                return 1;
2751        }
2752
2753        error_code = 0;
2754        rip = kvm_rip_read(vcpu);
2755        if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2756                error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2757        if (is_page_fault(intr_info)) {
2758                /* EPT won't cause page fault directly */
2759                if (enable_ept)
2760                        BUG();
2761                cr2 = vmcs_readl(EXIT_QUALIFICATION);
2762                trace_kvm_page_fault(cr2, error_code);
2763
2764                if (kvm_event_needs_reinjection(vcpu))
2765                        kvm_mmu_unprotect_page_virt(vcpu, cr2);
2766                return kvm_mmu_page_fault(vcpu, cr2, error_code);
2767        }
2768
2769        if (vmx->rmode.vm86_active &&
2770            handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2771                                                                error_code)) {
2772                if (vcpu->arch.halt_request) {
2773                        vcpu->arch.halt_request = 0;
2774                        return kvm_emulate_halt(vcpu);
2775                }
2776                return 1;
2777        }
2778
2779        ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2780        switch (ex_no) {
2781        case DB_VECTOR:
2782                dr6 = vmcs_readl(EXIT_QUALIFICATION);
2783                if (!(vcpu->guest_debug &
2784                      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2785                        vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2786                        kvm_queue_exception(vcpu, DB_VECTOR);
2787                        return 1;
2788                }
2789                kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2790                kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2791                /* fall through */
2792        case BP_VECTOR:
2793                kvm_run->exit_reason = KVM_EXIT_DEBUG;
2794                kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2795                kvm_run->debug.arch.exception = ex_no;
2796                break;
2797        default:
2798                kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2799                kvm_run->ex.exception = ex_no;
2800                kvm_run->ex.error_code = error_code;
2801                break;
2802        }
2803        return 0;
2804}
2805
2806static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2807                                     struct kvm_run *kvm_run)
2808{
2809        ++vcpu->stat.irq_exits;
2810        return 1;
2811}
2812
2813static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2814{
2815        kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2816        return 0;
2817}
2818
2819static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2820{
2821        unsigned long exit_qualification;
2822        int size, in, string;
2823        unsigned port;
2824
2825        ++vcpu->stat.io_exits;
2826        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2827        string = (exit_qualification & 16) != 0;
2828
2829        if (string) {
2830                if (emulate_instruction(vcpu,
2831                                        kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2832                        return 0;
2833                return 1;
2834        }
2835
2836        size = (exit_qualification & 7) + 1;
2837        in = (exit_qualification & 8) != 0;
2838        port = exit_qualification >> 16;
2839
2840        skip_emulated_instruction(vcpu);
2841        return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2842}
2843
2844static void
2845vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2846{
2847        /*
2848         * Patch in the VMCALL instruction:
2849         */
2850        hypercall[0] = 0x0f;
2851        hypercall[1] = 0x01;
2852        hypercall[2] = 0xc1;
2853}
2854
2855static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2856{
2857        unsigned long exit_qualification, val;
2858        int cr;
2859        int reg;
2860
2861        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2862        cr = exit_qualification & 15;
2863        reg = (exit_qualification >> 8) & 15;
2864        switch ((exit_qualification >> 4) & 3) {
2865        case 0: /* mov to cr */
2866                val = kvm_register_read(vcpu, reg);
2867                trace_kvm_cr_write(cr, val);
2868                switch (cr) {
2869                case 0:
2870                        kvm_set_cr0(vcpu, val);
2871                        skip_emulated_instruction(vcpu);
2872                        return 1;
2873                case 3:
2874                        kvm_set_cr3(vcpu, val);
2875                        skip_emulated_instruction(vcpu);
2876                        return 1;
2877                case 4:
2878                        kvm_set_cr4(vcpu, val);
2879                        skip_emulated_instruction(vcpu);
2880                        return 1;
2881                case 8: {
2882                                u8 cr8_prev = kvm_get_cr8(vcpu);
2883                                u8 cr8 = kvm_register_read(vcpu, reg);
2884                                kvm_set_cr8(vcpu, cr8);
2885                                skip_emulated_instruction(vcpu);
2886                                if (irqchip_in_kernel(vcpu->kvm))
2887                                        return 1;
2888                                if (cr8_prev <= cr8)
2889                                        return 1;
2890                                kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2891                                return 0;
2892                        }
2893                };
2894                break;
2895        case 2: /* clts */
2896                vmx_fpu_deactivate(vcpu);
2897                vcpu->arch.cr0 &= ~X86_CR0_TS;
2898                vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2899                vmx_fpu_activate(vcpu);
2900                skip_emulated_instruction(vcpu);
2901                return 1;
2902        case 1: /*mov from cr*/
2903                switch (cr) {
2904                case 3:
2905                        kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2906                        trace_kvm_cr_read(cr, vcpu->arch.cr3);
2907                        skip_emulated_instruction(vcpu);
2908                        return 1;
2909                case 8:
2910                        val = kvm_get_cr8(vcpu);
2911                        kvm_register_write(vcpu, reg, val);
2912                        trace_kvm_cr_read(cr, val);
2913                        skip_emulated_instruction(vcpu);
2914                        return 1;
2915                }
2916                break;
2917        case 3: /* lmsw */
2918                kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2919
2920                skip_emulated_instruction(vcpu);
2921                return 1;
2922        default:
2923                break;
2924        }
2925        kvm_run->exit_reason = 0;
2926        pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2927               (int)(exit_qualification >> 4) & 3, cr);
2928        return 0;
2929}
2930
2931static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2932{
2933        unsigned long exit_qualification;
2934        unsigned long val;
2935        int dr, reg;
2936
2937        if (!kvm_require_cpl(vcpu, 0))
2938                return 1;
2939        dr = vmcs_readl(GUEST_DR7);
2940        if (dr & DR7_GD) {
2941                /*
2942                 * As the vm-exit takes precedence over the debug trap, we
2943                 * need to emulate the latter, either for the host or the
2944                 * guest debugging itself.
