linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * derived from drivers/kvm/kvm_main.c
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright (C) 2008 Qumranet, Inc.
   8 * Copyright IBM Corporation, 2008
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *   Amit Shah    <amit.shah@qumranet.com>
  14 *   Ben-Ami Yassour <benami@il.ibm.com>
  15 *
  16 * This work is licensed under the terms of the GNU GPL, version 2.  See
  17 * the COPYING file in the top-level directory.
  18 *
  19 */
  20
  21#include <linux/kvm_host.h>
  22#include "irq.h"
  23#include "mmu.h"
  24#include "i8254.h"
  25#include "tss.h"
  26#include "kvm_cache_regs.h"
  27#include "x86.h"
  28
  29#include <linux/clocksource.h>
  30#include <linux/interrupt.h>
  31#include <linux/kvm.h>
  32#include <linux/fs.h>
  33#include <linux/vmalloc.h>
  34#include <linux/module.h>
  35#include <linux/mman.h>
  36#include <linux/highmem.h>
  37#include <linux/iommu.h>
  38#include <linux/intel-iommu.h>
  39#include <linux/cpufreq.h>
  40#include <trace/events/kvm.h>
  41#undef TRACE_INCLUDE_FILE
  42#define CREATE_TRACE_POINTS
  43#include "trace.h"
  44
  45#include <asm/uaccess.h>
  46#include <asm/msr.h>
  47#include <asm/desc.h>
  48#include <asm/mtrr.h>
  49#include <asm/mce.h>
  50
  51#define MAX_IO_MSRS 256
  52#define CR0_RESERVED_BITS                                               \
  53        (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  54                          | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  55                          | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  56#define CR4_RESERVED_BITS                                               \
  57        (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  58                          | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
  59                          | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
  60                          | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  61
  62#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  63
  64#define KVM_MAX_MCE_BANKS 32
  65#define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  66
  67/* EFER defaults:
  68 * - enable syscall per default because its emulated by KVM
  69 * - enable LME and LMA per default on 64 bit KVM
  70 */
  71#ifdef CONFIG_X86_64
  72static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  73#else
  74static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  75#endif
  76
  77#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  78#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  79
  80static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  81static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  82                                    struct kvm_cpuid_entry2 __user *entries);
  83
  84struct kvm_x86_ops *kvm_x86_ops;
  85EXPORT_SYMBOL_GPL(kvm_x86_ops);
  86
  87int ignore_msrs = 0;
  88module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  89
  90struct kvm_stats_debugfs_item debugfs_entries[] = {
  91        { "pf_fixed", VCPU_STAT(pf_fixed) },
  92        { "pf_guest", VCPU_STAT(pf_guest) },
  93        { "tlb_flush", VCPU_STAT(tlb_flush) },
  94        { "invlpg", VCPU_STAT(invlpg) },
  95        { "exits", VCPU_STAT(exits) },
  96        { "io_exits", VCPU_STAT(io_exits) },
  97        { "mmio_exits", VCPU_STAT(mmio_exits) },
  98        { "signal_exits", VCPU_STAT(signal_exits) },
  99        { "irq_window", VCPU_STAT(irq_window_exits) },
 100        { "nmi_window", VCPU_STAT(nmi_window_exits) },
 101        { "halt_exits", VCPU_STAT(halt_exits) },
 102        { "halt_wakeup", VCPU_STAT(halt_wakeup) },
 103        { "hypercalls", VCPU_STAT(hypercalls) },
 104        { "request_irq", VCPU_STAT(request_irq_exits) },
 105        { "irq_exits", VCPU_STAT(irq_exits) },
 106        { "host_state_reload", VCPU_STAT(host_state_reload) },
 107        { "efer_reload", VCPU_STAT(efer_reload) },
 108        { "fpu_reload", VCPU_STAT(fpu_reload) },
 109        { "insn_emulation", VCPU_STAT(insn_emulation) },
 110        { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
 111        { "irq_injections", VCPU_STAT(irq_injections) },
 112        { "nmi_injections", VCPU_STAT(nmi_injections) },
 113        { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
 114        { "mmu_pte_write", VM_STAT(mmu_pte_write) },
 115        { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
 116        { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 117        { "mmu_flooded", VM_STAT(mmu_flooded) },
 118        { "mmu_recycled", VM_STAT(mmu_recycled) },
 119        { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 120        { "mmu_unsync", VM_STAT(mmu_unsync) },
 121        { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 122        { "largepages", VM_STAT(lpages) },
 123        { NULL }
 124};
 125
 126unsigned long segment_base(u16 selector)
 127{
 128        struct descriptor_table gdt;
 129        struct desc_struct *d;
 130        unsigned long table_base;
 131        unsigned long v;
 132
 133        if (selector == 0)
 134                return 0;
 135
 136        kvm_get_gdt(&gdt);
 137        table_base = gdt.base;
 138
 139        if (selector & 4) {           /* from ldt */
 140                u16 ldt_selector = kvm_read_ldt();
 141
 142                table_base = segment_base(ldt_selector);
 143        }
 144        d = (struct desc_struct *)(table_base + (selector & ~7));
 145        v = get_desc_base(d);
 146#ifdef CONFIG_X86_64
 147        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
 148                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
 149#endif
 150        return v;
 151}
 152EXPORT_SYMBOL_GPL(segment_base);
 153
 154u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 155{
 156        if (irqchip_in_kernel(vcpu->kvm))
 157                return vcpu->arch.apic_base;
 158        else
 159                return vcpu->arch.apic_base;
 160}
 161EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 162
 163void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
 164{
 165        /* TODO: reserve bits check */
 166        if (irqchip_in_kernel(vcpu->kvm))
 167                kvm_lapic_set_base(vcpu, data);
 168        else
 169                vcpu->arch.apic_base = data;
 170}
 171EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 172
 173void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 174{
 175        WARN_ON(vcpu->arch.exception.pending);
 176        vcpu->arch.exception.pending = true;
 177        vcpu->arch.exception.has_error_code = false;
 178        vcpu->arch.exception.nr = nr;
 179}
 180EXPORT_SYMBOL_GPL(kvm_queue_exception);
 181
 182void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
 183                           u32 error_code)
 184{
 185        ++vcpu->stat.pf_guest;
 186
 187        if (vcpu->arch.exception.pending) {
 188                switch(vcpu->arch.exception.nr) {
 189                case DF_VECTOR:
 190                        /* triple fault -> shutdown */
 191                        set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
 192                        return;
 193                case PF_VECTOR:
 194                        vcpu->arch.exception.nr = DF_VECTOR;
 195                        vcpu->arch.exception.error_code = 0;
 196                        return;
 197                default:
 198                        /* replace previous exception with a new one in a hope
 199                           that instruction re-execution will regenerate lost
 200                           exception */
 201                        vcpu->arch.exception.pending = false;
 202                        break;
 203                }
 204        }
 205        vcpu->arch.cr2 = addr;
 206        kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
 207}
 208
 209void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 210{
 211        vcpu->arch.nmi_pending = 1;
 212}
 213EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 214
 215void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 216{
 217        WARN_ON(vcpu->arch.exception.pending);
 218        vcpu->arch.exception.pending = true;
 219        vcpu->arch.exception.has_error_code = true;
 220        vcpu->arch.exception.nr = nr;
 221        vcpu->arch.exception.error_code = error_code;
 222}
 223EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 224
 225/*
 226 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 227 * a #GP and return false.
 228 */
 229bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 230{
 231        if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
 232                return true;
 233        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 234        return false;
 235}
 236EXPORT_SYMBOL_GPL(kvm_require_cpl);
 237
 238/*
 239 * Load the pae pdptrs.  Return true is they are all valid.