2945                 */
2946                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2947                        kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
2948                        kvm_run->debug.arch.dr7 = dr;
2949                        kvm_run->debug.arch.pc =
2950                                vmcs_readl(GUEST_CS_BASE) +
2951                                vmcs_readl(GUEST_RIP);
2952                        kvm_run->debug.arch.exception = DB_VECTOR;
2953                        kvm_run->exit_reason = KVM_EXIT_DEBUG;
2954                        return 0;
2955                } else {
2956                        vcpu->arch.dr7 &= ~DR7_GD;
2957                        vcpu->arch.dr6 |= DR6_BD;
2958                        vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2959                        kvm_queue_exception(vcpu, DB_VECTOR);
2960                        return 1;
2961                }
2962        }
2963
2964        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2965        dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2966        reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2967        if (exit_qualification & TYPE_MOV_FROM_DR) {
2968                switch (dr) {
2969                case 0 ... 3:
2970                        val = vcpu->arch.db[dr];
2971                        break;
2972                case 6:
2973                        val = vcpu->arch.dr6;
2974                        break;
2975                case 7:
2976                        val = vcpu->arch.dr7;
2977                        break;
2978                default:
2979                        val = 0;
2980                }
2981                kvm_register_write(vcpu, reg, val);
2982        } else {
2983                val = vcpu->arch.regs[reg];
2984                switch (dr) {
2985                case 0 ... 3:
2986                        vcpu->arch.db[dr] = val;
2987                        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2988                                vcpu->arch.eff_db[dr] = val;
2989                        break;
2990                case 4 ... 5:
2991                        if (vcpu->arch.cr4 & X86_CR4_DE)
2992                                kvm_queue_exception(vcpu, UD_VECTOR);
2993                        break;
2994                case 6:
2995                        if (val & 0xffffffff00000000ULL) {
2996                                kvm_queue_exception(vcpu, GP_VECTOR);
2997                                break;
2998                        }
2999                        vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
3000                        break;
3001                case 7:
3002                        if (val & 0xffffffff00000000ULL) {
3003                                kvm_queue_exception(vcpu, GP_VECTOR);
3004                                break;
3005                        }
3006                        vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3007                        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3008                                vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3009                                vcpu->arch.switch_db_regs =
3010                                        (val & DR7_BP_EN_MASK);
3011                        }
3012                        break;
3013                }
3014        }
3015        skip_emulated_instruction(vcpu);
3016        return 1;
3017}
3018
3019static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3020{
3021        kvm_emulate_cpuid(vcpu);
3022        return 1;
3023}
3024
3025static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3026{
3027        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3028        u64 data;
3029
3030        if (vmx_get_msr(vcpu, ecx, &data)) {
3031                kvm_inject_gp(vcpu, 0);
3032                return 1;
3033        }
3034
3035        trace_kvm_msr_read(ecx, data);
3036
3037        /* FIXME: handling of bits 32:63 of rax, rdx */
3038        vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3039        vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3040        skip_emulated_instruction(vcpu);
3041        return 1;
3042}
3043
3044static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3045{
3046        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3047        u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3048                | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3049
3050        trace_kvm_msr_write(ecx, data);
3051
3052        if (vmx_set_msr(vcpu, ecx, data) != 0) {
3053                kvm_inject_gp(vcpu, 0);
3054                return 1;
3055        }
3056
3057        skip_emulated_instruction(vcpu);
3058        return 1;
3059}
3060
3061static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
3062                                      struct kvm_run *kvm_run)
3063{
3064        return 1;
3065}
3066
3067static int handle_interrupt_window(struct kvm_vcpu *vcpu,
3068                                   struct kvm_run *kvm_run)
3069{
3070        u32 cpu_based_vm_exec_control;
3071
3072        /* clear pending irq */
3073        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3074        cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3075        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3076
3077        ++vcpu->stat.irq_window_exits;
3078
3079        /*
3080         * If the user space waits to inject interrupts, exit as soon as
3081         * possible
3082         */
3083        if (!irqchip_in_kernel(vcpu->kvm) &&
3084            kvm_run->request_interrupt_window &&
3085            !kvm_cpu_has_interrupt(vcpu)) {
3086                kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3087                return 0;
3088        }
3089        return 1;
3090}
3091
3092static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3093{
3094        skip_emulated_instruction(vcpu);
3095        return kvm_emulate_halt(vcpu);
3096}
3097
3098static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3099{
3100        skip_emulated_instruction(vcpu);
3101        kvm_emulate_hypercall(vcpu);
3102        return 1;
3103}
3104
3105static int handle_vmx_insn(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3106{
3107        kvm_queue_exception(vcpu, UD_VECTOR);
3108        return 1;
3109}
3110
3111static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3112{
3113        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3114
3115        kvm_mmu_invlpg(vcpu, exit_qualification);
3116        skip_emulated_instruction(vcpu);
3117        return 1;
3118}
3119
3120static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3121{
3122        skip_emulated_instruction(vcpu);
3123        /* TODO: Add support for VT-d/pass-through device */
3124        return 1;
3125}
3126
3127static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3128{
3129        unsigned long exit_qualification;
3130        enum emulation_result er;
3131        unsigned long offset;
3132
3133        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3134        offset = exit_qualification & 0xffful;
3135
3136        er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3137
3138        if (er !=  EMULATE_DONE) {
3139                printk(KERN_ERR
3140                       "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3141                       offset);
3142                return -ENOEXEC;
3143        }
3144        return 1;
3145}
3146
3147static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3148{
3149        struct vcpu_vmx *vmx = to_vmx(vcpu);
3150        unsigned long exit_qualification;
3151        u16 tss_selector;
3152        int reason, type, idt_v;
3153
3154        idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3155        type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3156