 240 */
 241int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
 242{
 243        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 244        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 245        int i;
 246        int ret;
 247        u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
 248
 249        ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
 250                                  offset * sizeof(u64), sizeof(pdpte));
 251        if (ret < 0) {
 252                ret = 0;
 253                goto out;
 254        }
 255        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 256                if (is_present_gpte(pdpte[i]) &&
 257                    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
 258                        ret = 0;
 259                        goto out;
 260                }
 261        }
 262        ret = 1;
 263
 264        memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
 265        __set_bit(VCPU_EXREG_PDPTR,
 266                  (unsigned long *)&vcpu->arch.regs_avail);
 267        __set_bit(VCPU_EXREG_PDPTR,
 268                  (unsigned long *)&vcpu->arch.regs_dirty);
 269out:
 270
 271        return ret;
 272}
 273EXPORT_SYMBOL_GPL(load_pdptrs);
 274
 275static bool pdptrs_changed(struct kvm_vcpu *vcpu)
 276{
 277        u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
 278        bool changed = true;
 279        int r;
 280
 281        if (is_long_mode(vcpu) || !is_pae(vcpu))
 282                return false;
 283
 284        if (!test_bit(VCPU_EXREG_PDPTR,
 285                      (unsigned long *)&vcpu->arch.regs_avail))
 286                return true;
 287
 288        r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
 289        if (r < 0)
 290                goto out;
 291        changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
 292out:
 293
 294        return changed;
 295}
 296
 297void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 298{
 299        if (cr0 & CR0_RESERVED_BITS) {
 300                printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
 301                       cr0, vcpu->arch.cr0);
 302                kvm_inject_gp(vcpu, 0);
 303                return;
 304        }
 305
 306        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
 307                printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
 308                kvm_inject_gp(vcpu, 0);
 309                return;
 310        }
 311
 312        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
 313                printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
 314                       "and a clear PE flag\n");
 315                kvm_inject_gp(vcpu, 0);
 316                return;
 317        }
 318
 319        if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 320#ifdef CONFIG_X86_64
 321                if ((vcpu->arch.shadow_efer & EFER_LME)) {
 322                        int cs_db, cs_l;
 323
 324                        if (!is_pae(vcpu)) {
 325                                printk(KERN_DEBUG "set_cr0: #GP, start paging "
 326                                       "in long mode while PAE is disabled\n");
 327                                kvm_inject_gp(vcpu, 0);
 328                                return;
 329                        }
 330                        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 331                        if (cs_l) {
 332                                printk(KERN_DEBUG "set_cr0: #GP, start paging "
 333                                       "in long mode while CS.L == 1\n");
 334                                kvm_inject_gp(vcpu, 0);
 335                                return;
 336
 337                        }
 338                } else
 339#endif
 340                if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
 341                        printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
 342                               "reserved bits\n");
 343                        kvm_inject_gp(vcpu, 0);
 344                        return;
 345                }
 346
 347        }
 348
 349        kvm_x86_ops->set_cr0(vcpu, cr0);
 350        vcpu->arch.cr0 = cr0;
 351
 352        kvm_mmu_reset_context(vcpu);
 353        return;
 354}
 355EXPORT_SYMBOL_GPL(kvm_set_cr0);
 356
 357void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 358{
 359        kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
 360}
 361EXPORT_SYMBOL_GPL(kvm_lmsw);
 362
 363void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 364{
 365        unsigned long old_cr4 = vcpu->arch.cr4;
 366        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
 367
 368        if (cr4 & CR4_RESERVED_BITS) {
 369                printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
 370                kvm_inject_gp(vcpu, 0);
 371                return;
 372        }
 373
 374        if (is_long_mode(vcpu)) {
 375                if (!(cr4 & X86_CR4_PAE)) {
 376                        printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
 377                               "in long mode\n");
 378                        kvm_inject_gp(vcpu, 0);
 379                        return;
 380                }
 381        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 382                   && ((cr4 ^ old_cr4) & pdptr_bits)
 383                   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
 384                printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
 385                kvm_inject_gp(vcpu, 0);
 386                return;
 387        }
 388
 389        if (cr4 & X86_CR4_VMXE) {
 390                printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
 391                kvm_inject_gp(vcpu, 0);
 392                return;
 393        }
 394        kvm_x86_ops->set_cr4(vcpu, cr4);
 395        vcpu->arch.cr4 = cr4;
 396        vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
 397        kvm_mmu_reset_context(vcpu);
 398}
 399EXPORT_SYMBOL_GPL(kvm_set_cr4);
 400
 401void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 402{
 403        if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
 404                kvm_mmu_sync_roots(vcpu);
 405                kvm_mmu_flush_tlb(vcpu);
 406                return;
 407        }
 408
 409        if (is_long_mode(vcpu)) {
 410                if (cr3 & CR3_L_MODE_RESERVED_BITS) {
 411                        printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
 412                        kvm_inject_gp(vcpu, 0);
 413                        return;
 414                }
 415        } else {
 416                if (is_pae(vcpu)) {
 417                        if (cr3 & CR3_PAE_RESERVED_BITS) {
 418                                printk(KERN_DEBUG
 419                                       "set_cr3: #GP, reserved bits\n");
 420                                kvm_inject_gp(vcpu, 0);
 421                                return;
 422                        }
 423                        if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
 424                                printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
 425                                       "reserved bits\n");
 426                                kvm_inject_gp(vcpu, 0);
 427                                return;
 428                        }
 429                }
 430                /*
 431                 * We don't check reserved bits in nonpae mode, because
 432                 * this isn't enforced, and VMware depends on this.
 433                 */
 434        }
 435
 436        /*
 437         * Does the new cr3 value map to physical memory? (Note, we
 438         * catch an invalid cr3 even in real-mode, because it would
 439         * cause trouble later on when we turn on paging anyway.)
 440         *
 441         * A real CPU would silently accept an invalid cr3 and would
 442         * attempt to use it - with largely undefined (and often hard
 443         * to debug) behavior on the guest side.
 444         */
 445        if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
 446                kvm_inject_gp(vcpu, 0);
 447        else {
 448                vcpu->arch.cr3 = cr3;
 449                vcpu->arch.mmu.new_cr3(vcpu);
 450        }
 451}
 452EXPORT_SYMBOL_GPL(kvm_set_cr3);
 453
 454void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 455{
 456        if (cr8 & CR8_RESERVED_BITS) {
 457                printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
 458                kvm_inject_gp(vcpu, 0);
 459                return;
 460        }
 461        if (irqchip_in_kernel(vcpu->kvm))
 462                kvm_lapic_set_tpr(vcpu, cr8);
 463        else
 464                vcpu->arch.cr8 = cr8;
 465}
 466EXPORT_SYMBOL_GPL(kvm_set_cr8);
 467
 468unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 469{
 470        if (irqchip_in_kernel(vcpu->kvm))
 471                return kvm_lapic_get_cr8(vcpu);
 472        else
 473                return vcpu->arch.cr8;
 474}
 475EXPORT_SYMBOL_GPL(kvm_get_cr8);
 476
 477static inline u32 bit(int bitno)
 478{
 479        return 1 << (bitno & 31);
 480}
 481
 482/*
 483 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 484 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 485 *
 486 * This list is modified at module load time to reflect the
 487 * capabilities of the host cpu.
 488 */
 489static u32 msrs_to_save[] = {
 490        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 491        MSR_K6_STAR,
 492#ifdef CONFIG_X86_64
 493        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
 494#endif
 495        MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
 496        MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
 497};
 498
 499static unsigned num_msrs_to_save;
 500
 501static u32 emulated_msrs[] = {
 502        MSR_IA32_MISC_ENABLE,
 503};
 504
 505static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
 506{
 507        if (efer & efer_reserved_bits) {
 508                printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
 509                       efer);
 510                kvm_inject_gp(vcpu, 0);
 511                return;
 512        }
 513
 514        if (is_paging(vcpu)
 515            && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
 516                printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
 517                kvm_inject_gp(vcpu, 0);
 518                return;
 519        }
 520
 521        if (efer & EFER_FFXSR) {
 522                struct kvm_cpuid_entry2 *feat;
 523
 524                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 525                if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
 526                        printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
 527                        kvm_inject_gp(vcpu, 0);
 528                        return;
 529                }
 530        }
 531
 532        if (efer & EFER_SVME) {
 533                struct kvm_cpuid_entry2 *feat;
 534
 535                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 536                if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
 537                        printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
 538                        kvm_inject_gp(vcpu, 0);
 539                        return;
 540                }
 541        }
 542
 543        kvm_x86_ops->set_efer(vcpu, efer);
 544
 545        efer &= ~EFER_LMA;
 546        efer |= vcpu->arch.shadow_efer & EFER_LMA;
 547
 548        vcpu->arch.shadow_efer = efer;
 549
 550        vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
 551        kvm_mmu_reset_context(vcpu);
 552}
 553
 554void kvm_enable_efer_bits(u64 mask)
 555{
 556       efer_reserved_bits &= ~mask;
 557}
 558EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
 559
 560
 561/*
 562 * Writes msr value into into the appropriate "register".
 563 * Returns 0 on success, non-0 otherwise.
 564 * Assumes vcpu_load() was already called.
 565 */
 566int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
 567{
 568        return kvm_x86_ops->set_msr(vcpu, msr_index, data);
 569}
 570
 571/*
 572 * Adapt set_msr() to msr_io()'s calling convention
 573 */
 574static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
 575{
 576        return kvm_set_msr(vcpu, index, *data);
 577}
 578
 579static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
 580{
 581        static int version;
 582        struct pvclock_wall_clock wc;
 583        struct timespec now, sys, boot;
 584
 585        if (!wall_clock)
 586                return;
 587
 588        version++;
 589
 590        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 591
 592        /*
 593         * The guest calculates current wall clock time by adding
 594         * system time (updated by kvm_write_guest_time below) to the
 595         * wall clock specified here.  guest system time equals host
 596         * system time for us, thus we must fill in host boot time here.