3157        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3158
3159        reason = (u32)exit_qualification >> 30;
3160        if (reason == TASK_SWITCH_GATE && idt_v) {
3161                switch (type) {
3162                case INTR_TYPE_NMI_INTR:
3163                        vcpu->arch.nmi_injected = false;
3164                        if (cpu_has_virtual_nmis())
3165                                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3166                                              GUEST_INTR_STATE_NMI);
3167                        break;
3168                case INTR_TYPE_EXT_INTR:
3169                case INTR_TYPE_SOFT_INTR:
3170                        kvm_clear_interrupt_queue(vcpu);
3171                        break;
3172                case INTR_TYPE_HARD_EXCEPTION:
3173                case INTR_TYPE_SOFT_EXCEPTION:
3174                        kvm_clear_exception_queue(vcpu);
3175                        break;
3176                default:
3177                        break;
3178                }
3179        }
3180        tss_selector = exit_qualification;
3181
3182        if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3183                       type != INTR_TYPE_EXT_INTR &&
3184                       type != INTR_TYPE_NMI_INTR))
3185                skip_emulated_instruction(vcpu);
3186
3187        if (!kvm_task_switch(vcpu, tss_selector, reason))
3188                return 0;
3189
3190        /* clear all local breakpoint enable flags */
3191        vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3192
3193        /*
3194         * TODO: What about debug traps on tss switch?
3195         *       Are we supposed to inject them and update dr6?
3196         */
3197
3198        return 1;
3199}
3200
3201static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3202{
3203        unsigned long exit_qualification;
3204        gpa_t gpa;
3205        int gla_validity;
3206
3207        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3208
3209        if (exit_qualification & (1 << 6)) {
3210                printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3211                return -EINVAL;
3212        }
3213
3214        gla_validity = (exit_qualification >> 7) & 0x3;
3215        if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3216                printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3217                printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3218                        (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3219                        vmcs_readl(GUEST_LINEAR_ADDRESS));
3220                printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3221                        (long unsigned int)exit_qualification);
3222                kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3223                kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3224                return 0;
3225        }
3226
3227        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3228        trace_kvm_page_fault(gpa, exit_qualification);
3229        return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3230}
3231
3232static u64 ept_rsvd_mask(u64 spte, int level)
3233{
3234        int i;
3235        u64 mask = 0;
3236
3237        for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3238                mask |= (1ULL << i);
3239
3240        if (level > 2)
3241                /* bits 7:3 reserved */
3242                mask |= 0xf8;
3243        else if (level == 2) {
3244                if (spte & (1ULL << 7))
3245                        /* 2MB ref, bits 20:12 reserved */
3246                        mask |= 0x1ff000;
3247                else
3248                        /* bits 6:3 reserved */
3249                        mask |= 0x78;
3250        }
3251
3252        return mask;
3253}
3254
3255static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3256                                       int level)
3257{
3258        printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3259
3260        /* 010b (write-only) */
3261        WARN_ON((spte & 0x7) == 0x2);
3262
3263        /* 110b (write/execute) */
3264        WARN_ON((spte & 0x7) == 0x6);
3265
3266        /* 100b (execute-only) and value not supported by logical processor */
3267        if (!cpu_has_vmx_ept_execute_only())
3268                WARN_ON((spte & 0x7) == 0x4);
3269
3270        /* not 000b */
3271        if ((spte & 0x7)) {
3272                u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3273
3274                if (rsvd_bits != 0) {
3275                        printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3276                                         __func__, rsvd_bits);
3277                        WARN_ON(1);
3278                }
3279
3280                if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3281                        u64 ept_mem_type = (spte & 0x38) >> 3;
3282
3283                        if (ept_mem_type == 2 || ept_mem_type == 3 ||
3284                            ept_mem_type == 7) {
3285                                printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3286                                                __func__, ept_mem_type);
3287                                WARN_ON(1);
3288                        }
3289                }
3290        }
3291}
3292
3293static int handle_ept_misconfig(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3294{
3295        u64 sptes[4];
3296        int nr_sptes, i;
3297        gpa_t gpa;
3298
3299        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3300
3301        printk(KERN_ERR "EPT: Misconfiguration.\n");
3302        printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3303
3304        nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3305
3306        for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3307                ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3308
3309        kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3310        kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3311
3312        return 0;
3313}
3314
3315static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3316{
3317        u32 cpu_based_vm_exec_control;
3318
3319        /* clear pending NMI */
3320        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3321        cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3322        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3323        ++vcpu->stat.nmi_window_exits;
3324
3325        return 1;
3326}
3327
3328static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3329                                struct kvm_run *kvm_run)
3330{
3331        struct vcpu_vmx *vmx = to_vmx(vcpu);
3332        enum emulation_result err = EMULATE_DONE;
3333
3334        local_irq_enable();
3335        preempt_enable();
3336
3337        while (!guest_state_valid(vcpu)) {
3338                err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3339
3340                if (err == EMULATE_DO_MMIO)
3341                        break;
3342
3343                if (err != EMULATE_DONE) {
3344                        kvm_report_emulation_failure(vcpu, "emulation failure");
3345                        break;
3346                }
3347
3348                if (signal_pending(current))
3349                        break;
3350                if (need_resched())
3351                        schedule();
3352        }
3353
3354        preempt_disable();
3355        local_irq_disable();
3356
3357        vmx->invalid_state_emulation_result = err;
3358}
3359
3360/*
3361 * The exit handlers return 1 if the exit was handled fully and guest execution
3362 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3363 * to be done to userspace and return 0.
3364 */
3365static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3366                                      struct kvm_run *kvm_run) = {
3367        [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3368        [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3369        [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3370        [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3371        [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3372        [EXIT_REASON_CR_ACCESS]               = handle_cr,
3373        [EXIT_REASON_DR_ACCESS]               = handle_dr,
3374        [EXIT_REASON_CPUID]                   = handle_cpuid,
3375        [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3376        [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3377        [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3378        [EXIT_REASON_HLT]                     = handle_halt,
3379        [EXIT_REASON_INVLPG]                  = handle_invlpg,
3380        [EXIT_REASON_VMCALL]                  = handle_vmcall,
3381        [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3382        [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3383        [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3384        [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3385        [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3386        [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3387        [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3388        [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3389        [EXIT_REASON_VMON]                    = handle_vmx_insn,
3390        [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3391        [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3392        [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3393        [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3394        [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3395        [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3396        [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3397};
3398
3399static const int kvm_vmx_max_exit_handlers =
3400        ARRAY_SIZE(kvm_vmx_exit_handlers);
3401
3402/*
3403 * The guest has exited.  See if we can fix it or if we need userspace
3404 * assistance.
3405 */
3406static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3407{
3408        struct vcpu_vmx *vmx = to_vmx(vcpu);
3409        u32 exit_reason = vmx->exit_reason;
3410        u32 vectoring_info = vmx->idt_vectoring_info;
3411
3412        trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
3413
3414        /* If we need to emulate an MMIO from handle_invalid_guest_state
3415         * we just return 0 */
3416        if (vmx->emulation_required && emulate_invalid_guest_state) {
3417                if (guest_state_valid(vcpu))
3418                        vmx->emulation_required = 0;
3419                return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
3420        }
3421
3422        /* Access CR3 don't cause VMExit in paging mode, so we need
3423         * to sync with guest real CR3. */
3424        if (enable_ept && is_paging(vcpu))
3425                vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3426
3427        if (unlikely(vmx->fail)) {
3428                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3429                kvm_run->fail_entry.hardware_entry_failure_reason
3430                        = vmcs_read32(VM_INSTRUCTION_ERROR);
3431                return 0;
3432        }
3433
3434        if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3435                        (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3436                        exit_reason != EXIT_REASON_EPT_VIOLATION &&
3437                        exit_reason != EXIT_REASON_TASK_SWITCH))
3438                printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3439                       "(0x%x) and exit reason is 0x%x\n",
3440                       __func__, vectoring_info, exit_reason);
3441
3442        if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3443                if (vmx_interrupt_allowed(vcpu)) {
3444                        vmx->soft_vnmi_blocked = 0;
3445                } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3446                           vcpu->arch.nmi_pending) {
3447                        /*
3448                         * This CPU don't support us in finding the end of an
3449                         * NMI-blocked window if the guest runs with IRQs
3450                         * disabled. So we pull the trigger after 1 s of
3451                         * futile waiting, but inform the user about this.
3452                         */
3453                        printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3454                               "state on VCPU %d after 1 s timeout\n",
3455                               __func__, vcpu->vcpu_id);
3456                        vmx->soft_vnmi_blocked = 0;
3457                }
3458        }
3459
3460        if (exit_reason < kvm_vmx_max_exit_handlers
3461            && kvm_vmx_exit_handlers[exit_reason])
3462                return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3463        else {
3464                kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3465                kvm_run->hw.hardware_exit_reason = exit_reason;
3466        }
3467        return 0;
3468}
3469
3470static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3471{
3472        if (irr == -1 || tpr < irr) {
3473                vmcs_write32(TPR_THRESHOLD, 0);
3474                return;
3475        }
3476
3477        vmcs_write32(TPR_THRESHOLD, irr);
3478}
3479
3480static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3481{
3482        u32 exit_intr_info;
3483        u32 idt_vectoring_info = vmx->idt_vectoring_info;
3484        bool unblock_nmi;
3485        u8 vector;
3486        int type;
3487        bool idtv_info_valid;
3488
3489        exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3490
3491        vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3492
3493        /* Handle machine checks before interrupts are enabled */
3494        if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3495            || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3496                && is_machine_check(exit_intr_info)))
3497                kvm_machine_check();
3498
3499        /* We need to handle NMIs before interrupts are enabled */
3500        if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3501            (exit_intr_info & INTR_INFO_VALID_MASK))
3502                asm("int $2");
3503
3504        idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3505
3506        if (cpu_has_virtual_nmis()) {
3507                unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3508                vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3509                /*
3510                 * SDM 3: 27.7.1.2 (September 2008)
3511                 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3512                 * a guest IRET fault.