 597         */
 598        now = current_kernel_time();
 599        ktime_get_ts(&sys);
 600        boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
 601
 602        wc.sec = boot.tv_sec;
 603        wc.nsec = boot.tv_nsec;
 604        wc.version = version;
 605
 606        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
 607
 608        version++;
 609        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 610}
 611
 612static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
 613{
 614        uint32_t quotient, remainder;
 615
 616        /* Don't try to replace with do_div(), this one calculates
 617         * "(dividend << 32) / divisor" */
 618        __asm__ ( "divl %4"
 619                  : "=a" (quotient), "=d" (remainder)
 620                  : "0" (0), "1" (dividend), "r" (divisor) );
 621        return quotient;
 622}
 623
 624static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
 625{
 626        uint64_t nsecs = 1000000000LL;
 627        int32_t  shift = 0;
 628        uint64_t tps64;
 629        uint32_t tps32;
 630
 631        tps64 = tsc_khz * 1000LL;
 632        while (tps64 > nsecs*2) {
 633                tps64 >>= 1;
 634                shift--;
 635        }
 636
 637        tps32 = (uint32_t)tps64;
 638        while (tps32 <= (uint32_t)nsecs) {
 639                tps32 <<= 1;
 640                shift++;
 641        }
 642
 643        hv_clock->tsc_shift = shift;
 644        hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
 645
 646        pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
 647                 __func__, tsc_khz, hv_clock->tsc_shift,
 648                 hv_clock->tsc_to_system_mul);
 649}
 650
 651static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
 652
 653static void kvm_write_guest_time(struct kvm_vcpu *v)
 654{
 655        struct timespec ts;
 656        unsigned long flags;
 657        struct kvm_vcpu_arch *vcpu = &v->arch;
 658        void *shared_kaddr;
 659        unsigned long this_tsc_khz;
 660
 661        if ((!vcpu->time_page))
 662                return;
 663
 664        this_tsc_khz = get_cpu_var(cpu_tsc_khz);
 665        if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
 666                kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
 667                vcpu->hv_clock_tsc_khz = this_tsc_khz;
 668        }
 669        put_cpu_var(cpu_tsc_khz);
 670
 671        /* Keep irq disabled to prevent changes to the clock */
 672        local_irq_save(flags);
 673        kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
 674        ktime_get_ts(&ts);
 675        local_irq_restore(flags);
 676
 677        /* With all the info we got, fill in the values */
 678
 679        vcpu->hv_clock.system_time = ts.tv_nsec +
 680                                     (NSEC_PER_SEC * (u64)ts.tv_sec);
 681        /*
 682         * The interface expects us to write an even number signaling that the
 683         * update is finished. Since the guest won't see the intermediate
 684         * state, we just increase by 2 at the end.
 685         */
 686        vcpu->hv_clock.version += 2;
 687
 688        shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
 689
 690        memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
 691               sizeof(vcpu->hv_clock));
 692
 693        kunmap_atomic(shared_kaddr, KM_USER0);
 694
 695        mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
 696}
 697
 698static int kvm_request_guest_time_update(struct kvm_vcpu *v)
 699{
 700        struct kvm_vcpu_arch *vcpu = &v->arch;
 701
 702        if (!vcpu->time_page)
 703                return 0;
 704        set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
 705        return 1;
 706}
 707
 708static bool msr_mtrr_valid(unsigned msr)
 709{
 710        switch (msr) {
 711        case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
 712        case MSR_MTRRfix64K_00000:
 713        case MSR_MTRRfix16K_80000:
 714        case MSR_MTRRfix16K_A0000:
 715        case MSR_MTRRfix4K_C0000:
 716        case MSR_MTRRfix4K_C8000:
 717        case MSR_MTRRfix4K_D0000:
 718        case MSR_MTRRfix4K_D8000:
 719        case MSR_MTRRfix4K_E0000:
 720        case MSR_MTRRfix4K_E8000:
 721        case MSR_MTRRfix4K_F0000:
 722        case MSR_MTRRfix4K_F8000:
 723        case MSR_MTRRdefType:
 724        case MSR_IA32_CR_PAT:
 725                return true;
 726        case 0x2f8:
 727                return true;
 728        }
 729        return false;
 730}
 731
 732static bool valid_pat_type(unsigned t)
 733{
 734        return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
 735}
 736
 737static bool valid_mtrr_type(unsigned t)
 738{
 739        return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
 740}
 741
 742static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 743{
 744        int i;
 745
 746        if (!msr_mtrr_valid(msr))
 747                return false;
 748
 749        if (msr == MSR_IA32_CR_PAT) {
 750                for (i = 0; i < 8; i++)
 751                        if (!valid_pat_type((data >> (i * 8)) & 0xff))
 752                                return false;
 753                return true;
 754        } else if (msr == MSR_MTRRdefType) {
 755                if (data & ~0xcff)
 756                        return false;
 757                return valid_mtrr_type(data & 0xff);
 758        } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
 759                for (i = 0; i < 8 ; i++)
 760                        if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
 761                                return false;
 762                return true;
 763        }
 764
 765        /* variable MTRRs */
 766        return valid_mtrr_type(data & 0xff);
 767}
 768
 769static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 770{
 771        u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
 772
 773        if (!mtrr_valid(vcpu, msr, data))
 774                return 1;
 775
 776        if (msr == MSR_MTRRdefType) {
 777                vcpu->arch.mtrr_state.def_type = data;
 778                vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
 779        } else if (msr == MSR_MTRRfix64K_00000)
 780                p[0] = data;
 781        else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
 782                p[1 + msr - MSR_MTRRfix16K_80000] = data;
 783        else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
 784                p[3 + msr - MSR_MTRRfix4K_C0000] = data;
 785        else if (msr == MSR_IA32_CR_PAT)
 786                vcpu->arch.pat = data;
 787        else {  /* Variable MTRRs */
 788                int idx, is_mtrr_mask;
 789                u64 *pt;
 790
 791                idx = (msr - 0x200) / 2;
 792                is_mtrr_mask = msr - 0x200 - 2 * idx;
 793                if (!is_mtrr_mask)
 794                        pt =
 795                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
 796                else
 797                        pt =
 798                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
 799                *pt = data;
 800        }
 801
 802        kvm_mmu_reset_context(vcpu);
 803        return 0;
 804}
 805
 806static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 807{
 808        u64 mcg_cap = vcpu->arch.mcg_cap;
 809        unsigned bank_num = mcg_cap & 0xff;
 810
 811        switch (msr) {
 812        case MSR_IA32_MCG_STATUS:
 813                vcpu->arch.mcg_status = data;
 814                break;
 815        case MSR_IA32_MCG_CTL:
 816                if (!(mcg_cap & MCG_CTL_P))
 817                        return 1;
 818                if (data != 0 && data != ~(u64)0)
 819                        return -1;
 820                vcpu->arch.mcg_ctl = data;
 821                break;
 822        default:
 823                if (msr >= MSR_IA32_MC0_CTL &&
 824                    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
 825                        u32 offset = msr - MSR_IA32_MC0_CTL;
 826                        /* only 0 or all 1s can be written to IA32_MCi_CTL */
 827                        if ((offset & 0x3) == 0 &&
 828                            data != 0 && data != ~(u64)0)
 829                                return -1;
 830                        vcpu->arch.mce_banks[offset] = data;
 831                        break;
 832                }
 833                return 1;
 834        }
 835        return 0;
 836}
 837
 838int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 839{
 840        switch (msr) {
 841        case MSR_EFER:
 842                set_efer(vcpu, data);
 843                break;
 844        case MSR_K7_HWCR:
 845                data &= ~(u64)0x40;     /* ignore flush filter disable */
 846                if (data != 0) {
 847                        pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
 848                                data);
 849                        return 1;
 850                }
 851                break;
 852        case MSR_FAM10H_MMIO_CONF_BASE:
 853                if (data != 0) {
 854                        pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
 855                                "0x%llx\n", data);
 856                        return 1;
 857                }
 858                break;
 859        case MSR_AMD64_NB_CFG:
 860                break;
 861        case MSR_IA32_DEBUGCTLMSR:
 862                if (!data) {
 863                        /* We support the non-activated case already */
 864                        break;
 865                } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
 866                        /* Values other than LBR and BTF are vendor-specific,
 867                           thus reserved and should throw a #GP */
 868                        return 1;
 869                }
 870                pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
 871                        __func__, data);
 872                break;
 873        case MSR_IA32_UCODE_REV:
 874        case MSR_IA32_UCODE_WRITE:
 875        case MSR_VM_HSAVE_PA:
 876        case MSR_AMD64_PATCH_LOADER:
 877                break;
 878        case 0x200 ... 0x2ff:
 879                return set_msr_mtrr(vcpu, msr, data);
 880        case MSR_IA32_APICBASE:
 881                kvm_set_apic_base(vcpu, data);
 882                break;
 883        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
 884                return kvm_x2apic_msr_write(vcpu, msr, data);
 885        case MSR_IA32_MISC_ENABLE:
 886                vcpu->arch.ia32_misc_enable_msr = data;
 887                break;
 888        case MSR_KVM_WALL_CLOCK:
 889                vcpu->kvm->arch.wall_clock = data;
 890                kvm_write_wall_clock(vcpu->kvm, data);
 891                break;
 892        case MSR_KVM_SYSTEM_TIME: {
 893                if (vcpu->arch.time_page) {
 894                        kvm_release_page_dirty(vcpu->arch.time_page);
 895                        vcpu->arch.time_page = NULL;
 896                }
 897
 898                vcpu->arch.time = data;
 899
 900                /* we verify if the enable bit is set... */
 901                if (!(data & 1))
 902                        break;
 903
 904                /* ...but clean it before doing the actual write */
 905                vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
 906
 907                vcpu->arch.time_page =
 908                                gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
 909
 910                if (is_error_page(vcpu->arch.time_page)) {
 911                        kvm_release_page_clean(vcpu->arch.time_page);
 912                        vcpu->arch.time_page = NULL;
 913                }
 914
 915                kvm_request_guest_time_update(vcpu);
 916                break;
 917        }
 918        case MSR_IA32_MCG_CTL:
 919        case MSR_IA32_MCG_STATUS:
 920        case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
 921                return set_msr_mce(vcpu, msr, data);
 922
 923        /* Performance counters are not protected by a CPUID bit,
 924         * so we should check all of them in the generic path for the sake of
 925         * cross vendor migration.