3513                 * SDM 3: 23.2.2 (September 2008)
3514                 * Bit 12 is undefined in any of the following cases:
3515                 *  If the VM exit sets the valid bit in the IDT-vectoring
3516                 *   information field.
3517                 *  If the VM exit is due to a double fault.
3518                 */
3519                if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3520                    vector != DF_VECTOR && !idtv_info_valid)
3521                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3522                                      GUEST_INTR_STATE_NMI);
3523        } else if (unlikely(vmx->soft_vnmi_blocked))
3524                vmx->vnmi_blocked_time +=
3525                        ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3526
3527        vmx->vcpu.arch.nmi_injected = false;
3528        kvm_clear_exception_queue(&vmx->vcpu);
3529        kvm_clear_interrupt_queue(&vmx->vcpu);
3530
3531        if (!idtv_info_valid)
3532                return;
3533
3534        vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3535        type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3536
3537        switch (type) {
3538        case INTR_TYPE_NMI_INTR:
3539                vmx->vcpu.arch.nmi_injected = true;
3540                /*
3541                 * SDM 3: 27.7.1.2 (September 2008)
3542                 * Clear bit "block by NMI" before VM entry if a NMI
3543                 * delivery faulted.
3544                 */
3545                vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3546                                GUEST_INTR_STATE_NMI);
3547                break;
3548        case INTR_TYPE_SOFT_EXCEPTION:
3549                vmx->vcpu.arch.event_exit_inst_len =
3550                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3551                /* fall through */
3552        case INTR_TYPE_HARD_EXCEPTION:
3553                if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3554                        u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3555                        kvm_queue_exception_e(&vmx->vcpu, vector, err);
3556                } else
3557                        kvm_queue_exception(&vmx->vcpu, vector);
3558                break;
3559        case INTR_TYPE_SOFT_INTR:
3560                vmx->vcpu.arch.event_exit_inst_len =
3561                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3562                /* fall through */
3563        case INTR_TYPE_EXT_INTR:
3564                kvm_queue_interrupt(&vmx->vcpu, vector,
3565                        type == INTR_TYPE_SOFT_INTR);
3566                break;
3567        default:
3568                break;
3569        }
3570}
3571
3572/*
3573 * Failure to inject an interrupt should give us the information
3574 * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3575 * when fetching the interrupt redirection bitmap in the real-mode
3576 * tss, this doesn't happen.  So we do it ourselves.
3577 */
3578static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3579{
3580        vmx->rmode.irq.pending = 0;
3581        if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3582                return;
3583        kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3584        if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3585                vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3586                vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3587                return;
3588        }
3589        vmx->idt_vectoring_info =
3590                VECTORING_INFO_VALID_MASK
3591                | INTR_TYPE_EXT_INTR
3592                | vmx->rmode.irq.vector;
3593}
3594
3595#ifdef CONFIG_X86_64
3596#define R "r"
3597#define Q "q"
3598#else
3599#define R "e"
3600#define Q "l"
3601#endif
3602
3603static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3604{
3605        struct vcpu_vmx *vmx = to_vmx(vcpu);
3606
3607        if (enable_ept && is_paging(vcpu)) {
3608                vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3609                ept_load_pdptrs(vcpu);
3610        }
3611        /* Record the guest's net vcpu time for enforced NMI injections. */
3612        if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3613                vmx->entry_time = ktime_get();
3614
3615        /* Handle invalid guest state instead of entering VMX */
3616        if (vmx->emulation_required && emulate_invalid_guest_state) {
3617                handle_invalid_guest_state(vcpu, kvm_run);
3618                return;
3619        }
3620
3621        if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3622                vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3623        if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3624                vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3625
3626        /* When single-stepping over STI and MOV SS, we must clear the
3627         * corresponding interruptibility bits in the guest state. Otherwise
3628         * vmentry fails as it then expects bit 14 (BS) in pending debug
3629         * exceptions being set, but that's not correct for the guest debugging
3630         * case. */
3631        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3632                vmx_set_interrupt_shadow(vcpu, 0);
3633
3634        /*
3635         * Loading guest fpu may have cleared host cr0.ts
3636         */
3637        vmcs_writel(HOST_CR0, read_cr0());
3638
3639        if (vcpu->arch.switch_db_regs)
3640                set_debugreg(vcpu->arch.dr6, 6);
3641
3642        asm(
3643                /* Store host registers */
3644                "push %%"R"dx; push %%"R"bp;"
3645                "push %%"R"cx \n\t"
3646                "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3647                "je 1f \n\t"
3648                "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3649                __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3650                "1: \n\t"
3651                /* Reload cr2 if changed */
3652                "mov %c[cr2](%0), %%"R"ax \n\t"
3653                "mov %%cr2, %%"R"dx \n\t"
3654                "cmp %%"R"ax, %%"R"dx \n\t"
3655                "je 2f \n\t"
3656                "mov %%"R"ax, %%cr2 \n\t"
3657                "2: \n\t"
3658                /* Check if vmlaunch of vmresume is needed */
3659                "cmpl $0, %c[launched](%0) \n\t"
3660                /* Load guest registers.  Don't clobber flags. */
3661                "mov %c[rax](%0), %%"R"ax \n\t"
3662                "mov %c[rbx](%0), %%"R"bx \n\t"
3663                "mov %c[rdx](%0), %%"R"dx \n\t"
3664                "mov %c[rsi](%0), %%"R"si \n\t"
3665                "mov %c[rdi](%0), %%"R"di \n\t"
3666                "mov %c[rbp](%0), %%"R"bp \n\t"
3667#ifdef CONFIG_X86_64
3668                "mov %c[r8](%0),  %%r8  \n\t"
3669                "mov %c[r9](%0),  %%r9  \n\t"
3670                "mov %c[r10](%0), %%r10 \n\t"
3671                "mov %c[r11](%0), %%r11 \n\t"
3672                "mov %c[r12](%0), %%r12 \n\t"
3673                "mov %c[r13](%0), %%r13 \n\t"
3674                "mov %c[r14](%0), %%r14 \n\t"
3675                "mov %c[r15](%0), %%r15 \n\t"
3676#endif
3677                "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3678
3679                /* Enter guest mode */
3680                "jne .Llaunched \n\t"
3681                __ex(ASM_VMX_VMLAUNCH) "\n\t"
3682                "jmp .Lkvm_vmx_return \n\t"
3683                ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3684                ".Lkvm_vmx_return: "
3685                /* Save guest registers, load host registers, keep flags */
3686                "xchg %0,     (%%"R"sp) \n\t"
3687                "mov %%"R"ax, %c[rax](%0) \n\t"
3688                "mov %%"R"bx, %c[rbx](%0) \n\t"
3689                "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3690                "mov %%"R"dx, %c[rdx](%0) \n\t"
3691                "mov %%"R"si, %c[rsi](%0) \n\t"
3692                "mov %%"R"di, %c[rdi](%0) \n\t"
3693                "mov %%"R"bp, %c[rbp](%0) \n\t"
3694#ifdef CONFIG_X86_64
3695                "mov %%r8,  %c[r8](%0) \n\t"
3696                "mov %%r9,  %c[r9](%0) \n\t"
3697                "mov %%r10, %c[r10](%0) \n\t"
3698                "mov %%r11, %c[r11](%0) \n\t"
3699                "mov %%r12, %c[r12](%0) \n\t"
3700                "mov %%r13, %c[r13](%0) \n\t"
3701                "mov %%r14, %c[r14](%0) \n\t"
3702                "mov %%r15, %c[r15](%0) \n\t"
3703#endif
3704                "mov %%cr2, %%"R"ax   \n\t"
3705                "mov %%"R"ax, %c[cr2](%0) \n\t"
3706
3707                "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3708                "setbe %c[fail](%0) \n\t"
3709              : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3710                [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3711                [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3712                [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3713                [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3714                [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3715                [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3716                [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3717                [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3718                [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3719                [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3720#ifdef CONFIG_X86_64
3721                [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3722                [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3723                [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3724                [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3725                [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3726                [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3727                [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3728                [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3729#endif
3730                [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3731              : "cc", "memory"
3732                , R"bx", R"di", R"si"
3733#ifdef CONFIG_X86_64
3734                , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3735#endif
3736              );
3737
3738        vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3739                                  | (1 << VCPU_EXREG_PDPTR));
3740        vcpu->arch.regs_dirty = 0;
3741
3742        if (vcpu->arch.switch_db_regs)
3743                get_debugreg(vcpu->arch.dr6, 6);
3744
3745        vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3746        if (vmx->rmode.irq.pending)
3747                fixup_rmode_irq(vmx);
3748
3749        asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3750        vmx->launched = 1;
3751
3752        vmx_complete_interrupts(vmx);
3753}
3754
3755#undef R
3756#undef Q
3757
3758static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3759{
3760        struct vcpu_vmx *vmx = to_vmx(vcpu);
3761
3762        if (vmx->vmcs) {
3763                vcpu_clear(vmx);
3764                free_vmcs(vmx->vmcs);
3765                vmx->vmcs = NULL;
3766        }
3767}
3768
3769static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3770{