 926         * Writing a zero into the event select MSRs disables them,
 927         * which we perfectly emulate ;-). Any other value should be at least
 928         * reported, some guests depend on them.
 929         */
 930        case MSR_P6_EVNTSEL0:
 931        case MSR_P6_EVNTSEL1:
 932        case MSR_K7_EVNTSEL0:
 933        case MSR_K7_EVNTSEL1:
 934        case MSR_K7_EVNTSEL2:
 935        case MSR_K7_EVNTSEL3:
 936                if (data != 0)
 937                        pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
 938                                "0x%x data 0x%llx\n", msr, data);
 939                break;
 940        /* at least RHEL 4 unconditionally writes to the perfctr registers,
 941         * so we ignore writes to make it happy.
 942         */
 943        case MSR_P6_PERFCTR0:
 944        case MSR_P6_PERFCTR1:
 945        case MSR_K7_PERFCTR0:
 946        case MSR_K7_PERFCTR1:
 947        case MSR_K7_PERFCTR2:
 948        case MSR_K7_PERFCTR3:
 949                pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
 950                        "0x%x data 0x%llx\n", msr, data);
 951                break;
 952        default:
 953                if (!ignore_msrs) {
 954                        pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
 955                                msr, data);
 956                        return 1;
 957                } else {
 958                        pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
 959                                msr, data);
 960                        break;
 961                }
 962        }
 963        return 0;
 964}
 965EXPORT_SYMBOL_GPL(kvm_set_msr_common);
 966
 967
 968/*
 969 * Reads an msr value (of 'msr_index') into 'pdata'.
 970 * Returns 0 on success, non-0 otherwise.
 971 * Assumes vcpu_load() was already called.
 972 */
 973int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
 974{
 975        return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
 976}
 977
 978static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 979{
 980        u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
 981
 982        if (!msr_mtrr_valid(msr))
 983                return 1;
 984
 985        if (msr == MSR_MTRRdefType)
 986                *pdata = vcpu->arch.mtrr_state.def_type +
 987                         (vcpu->arch.mtrr_state.enabled << 10);
 988        else if (msr == MSR_MTRRfix64K_00000)
 989                *pdata = p[0];
 990        else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
 991                *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
 992        else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
 993                *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
 994        else if (msr == MSR_IA32_CR_PAT)
 995                *pdata = vcpu->arch.pat;
 996        else {  /* Variable MTRRs */
 997                int idx, is_mtrr_mask;
 998                u64 *pt;
 999
1000                idx = (msr - 0x200) / 2;
1001                is_mtrr_mask = msr - 0x200 - 2 * idx;
1002                if (!is_mtrr_mask)
1003                        pt =
1004                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1005                else
1006                        pt =
1007                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1008                *pdata = *pt;
1009        }
1010
1011        return 0;
1012}
1013
1014static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1015{
1016        u64 data;
1017        u64 mcg_cap = vcpu->arch.mcg_cap;
1018        unsigned bank_num = mcg_cap & 0xff;
1019
1020        switch (msr) {
1021        case MSR_IA32_P5_MC_ADDR:
1022        case MSR_IA32_P5_MC_TYPE:
1023                data = 0;
1024                break;
1025        case MSR_IA32_MCG_CAP:
1026                data = vcpu->arch.mcg_cap;
1027                break;
1028        case MSR_IA32_MCG_CTL:
1029                if (!(mcg_cap & MCG_CTL_P))
1030                        return 1;
1031                data = vcpu->arch.mcg_ctl;
1032                break;
1033        case MSR_IA32_MCG_STATUS:
1034                data = vcpu->arch.mcg_status;
1035                break;
1036        default:
1037                if (msr >= MSR_IA32_MC0_CTL &&
1038                    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1039                        u32 offset = msr - MSR_IA32_MC0_CTL;
1040                        data = vcpu->arch.mce_banks[offset];
1041                        break;
1042                }
1043                return 1;
1044        }
1045        *pdata = data;
1046        return 0;
1047}
1048
1049int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1050{
1051        u64 data;
1052
1053        switch (msr) {
1054        case MSR_IA32_PLATFORM_ID:
1055        case MSR_IA32_UCODE_REV:
1056        case MSR_IA32_EBL_CR_POWERON:
1057        case MSR_IA32_DEBUGCTLMSR:
1058        case MSR_IA32_LASTBRANCHFROMIP:
1059        case MSR_IA32_LASTBRANCHTOIP:
1060        case MSR_IA32_LASTINTFROMIP:
1061        case MSR_IA32_LASTINTTOIP:
1062        case MSR_K8_SYSCFG:
1063        case MSR_K7_HWCR:
1064        case MSR_VM_HSAVE_PA:
1065        case MSR_P6_PERFCTR0:
1066        case MSR_P6_PERFCTR1:
1067        case MSR_P6_EVNTSEL0:
1068        case MSR_P6_EVNTSEL1:
1069        case MSR_K7_EVNTSEL0:
1070        case MSR_K7_PERFCTR0:
1071        case MSR_K8_INT_PENDING_MSG:
1072        case MSR_AMD64_NB_CFG:
1073        case MSR_FAM10H_MMIO_CONF_BASE:
1074                data = 0;
1075                break;
1076        case MSR_MTRRcap:
1077                data = 0x500 | KVM_NR_VAR_MTRR;
1078                break;
1079        case 0x200 ... 0x2ff:
1080                return get_msr_mtrr(vcpu, msr, pdata);
1081        case 0xcd: /* fsb frequency */
1082                data = 3;
1083                break;
1084        case MSR_IA32_APICBASE:
1085                data = kvm_get_apic_base(vcpu);
1086                break;
1087        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1088                return kvm_x2apic_msr_read(vcpu, msr, pdata);
1089                break;
1090        case MSR_IA32_MISC_ENABLE:
1091                data = vcpu->arch.ia32_misc_enable_msr;
1092                break;
1093        case MSR_IA32_PERF_STATUS:
1094                /* TSC increment by tick */
1095                data = 1000ULL;
1096                /* CPU multiplier */
1097                data |= (((uint64_t)4ULL) << 40);
1098                break;
1099        case MSR_EFER:
1100                data = vcpu->arch.shadow_efer;
1101                break;
1102        case MSR_KVM_WALL_CLOCK:
1103                data = vcpu->kvm->arch.wall_clock;
1104                break;
1105        case MSR_KVM_SYSTEM_TIME:
1106                data = vcpu->arch.time;
1107                break;
1108        case MSR_IA32_P5_MC_ADDR:
1109        case MSR_IA32_P5_MC_TYPE:
1110        case MSR_IA32_MCG_CAP:
1111        case MSR_IA32_MCG_CTL:
1112        case MSR_IA32_MCG_STATUS:
1113        case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1114                return get_msr_mce(vcpu, msr, pdata);
1115        default:
1116                if (!ignore_msrs) {
1117                        pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1118                        return 1;
1119                } else {
1120                        pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1121                        data = 0;
1122                }
1123                break;
1124        }
1125        *pdata = data;
1126        return 0;
1127}
1128EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1129
1130/*
1131 * Read or write a bunch of msrs. All parameters are kernel addresses.
1132 *
1133 * @return number of msrs set successfully.