3771        struct vcpu_vmx *vmx = to_vmx(vcpu);
3772
3773        spin_lock(&vmx_vpid_lock);
3774        if (vmx->vpid != 0)
3775                __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3776        spin_unlock(&vmx_vpid_lock);
3777        vmx_free_vmcs(vcpu);
3778        kfree(vmx->host_msrs);
3779        kfree(vmx->guest_msrs);
3780        kvm_vcpu_uninit(vcpu);
3781        kmem_cache_free(kvm_vcpu_cache, vmx);
3782}
3783
3784static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3785{
3786        int err;
3787        struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3788        int cpu;
3789
3790        if (!vmx)
3791                return ERR_PTR(-ENOMEM);
3792
3793        allocate_vpid(vmx);
3794
3795        err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3796        if (err)
3797                goto free_vcpu;
3798
3799        vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3800        if (!vmx->guest_msrs) {
3801                err = -ENOMEM;
3802                goto uninit_vcpu;
3803        }
3804
3805        vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3806        if (!vmx->host_msrs)
3807                goto free_guest_msrs;
3808
3809        vmx->vmcs = alloc_vmcs();
3810        if (!vmx->vmcs)
3811                goto free_msrs;
3812
3813        vmcs_clear(vmx->vmcs);
3814
3815        cpu = get_cpu();
3816        vmx_vcpu_load(&vmx->vcpu, cpu);
3817        err = vmx_vcpu_setup(vmx);
3818        vmx_vcpu_put(&vmx->vcpu);
3819        put_cpu();
3820        if (err)
3821                goto free_vmcs;
3822        if (vm_need_virtualize_apic_accesses(kvm))
3823                if (alloc_apic_access_page(kvm) != 0)
3824                        goto free_vmcs;
3825
3826        if (enable_ept) {
3827                if (!kvm->arch.ept_identity_map_addr)
3828                        kvm->arch.ept_identity_map_addr =
3829                                VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3830                if (alloc_identity_pagetable(kvm) != 0)
3831                        goto free_vmcs;
3832        }
3833
3834        return &vmx->vcpu;
3835
3836free_vmcs:
3837        free_vmcs(vmx->vmcs);
3838free_msrs:
3839        kfree(vmx->host_msrs);
3840free_guest_msrs:
3841        kfree(vmx->guest_msrs);
3842uninit_vcpu:
3843        kvm_vcpu_uninit(&vmx->vcpu);
3844free_vcpu:
3845        kmem_cache_free(kvm_vcpu_cache, vmx);
3846        return ERR_PTR(err);
3847}
3848
3849static void __init vmx_check_processor_compat(void *rtn)
3850{
3851        struct vmcs_config vmcs_conf;
3852
3853        *(int *)rtn = 0;
3854        if (setup_vmcs_config(&vmcs_conf) < 0)
3855                *(int *)rtn = -EIO;
3856        if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3857                printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3858                                smp_processor_id());
3859                *(int *)rtn = -EIO;
3860        }
3861}
3862
3863static int get_ept_level(void)
3864{
3865        return VMX_EPT_DEFAULT_GAW + 1;
3866}
3867
3868static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3869{
3870        u64 ret;
3871
3872        /* For VT-d and EPT combination
3873         * 1. MMIO: always map as UC
3874         * 2. EPT with VT-d:
3875         *   a. VT-d without snooping control feature: can't guarantee the
3876         *      result, try to trust guest.
3877         *   b. VT-d with snooping control feature: snooping control feature of
3878         *      VT-d engine can guarantee the cache correctness. Just set it
3879         *      to WB to keep consistent with host. So the same as item 3.
3880         * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3881         *    consistent with host MTRR
3882         */
3883        if (is_mmio)
3884                ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3885        else if (vcpu->kvm->arch.iommu_domain &&
3886                !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3887                ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3888                      VMX_EPT_MT_EPTE_SHIFT;
3889        else
3890                ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3891                        | VMX_EPT_IGMT_BIT;
3892
3893        return ret;
3894}
3895
3896static const struct trace_print_flags vmx_exit_reasons_str[] = {
3897        { EXIT_REASON_EXCEPTION_NMI,           "exception" },
3898        { EXIT_REASON_EXTERNAL_INTERRUPT,      "ext_irq" },
3899        { EXIT_REASON_TRIPLE_FAULT,            "triple_fault" },
3900        { EXIT_REASON_NMI_WINDOW,              "nmi_window" },
3901        { EXIT_REASON_IO_INSTRUCTION,          "io_instruction" },
3902        { EXIT_REASON_CR_ACCESS,               "cr_access" },
3903        { EXIT_REASON_DR_ACCESS,               "dr_access" },
3904        { EXIT_REASON_CPUID,                   "cpuid" },
3905        { EXIT_REASON_MSR_READ,                "rdmsr" },
3906        { EXIT_REASON_MSR_WRITE,               "wrmsr" },
3907        { EXIT_REASON_PENDING_INTERRUPT,       "interrupt_window" },
3908        { EXIT_REASON_HLT,                     "halt" },
3909        { EXIT_REASON_INVLPG,                  "invlpg" },
3910        { EXIT_REASON_VMCALL,                  "hypercall" },
3911        { EXIT_REASON_TPR_BELOW_THRESHOLD,     "tpr_below_thres" },
3912        { EXIT_REASON_APIC_ACCESS,             "apic_access" },
3913        { EXIT_REASON_WBINVD,                  "wbinvd" },
3914        { EXIT_REASON_TASK_SWITCH,             "task_switch" },
3915        { EXIT_REASON_EPT_VIOLATION,           "ept_violation" },
3916        { -1, NULL }
3917};
3918
3919static bool vmx_gb_page_enable(void)
3920{
3921        return false;
3922}
3923
3924static struct kvm_x86_ops vmx_x86_ops = {
3925        .cpu_has_kvm_support = cpu_has_kvm_support,
3926        .disabled_by_bios = vmx_disabled_by_bios,
3927        .hardware_setup = hardware_setup,
3928        .hardware_unsetup = hardware_unsetup,
3929        .check_processor_compatibility = vmx_check_processor_compat,
3930        .hardware_enable = hardware_enable,
3931        .hardware_disable = hardware_disable,
3932        .cpu_has_accelerated_tpr = report_flexpriority,
3933
3934        .vcpu_create = vmx_create_vcpu,
3935        .vcpu_free = vmx_free_vcpu,
3936        .vcpu_reset = vmx_vcpu_reset,
3937
3938        .prepare_guest_switch = vmx_save_host_state,
3939        .vcpu_load = vmx_vcpu_load,
3940        .vcpu_put = vmx_vcpu_put,
3941
3942        .set_guest_debug = set_guest_debug,
3943        .get_msr = vmx_get_msr,
3944        .set_msr = vmx_set_msr,
3945        .get_segment_base = vmx_get_segment_base,
3946        .get_segment = vmx_get_segment,
3947        .set_segment = vmx_set_segment,
3948        .get_cpl = vmx_get_cpl,
3949        .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3950        .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3951        .set_cr0 = vmx_set_cr0,
3952        .set_cr3 = vmx_set_cr3,
3953        .set_cr4 = vmx_set_cr4,
3954        .set_efer = vmx_set_efer,
3955        .get_idt = vmx_get_idt,
3956        .set_idt = vmx_set_idt,
3957        .get_gdt = vmx_get_gdt,
3958        .set_gdt = vmx_set_gdt,
3959        .cache_reg = vmx_cache_reg,
3960        .get_rflags = vmx_get_rflags,
3961        .set_rflags = vmx_set_rflags,
3962
3963        .tlb_flush = vmx_flush_tlb,
3964
3965        .run = vmx_vcpu_run,
3966        .handle_exit = vmx_handle_exit,
3967        .skip_emulated_instruction = skip_emulated_instruction,
3968        .set_interrupt_shadow = vmx_set_interrupt_shadow,
3969        .get_interrupt_shadow = vmx_get_interrupt_shadow,
3970        .patch_hypercall = vmx_patch_hypercall,
3971        .set_irq = vmx_inject_irq,
3972        .set_nmi = vmx_inject_nmi,
3973        .queue_exception = vmx_queue_exception,
3974        .interrupt_allowed = vmx_interrupt_allowed,
3975        .nmi_allowed = vmx_nmi_allowed,
3976        .enable_nmi_window = enable_nmi_window,
3977        .enable_irq_window = enable_irq_window,
3978        .update_cr8_intercept = update_cr8_intercept,
3979
3980        .set_tss_addr = vmx_set_tss_addr,
3981        .get_tdp_level = get_ept_level,
3982        .get_mt_mask = vmx_get_mt_mask,
3983
3984        .exit_reasons_str = vmx_exit_reasons_str,
3985        .gb_page_enable = vmx_gb_page_enable,
3986};
3987
3988static int __init vmx_init(void)
3989{
3990        int r;
3991
3992        vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
3993        if (!vmx_io_bitmap_a)
3994                return -ENOMEM;
3995
3996        vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
3997        if (!vmx_io_bitmap_b) {
3998                r = -ENOMEM;
3999                goto out;
4000        }
4001
4002        vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4003        if (!vmx_msr_bitmap_legacy) {
4004                r = -ENOMEM;
4005                goto out1;
4006        }
4007
4008        vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4009        if (!vmx_msr_bitmap_longmode) {
4010                r = -ENOMEM;
4011                goto out2;
4012        }
4013
4014        /*
4015         * Allow direct access to the PC debug port (it is often used for I/O
4016         * delays, but the vmexits simply slow things down).
4017         */
4018        memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4019        clear_bit(0x80, vmx_io_bitmap_a);
4020
4021        memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4022
4023        memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4024        memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4025
4026        set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4027
4028        r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4029        if (r)
4030                goto out3;
4031
4032        vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4033        vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4034        vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4035        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4036        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4037        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4038
4039        if (enable_ept) {
4040                bypass_guest_pf = 0;
4041                kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4042                        VMX_EPT_WRITABLE_MASK);
4043                kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4044                                VMX_EPT_EXECUTABLE_MASK);
4045                kvm_enable_tdp();
4046        } else
4047                kvm_disable_tdp();
4048
4049        if (bypass_guest_pf)
4050                kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4051
4052        ept_sync_global();
4053
4054        return 0;
4055
4056out3:
4057        free_page((unsigned long)vmx_msr_bitmap_longmode);
4058out2:
4059        free_page((unsigned long)vmx_msr_bitmap_legacy);
4060out1:
4061        free_page((unsigned long)vmx_io_bitmap_b);
4062out:
4063        free_page((unsigned long)vmx_io_bitmap_a);
4064        return r;
4065}
4066
4067static void __exit vmx_exit(void)
4068{
4069        free_page((unsigned long)vmx_msr_bitmap_legacy);
4070        free_page((unsigned long)vmx_msr_bitmap_longmode);
4071        free_page((unsigned long)vmx_io_bitmap_b);
4072        free_page((unsigned long)vmx_io_bitmap_a);
4073
4074        kvm_exit();
4075}
4076
4077module_init(vmx_init)
4078module_exit(vmx_exit)
4079