1134 */
1135static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1136                    struct kvm_msr_entry *entries,
1137                    int (*do_msr)(struct kvm_vcpu *vcpu,
1138                                  unsigned index, u64 *data))
1139{
1140        int i;
1141
1142        vcpu_load(vcpu);
1143
1144        down_read(&vcpu->kvm->slots_lock);
1145        for (i = 0; i < msrs->nmsrs; ++i)
1146                if (do_msr(vcpu, entries[i].index, &entries[i].data))
1147                        break;
1148        up_read(&vcpu->kvm->slots_lock);
1149
1150        vcpu_put(vcpu);
1151
1152        return i;
1153}
1154
1155/*
1156 * Read or write a bunch of msrs. Parameters are user addresses.
1157 *
1158 * @return number of msrs set successfully.
1159 */
1160static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1161                  int (*do_msr)(struct kvm_vcpu *vcpu,
1162                                unsigned index, u64 *data),
1163                  int writeback)
1164{
1165        struct kvm_msrs msrs;
1166        struct kvm_msr_entry *entries;
1167        int r, n;
1168        unsigned size;
1169
1170        r = -EFAULT;
1171        if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1172                goto out;
1173
1174        r = -E2BIG;
1175        if (msrs.nmsrs >= MAX_IO_MSRS)
1176                goto out;
1177
1178        r = -ENOMEM;
1179        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1180        entries = vmalloc(size);
1181        if (!entries)
1182                goto out;
1183
1184        r = -EFAULT;
1185        if (copy_from_user(entries, user_msrs->entries, size))
1186                goto out_free;
1187
1188        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1189        if (r < 0)
1190                goto out_free;
1191
1192        r = -EFAULT;
1193        if (writeback && copy_to_user(user_msrs->entries, entries, size))
1194                goto out_free;
1195
1196        r = n;
1197
1198out_free:
1199        vfree(entries);
1200out:
1201        return r;
1202}
1203
1204int kvm_dev_ioctl_check_extension(long ext)
1205{
1206        int r;
1207
1208        switch (ext) {
1209        case KVM_CAP_IRQCHIP:
1210        case KVM_CAP_HLT:
1211        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1212        case KVM_CAP_SET_TSS_ADDR:
1213        case KVM_CAP_EXT_CPUID:
1214        case KVM_CAP_CLOCKSOURCE:
1215        case KVM_CAP_PIT:
1216        case KVM_CAP_NOP_IO_DELAY:
1217        case KVM_CAP_MP_STATE:
1218        case KVM_CAP_SYNC_MMU:
1219        case KVM_CAP_REINJECT_CONTROL:
1220        case KVM_CAP_IRQ_INJECT_STATUS:
1221        case KVM_CAP_ASSIGN_DEV_IRQ:
1222        case KVM_CAP_IRQFD:
1223        case KVM_CAP_IOEVENTFD:
1224        case KVM_CAP_PIT2:
1225        case KVM_CAP_PIT_STATE2:
1226        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1227                r = 1;
1228                break;
1229        case KVM_CAP_COALESCED_MMIO:
1230                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1231                break;
1232        case KVM_CAP_VAPIC:
1233                r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1234                break;
1235        case KVM_CAP_NR_VCPUS:
1236                r = KVM_MAX_VCPUS;
1237                break;
1238        case KVM_CAP_NR_MEMSLOTS:
1239                r = KVM_MEMORY_SLOTS;
1240                break;
1241        case KVM_CAP_PV_MMU:
1242                r = !tdp_enabled;
1243                break;
1244        case KVM_CAP_IOMMU:
1245                r = iommu_found();
1246                break;
1247        case KVM_CAP_MCE:
1248                r = KVM_MAX_MCE_BANKS;
1249                break;
1250        default:
1251                r = 0;
1252                break;
1253        }
1254        return r;
1255
1256}
1257
1258long kvm_arch_dev_ioctl(struct file *filp,
1259                        unsigned int ioctl, unsigned long arg)
1260{
1261        void __user *argp = (void __user *)arg;
1262        long r;
1263
1264        switch (ioctl) {
1265        case KVM_GET_MSR_INDEX_LIST: {
1266                struct kvm_msr_list __user *user_msr_list = argp;
1267                struct kvm_msr_list msr_list;
1268                unsigned n;
1269
1270                r = -EFAULT;
1271                if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1272                        goto out;
1273                n = msr_list.nmsrs;
1274                msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1275                if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1276                        goto out;
1277                r = -E2BIG;
1278                if (n < msr_list.nmsrs)
1279                        goto out;
1280                r = -EFAULT;
1281                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1282                                 num_msrs_to_save * sizeof(u32)))
1283                        goto out;
1284                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1285                                 &emulated_msrs,
1286                                 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1287                        goto out;
1288                r = 0;
1289                break;
1290        }
1291        case KVM_GET_SUPPORTED_CPUID: {
1292                struct kvm_cpuid2 __user *cpuid_arg = argp;
1293                struct kvm_cpuid2 cpuid;
1294
1295                r = -EFAULT;
1296                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1297                        goto out;
1298                r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1299                                                      cpuid_arg->entries);
1300                if (r)
1301                        goto out;
1302
1303                r = -EFAULT;
1304                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1305                        goto out;
1306                r = 0;
1307                break;
1308        }
1309        case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1310                u64 mce_cap;
1311
1312                mce_cap = KVM_MCE_CAP_SUPPORTED;
1313                r = -EFAULT;
1314                if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1315                        goto out;
1316                r = 0;
1317                break;
1318        }
1319        default:
1320                r = -EINVAL;
1321        }
1322out:
1323        return r;
1324}
1325
1326void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1327{
1328        kvm_x86_ops->vcpu_load(vcpu, cpu);
1329        kvm_request_guest_time_update(vcpu);
1330}
1331
1332void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1333{
1334        kvm_x86_ops->vcpu_put(vcpu);
1335        kvm_put_guest_fpu(vcpu);
1336}
1337
1338static int is_efer_nx(void)
1339{
1340        unsigned long long efer = 0;
1341
1342        rdmsrl_safe(MSR_EFER, &efer);
1343        return efer & EFER_NX;
1344}
1345
1346static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1347{
1348        int i;
1349        struct kvm_cpuid_entry2 *e, *entry;
1350
1351        entry = NULL;
1352        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1353                e = &vcpu->arch.cpuid_entries[i];
1354                if (e->function == 0x80000001) {
1355                        entry = e;
1356                        break;
1357                }
1358        }
1359        if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1360                entry->edx &= ~(1 << 20);
1361                printk(KERN_INFO "kvm: guest NX capability removed\n");
1362        }
1363}
1364
1365/* when an old userspace process fills a new kernel module */
1366static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1367                                    struct kvm_cpuid *cpuid,
1368                                    struct kvm_cpuid_entry __user *entries)
1369{
1370        int r, i;
1371        struct kvm_cpuid_entry *cpuid_entries;
1372
1373        r = -E2BIG;
1374        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1375                goto out;
1376        r = -ENOMEM;
1377        cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1378        if (!cpuid_entries)
1379                goto out;
1380        r = -EFAULT;
1381        if (copy_from_user(cpuid_entries, entries,
1382                           cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1383                goto out_free;
1384        for (i = 0; i < cpuid->nent; i++) {
1385                vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1386                vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1387                vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1388                vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1389                vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1390                vcpu->arch.cpuid_entries[i].index = 0;
1391                vcpu->arch.cpuid_entries[i].flags = 0;
1392                vcpu->arch.cpuid_entries[i].padding[0] = 0;
1393                vcpu->arch.cpuid_entries[i].padding[1] = 0;
1394                vcpu->arch.cpuid_entries[i].padding[2] = 0;
1395        }
1396        vcpu->arch.cpuid_nent = cpuid->nent;
1397        cpuid_fix_nx_cap(vcpu);
1398        r = 0;
1399        kvm_apic_set_version(vcpu);
1400
1401out_free:
1402        vfree(cpuid_entries);
1403out:
1404        return r;
1405}
1406
1407static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1408                                     struct kvm_cpuid2 *cpuid,
1409                                     struct kvm_cpuid_entry2 __user *entries)
1410{
1411        int r;
1412
1413        r = -E2BIG;
1414        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1415                goto out;
1416        r = -EFAULT;
1417        if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1418                           cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1419                goto out;
1420        vcpu->arch.cpuid_nent = cpuid->nent;
1421        kvm_apic_set_version(vcpu);
1422        return 0;
1423
1424out:
1425        return r;
1426}
1427
1428static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1429                                     struct kvm_cpuid2 *cpuid,
1430                                     struct kvm_cpuid_entry2 __user *entries)
1431{
1432        int r;
1433
1434        r = -E2BIG;
1435        if (cpuid->nent < vcpu->arch.cpuid_nent)
1436                goto out;
1437        r = -EFAULT;
1438        if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1439                         vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1440                goto out;
1441        return 0;
1442
1443out:
1444        cpuid->nent = vcpu->arch.cpuid_nent;
1445        return r;
1446}
1447
1448static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1449                           u32 index)
1450{
1451        entry->function = function;
1452        entry->index = index;
1453        cpuid_count(entry->function, entry->index,
1454                    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1455        entry->flags = 0;
1456}
1457
1458#define F(x) bit(X86_FEATURE_##x)
1459
1460static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1461                         u32 index, int *nent, int maxnent)
1462{
1463        unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1464        unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
1465#ifdef CONFIG_X86_64
1466        unsigned f_lm = F(LM);
1467#else
1468        unsigned f_lm = 0;
1469#endif
1470
1471        /* cpuid 1.edx */
1472        const u32 kvm_supported_word0_x86_features =
1473                F(FPU) | F(VME) | F(DE) | F(PSE) |
1474                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1475                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1476                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1477                F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1478                0 /* Reserved, DS, ACPI */ | F(MMX) |
1479                F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1480                0 /* HTT, TM, Reserved, PBE */;
1481        /* cpuid 0x80000001.edx */
1482        const u32 kvm_supported_word1_x86_features =
1483                F(FPU) | F(VME) | F(DE) | F(PSE) |
1484                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1485                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1486                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1487                F(PAT) | F(PSE36) | 0 /* Reserved */ |
1488                f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1489                F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
1490                0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1491        /* cpuid 1.ecx */
1492        const u32 kvm_supported_word4_x86_features =
1493                F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1494                0 /* DS-CPL, VMX, SMX, EST */ |
1495                0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1496                0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1497                0 /* Reserved, DCA */ | F(XMM4_1) |
1498                F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1499                0 /* Reserved, XSAVE, OSXSAVE */;
1500        /* cpuid 0x80000001.ecx */
1501        const u32 kvm_supported_word6_x86_features =
1502                F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1503                F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1504                F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1505                0 /* SKINIT */ | 0 /* WDT */;
1506
1507        /* all calls to cpuid_count() should be made on the same cpu */
1508        get_cpu();
1509        do_cpuid_1_ent(entry, function, index);
1510        ++*nent;
1511
1512        switch (function) {
1513        case 0:
1514                entry->eax = min(entry->eax, (u32)0xb);
1515                break;
1516        case 1:
1517                entry->edx &= kvm_supported_word0_x86_features;
1518                entry->ecx &= kvm_supported_word4_x86_features;
1519                /* we support x2apic emulation even if host does not support
1520                 * it since we emulate x2apic in software */
1521                entry->ecx |= F(X2APIC);
1522                break;
1523        /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1524         * may return different values. This forces us to get_cpu() before
1525         * issuing the first command, and also to emulate this annoying behavior
1526         * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1527        case 2: {
1528                int t, times = entry->eax & 0xff;
1529
1530                entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1531                entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1532                for (t = 1; t < times && *nent < maxnent; ++t) {
1533                        do_cpuid_1_ent(&entry[t], function, 0);
1534                        entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1535                        ++*nent;
1536                }
1537                break;
1538        }
1539        /* function 4 and 0xb have additional index. */
1540        case 4: {
1541                int i, cache_type;
1542
1543                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1544                /* read more entries until cache_type is zero */
1545                for (i = 1; *nent < maxnent; ++i) {
1546                        cache_type = entry[i - 1].eax & 0x1f;
1547                        if (!cache_type)
1548                                break;
1549                        do_cpuid_1_ent(&entry[i], function, i);
1550                        entry[i].flags |=
1551                               KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1552                        ++*nent;
1553                }
1554                break;
1555        }
1556        case 0xb: {
1557                int i, level_type;
1558
1559                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1560                /* read more entries until level_type is zero */
1561                for (i = 1; *nent < maxnent; ++i) {
1562                        level_type = entry[i - 1].ecx & 0xff00;
1563                        if (!level_type)
1564                                break;
1565                        do_cpuid_1_ent(&entry[i], function, i);
1566                        entry[i].flags |=
1567                               KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1568                        ++*nent;
1569                }
1570                break;
1571        }
1572        case 0x80000000:
1573                entry->eax = min(entry->eax, 0x8000001a);
1574                break;
1575        case 0x80000001:
1576                entry->edx &= kvm_supported_word1_x86_features;
1577                entry->ecx &= kvm_supported_word6_x86_features;
1578                break;
1579        }
1580        put_cpu();
1581}
1582
1583#undef F
1584
1585static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1586                                     struct kvm_cpuid_entry2 __user *entries)
1587{
1588        struct kvm_cpuid_entry2 *cpuid_entries;
1589        int limit, nent = 0, r = -E2BIG;
1590        u32 func;
1591
1592        if (cpuid->nent < 1)
1593                goto out;
1594        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1595                cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1596        r = -ENOMEM;
1597        cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1598        if (!cpuid_entries)
1599                goto out;
1600
1601        do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1602        limit = cpuid_entries[0].eax;
1603        for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1604                do_cpuid_ent(&cpuid_entries[nent], func, 0,
1605                             &nent, cpuid->nent);
1606        r = -E2BIG;
1607        if (nent >= cpuid->nent)
1608                goto out_free;
1609
1610        do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1611        limit = cpuid_entries[nent - 1].eax;
1612        for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1613                do_cpuid_ent(&cpuid_entries[nent], func, 0,
1614                             &nent, cpuid->nent);
1615        r = -E2BIG;
1616        if (nent >= cpuid->nent)
1617                goto out_free;
1618
1619        r = -EFAULT;
1620        if (copy_to_user(entries, cpuid_entries,
1621                         nent * sizeof(struct kvm_cpuid_entry2)))
1622                goto out_free;
1623        cpuid->nent = nent;
1624        r = 0;
1625
1626out_free:
1627        vfree(cpuid_entries);
1628out:
1629        return r;
1630}
1631
1632static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1633                                    struct kvm_lapic_state *s)
1634{
1635        vcpu_load(vcpu);
1636        memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1637        vcpu_put(vcpu);
1638
1639        return 0;
1640}
1641
1642static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1643                                    struct kvm_lapic_state *s)
1644{
1645        vcpu_load(vcpu);
1646        memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1647        kvm_apic_post_state_restore(vcpu);
1648        update_cr8_intercept(vcpu);
1649        vcpu_put(vcpu);
1650
1651        return 0;
1652}
1653
1654static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1655                                    struct kvm_interrupt *irq)
1656{
1657        if (irq->irq < 0 || irq->irq >= 256)
1658                return -EINVAL;
1659        if (irqchip_in_kernel(vcpu->kvm))
1660                return -ENXIO;
1661        vcpu_load(vcpu);
1662
1663        kvm_queue_interrupt(vcpu, irq->irq, false);
1664
1665        vcpu_put(vcpu);
1666
1667        return 0;
1668}
1669
1670static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1671{
1672        vcpu_load(vcpu);
1673        kvm_inject_nmi(vcpu);
1674        vcpu_put(vcpu);
1675
1676        return 0;
1677}
1678
1679static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1680                                           struct kvm_tpr_access_ctl *tac)
1681{
1682        if (tac->flags)
1683                return -EINVAL;
1684        vcpu->arch.tpr_access_reporting = !!tac->enabled;
1685        return 0;
1686}
1687
1688static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1689                                        u64 mcg_cap)
1690{
1691        int r;
1692        unsigned bank_num = mcg_cap & 0xff, bank;
1693
1694        r = -EINVAL;
1695        if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
1696                goto out;
1697        if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1698                goto out;
1699        r = 0;
1700        vcpu->arch.mcg_cap = mcg_cap;
1701        /* Init IA32_MCG_CTL to all 1s */
1702        if (mcg_cap & MCG_CTL_P)
1703                vcpu->arch.mcg_ctl = ~(u64)0;
1704        /* Init IA32_MCi_CTL to all 1s */
1705        for (bank = 0; bank < bank_num; bank++)
1706                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1707out:
1708        return r;
1709}
1710
1711static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1712                                      struct kvm_x86_mce *mce)
1713{
1714        u64 mcg_cap = vcpu->arch.mcg_cap;
1715        unsigned bank_num = mcg_cap & 0xff;
1716        u64 *banks = vcpu->arch.mce_banks;
1717
1718        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1719                return -EINVAL;
1720        /*
1721         * if IA32_MCG_CTL is not all 1s, the uncorrected error
1722         * reporting is disabled
1723         */
1724        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1725            vcpu->arch.mcg_ctl != ~(u64)0)
1726                return 0;
1727        banks += 4 * mce->bank;
1728        /*
1729         * if IA32_MCi_CTL is not all 1s, the uncorrected error
1730         * reporting is disabled for the bank
1731         */
1732        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1733                return 0;
1734        if (mce->status & MCI_STATUS_UC) {
1735                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1736                    !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1737                        printk(KERN_DEBUG "kvm: set_mce: "
1738                               "injects mce exception while "
1739                               "previous one is in progress!\n");
1740                        set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1741                        return 0;
1742                }
1743                if (banks[1] & MCI_STATUS_VAL)
1744                        mce->status |= MCI_STATUS_OVER;
1745                banks[2] = mce->addr;
1746                banks[3] = mce->misc;
1747                vcpu->arch.mcg_status = mce->mcg_status;
1748                banks[1] = mce->status;
1749                kvm_queue_exception(vcpu, MC_VECTOR);
1750        } else if (!(banks[1] & MCI_STATUS_VAL)
1751                   || !(banks[1] & MCI_STATUS_UC)) {
1752                if (banks[1] & MCI_STATUS_VAL)
1753                        mce->status |= MCI_STATUS_OVER;
1754                banks[2] = mce->addr;
1755                banks[3] = mce->misc;
1756                banks[1] = mce->status;
1757        } else
1758                banks[1] |= MCI_STATUS_OVER;
1759        return 0;
1760}
1761
1762long kvm_arch_vcpu_ioctl(struct file *filp,
1763                         unsigned int ioctl, unsigned long arg)
1764{
1765        struct kvm_vcpu *vcpu = filp->private_data;
1766        void __user *argp = (void __user *)arg;
1767        int r;
1768        struct kvm_lapic_state *lapic = NULL;
1769
1770        switch (ioctl) {
1771        case KVM_GET_LAPIC: {
1772                lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1773
1774                r = -ENOMEM;
1775                if (!lapic)
1776                        goto out;
1777                r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1778                if (r)
1779                        goto out;
1780                r = -EFAULT;
1781                if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1782                        goto out;
1783                r = 0;
1784                break;
1785        }
1786        case KVM_SET_LAPIC: {
1787                lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1788                r = -ENOMEM;
1789                if (!lapic)
1790                        goto out;
1791                r = -EFAULT;
1792                if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1793                        goto out;
1794                r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1795                if (r)
1796                        goto out;
1797                r = 0;
1798                break;
1799        }
1800        case KVM_INTERRUPT: {
1801                struct kvm_interrupt irq;
1802
1803                r = -EFAULT;
1804                if (copy_from_user(&irq, argp, sizeof irq))
1805                        goto out;
1806                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1807                if (r)
1808                        goto out;
1809                r = 0;
1810                break;
1811        }
1812        case KVM_NMI: {
1813                r = kvm_vcpu_ioctl_nmi(vcpu);
1814                if (r)
1815                        goto out;
1816                r = 0;
1817                break;
1818        }
1819        case KVM_SET_CPUID: {
1820                struct kvm_cpuid __user *cpuid_arg = argp;
1821                struct kvm_cpuid cpuid;
1822
1823                r = -EFAULT;
1824                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1825                        goto out;
1826                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1827                if (r)
1828                        goto out;
1829                break;
1830        }
1831        case KVM_SET_CPUID2: {
1832                struct kvm_cpuid2 __user *cpuid_arg = argp;
1833                struct kvm_cpuid2 cpuid;
1834
1835                r = -EFAULT;
1836                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1837                        goto out;
1838                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1839                                              cpuid_arg->entries);
1840                if (r)
1841                        goto out;
1842                break;
1843        }
1844        case KVM_GET_CPUID2: {
1845                struct kvm_cpuid2 __user *cpuid_arg = argp;
1846                struct kvm_cpuid2 cpuid;
1847
1848                r = -EFAULT;
1849                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1850                        goto out;
1851                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1852                                              cpuid_arg->entries);
1853                if (r)
1854                        goto out;
1855                r = -EFAULT;
1856                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1857                        goto out;
1858                r = 0;
1859                break;
1860        }
1861        case KVM_GET_MSRS:
1862                r = msr_io(vcpu, argp, kvm_get_msr, 1);
1863                break;
1864        case KVM_SET_MSRS:
1865                r = msr_io(vcpu, argp, do_set_msr, 0);
1866                break;
1867        case KVM_TPR_ACCESS_REPORTING: {
1868                struct kvm_tpr_access_ctl tac;
1869
1870                r = -EFAULT;
1871                if (copy_from_user(&tac, argp, sizeof tac))
1872                        goto out;
1873                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1874                if (r)
1875                        goto out;
1876                r = -EFAULT;
1877                if (copy_to_user(argp, &tac, sizeof tac))
1878                        goto out;
1879                r = 0;
1880                break;
1881        };
1882        case KVM_SET_VAPIC_ADDR: {
1883                struct kvm_vapic_addr va;
1884
1885                r = -EINVAL;
1886                if (!irqchip_in_kernel(vcpu->kvm))
1887                        goto out;
1888                r = -EFAULT;
1889                if (copy_from_user(&va, argp, sizeof va))
1890                        goto out;
1891                r = 0;
1892                kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1893                break;
1894        }
1895        case KVM_X86_SETUP_MCE: {
1896                u64 mcg_cap;
1897
1898                r = -EFAULT;
1899                if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1900                        goto out;
1901                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1902                break;
1903        }
1904        case KVM_X86_SET_MCE: {
1905                struct kvm_x86_mce mce;
1906
1907                r = -EFAULT;
1908                if (copy_from_user(&mce, argp, sizeof mce))
1909                        goto out;
1910                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1911                break;
1912        }
1913        default:
1914                r = -EINVAL;
1915        }
1916out:
1917        kfree(lapic);
1918        return r;
1919}
1920
1921static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1922{
1923        int ret;
1924
1925        if (addr > (unsigned int)(-3 * PAGE_SIZE))
1926                return -1;
1927        ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1928        return ret;
1929}
1930
1931static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
1932                                              u64 ident_addr)
1933{
1934        kvm->arch.ept_identity_map_addr = ident_addr;
1935        return 0;
1936}
1937
1938static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1939                                          u32 kvm_nr_mmu_pages)
1940{
1941        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1942                return -EINVAL;
1943
1944        down_write(&kvm->slots_lock);
1945        spin_lock(&kvm->mmu_lock);
1946
1947        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1948        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1949
1950        spin_unlock(&kvm->mmu_lock);
1951        up_write(&kvm->slots_lock);
1952        return 0;
1953}
1954
1955static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1956{
1957        return kvm->arch.n_alloc_mmu_pages;
1958}
1959
1960gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1961{
1962        int i;
1963        struct kvm_mem_alias *alias;
1964
1965        for (i = 0; i < kvm->arch.naliases; ++i) {
1966                alias = &kvm->arch.aliases[i];
1967                if (gfn >= alias->base_gfn
1968                    && gfn < alias->base_gfn + alias->npages)
1969                        return alias->target_gfn + gfn - alias->base_gfn;
1970        }
1971        return gfn;
1972}
1973
1974/*
1975 * Set a new alias region.  Aliases map a portion of physical memory into
1976 * another portion.  This is useful for memory windows, for example the PC
1977 * VGA region.
1978 */
1979static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1980                                         struct kvm_memory_alias *alias)
1981{
1982        int r, n;
1983        struct kvm_mem_alias *p;
1984
1985        r = -EINVAL;
1986        /* General sanity checks */
1987        if (alias->memory_size & (PAGE_SIZE - 1))
1988                goto out;
1989        if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1990                goto out;
1991        if (alias->slot >= KVM_ALIAS_SLOTS)
1992                goto out;
1993        if (alias->guest_phys_addr + alias->memory_size
1994            < alias->guest_phys_addr)
1995                goto out;
1996        if (alias->target_phys_addr + alias->memory_size
1997            < alias->target_phys_addr)
1998                goto out;
1999
2000        down_write(&kvm->slots_lock);
2001        spin_lock(&kvm->mmu_lock);
2002
2003        p = &kvm->arch.aliases[alias->slot];
2004        p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2005        p->npages = alias->memory_size >> PAGE_SHIFT;
2006        p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2007
2008        for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2009                if (kvm->arch.aliases[n - 1].npages)
2010                        break;
2011        kvm->arch.naliases = n;
2012
2013        spin_unlock(&kvm->mmu_lock);
2014        kvm_mmu_zap_all(kvm);
2015
2016        up_write(&kvm->slots_lock);
2017
2018        return 0;
2019
2020out:
2021        return r;
2022}
2023
2024static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2025{
2026        int r;
2027
2028        r = 0;
2029        switch (chip->chip_id) {
2030        case KVM_IRQCHIP_PIC_MASTER:
2031                memcpy(&chip->chip.pic,
2032                        &pic_irqchip(kvm)->pics[0],
2033                        sizeof(struct kvm_pic_state));
2034                break;
2035        case KVM_IRQCHIP_PIC_SLAVE:
2036                memcpy(&chip->chip.pic,
2037                        &pic_irqchip(kvm)->pics[1],
2038                        sizeof(struct kvm_pic_state));
2039                break;
2040        case KVM_IRQCHIP_IOAPIC:
2041                memcpy(&chip->chip.ioapic,
2042                        ioapic_irqchip(kvm),
2043                        sizeof(struct kvm_ioapic_state));
2044                break;
2045        default:
2046                r = -EINVAL;
2047                break;
2048        }
2049        return r;
2050}
2051
2052static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2053{
2054        int r;
2055
2056        r = 0;
2057        switch (chip->chip_id) {
2058        case KVM_IRQCHIP_PIC_MASTER:
2059                spin_lock(&pic_irqchip(kvm)->lock);
2060                memcpy(&pic_irqchip(kvm)->pics[0],
2061                        &chip->chip.pic,
2062                        sizeof(struct kvm_pic_state));
2063                spin_unlock(&pic_irqchip(kvm)->lock);
2064                break;
2065        case KVM_IRQCHIP_PIC_SLAVE:
2066                spin_lock(&pic_irqchip(kvm)->lock);
2067                memcpy(&pic_irqchip(kvm)->pics[1],
2068                        &chip->chip.pic,
2069                        sizeof(struct kvm_pic_state));
2070                spin_unlock(&pic_irqchip(kvm)->lock);
2071                break;
2072        case KVM_IRQCHIP_IOAPIC:
2073                mutex_lock(&kvm->irq_lock);
2074                memcpy(ioapic_irqchip(kvm),
2075                        &chip->chip.ioapic,
2076                        sizeof(struct kvm_ioapic_state));
2077                mutex_unlock(&kvm->irq_lock);
2078                break;
2079        default:
2080                r = -EINVAL;
2081                break;
2082        }
2083        kvm_pic_update_irq(pic_irqchip(kvm));
2084        return r;
2085}
2086
2087static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2088{
2089        int r = 0;
2090
2091        mutex_lock(&kvm->arch.vpit->pit_state.lock);
2092        memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2093        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2094        return r;
2095}
2096
2097static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2098{
2099        int r = 0;
2100
2101        mutex_lock(&kvm->arch.vpit->pit_state.lock);
2102        memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2103        kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2104        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2105        return r;
2106}
2107
2108static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2109{
2110        int r = 0;
2111
2112        mutex_lock(&kvm->arch.vpit->pit_state.lock);
2113        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2114                sizeof(ps->channels));
2115        ps->flags = kvm->arch.vpit->pit_state.flags;
2116        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2117        return r;
2118}
2119
2120static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2121{
2122        int r = 0, start = 0;
2123        u32 prev_legacy, cur_legacy;
2124        mutex_lock(&kvm->arch.vpit->pit_state.lock);
2125        prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2126        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2127        if (!prev_legacy && cur_legacy)
2128                start = 1;
2129        memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2130               sizeof(kvm->arch.vpit->pit_state.channels));
2131        kvm->arch.vpit->pit_state.flags = ps->flags;
2132        kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2133        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2134        return r;
2135}
2136
2137static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2138                                 struct kvm_reinject_control *control)
2139{
2140        if (!kvm->arch.vpit)
2141                return -ENXIO;
2142        mutex_lock(&kvm->arch.vpit->pit_state.lock);
2143        kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2144        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2145        return 0;
2146}
2147
2148/*
2149 * Get (and clear) the dirty memory log for a memory slot.
2150 */
2151int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2152                                      struct kvm_dirty_log *log)
2153{
2154        int r;
2155        int n;
2156        struct kvm_memory_slot *memslot;
2157        int is_dirty = 0;
2158
2159        down_write(&kvm->slots_lock);
2160
2161        r = kvm_get_dirty_log(kvm, log, &is_dirty);
2162        if (r)
2163                goto out;
2164
2165        /* If nothing is dirty, don't bother messing with page tables. */
2166        if (is_dirty) {
2167                spin_lock(&kvm->mmu_lock);
2168                kvm_mmu_slot_remove_write_access(kvm, log->slot);
2169                spin_unlock(&kvm->mmu_lock);
2170                memslot = &kvm->memslots[log->slot];
2171                n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2172                memset(memslot->dirty_bitmap, 0, n);
2173        }
2174        r = 0;
2175out:
2176        up_write(&kvm->slots_lock);
2177        return r;
2178}
2179
2180long kvm_arch_vm_ioctl(struct file *filp,
2181                       unsigned int ioctl, unsigned long arg)
2182{
2183        struct kvm *kvm = filp->private_data;
2184        void __user *argp = (void __user *)arg;
2185        int r = -EINVAL;
2186        /*
2187         * This union makes it completely explicit to gcc-3.x
2188         * that these two variables' stack usage should be
2189         * combined, not added together.
2190         */
2191        union {
2192                struct kvm_pit_state ps;
2193                struct kvm_pit_state2 ps2;
2194                struct kvm_memory_alias alias;
2195                struct kvm_pit_config pit_config;
2196        } u;
2197
2198        switch (ioctl) {
2199        case KVM_SET_TSS_ADDR:
2200                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2201                if (r < 0)
2202                        goto out;
2203                break;
2204        case KVM_SET_IDENTITY_MAP_ADDR: {
2205                u64 ident_addr;
2206
2207                r = -EFAULT;
2208                if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2209                        goto out;
2210                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2211                if (r < 0)
2212                        goto out;
2213                break;
2214        }
2215        case KVM_SET_MEMORY_REGION: {
2216                struct kvm_memory_region kvm_mem;
2217                struct kvm_userspace_memory_region kvm_userspace_mem;
2218
2219                r = -EFAULT;
2220                if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2221                        goto out;
2222                kvm_userspace_mem.slot = kvm_mem.slot;
2223                kvm_userspace_mem.flags = kvm_mem.flags;
2224                kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2225                kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2226                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2227                if (r)
2228                        goto out;
2229                break;
2230        }
2231        case KVM_SET_NR_MMU_PAGES:
2232                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2233                if (r)
2234                        goto out;
2235                break;
2236        case KVM_GET_NR_MMU_PAGES:
2237                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2238                break;
2239        case KVM_SET_MEMORY_ALIAS:
2240                r = -EFAULT;
2241                if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2242                        goto out;
2243                r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2244                if (r)
2245                        goto out;
2246                break;
2247        case KVM_CREATE_IRQCHIP:
2248                r = -ENOMEM;
2249                kvm->arch.vpic = kvm_create_pic(kvm);
2250                if (kvm->arch.vpic) {
2251                        r = kvm_ioapic_init(kvm);
2252                        if (r) {
2253                                kfree(kvm->arch.vpic);
2254                                kvm->arch.vpic = NULL;
2255                                goto out;
2256                        }
2257                } else
2258                        goto out;
2259                r = kvm_setup_default_irq_routing(kvm);
2260                if (r) {
2261                        kfree(kvm->arch.vpic);
2262                        kfree(kvm->arch.vioapic);
2263                        goto out;
2264                }
2265                break;
2266        case KVM_CREATE_PIT:
2267                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2268                goto create_pit;
2269        case KVM_CREATE_PIT2:
2270                r = -EFAULT;
2271                if (copy_from_user(&u.pit_config, argp,
2272                                   sizeof(struct kvm_pit_config)))
2273                        goto out;
2274        create_pit:
2275                down_write(&kvm->slots_lock);
2276                r = -EEXIST;
2277                if (kvm->arch.vpit)
2278                        goto create_pit_unlock;
2279                r = -ENOMEM;
2280                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2281                if (kvm->arch.vpit)
2282                        r = 0;
2283        create_pit_unlock:
2284                up_write(&kvm->slots_lock);
2285                break;
2286        case KVM_IRQ_LINE_STATUS:
2287        case KVM_IRQ_LINE: {
2288                struct kvm_irq_level irq_event;
2289
2290                r = -EFAULT;
2291                if (copy_from_user(&irq_event, argp, sizeof irq_event))
2292                        goto out;
2293                if (irqchip_in_kernel(kvm)) {
2294                        __s32 status;
2295                        mutex_lock(&kvm->irq_lock);
2296                        status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2297                                        irq_event.irq, irq_event.level);
2298                        mutex_unlock(&kvm->irq_lock);
2299                        if (ioctl == KVM_IRQ_LINE_STATUS) {
2300                                irq_event.status = status;
2301                                if (copy_to_user(argp, &irq_event,
2302                                                        sizeof irq_event))
2303                                        goto out;
2304                        }
2305                        r = 0;
2306                }
2307                break;
2308        }
2309        case KVM_GET_IRQCHIP: {
2310                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2311                struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2312
2313                r = -ENOMEM;
2314                if (!chip)
2315                        goto out;
2316                r = -EFAULT;
2317                if (copy_from_user(chip, argp, sizeof *chip))
2318                        goto get_irqchip_out;
2319                r = -ENXIO;
2320                if (!irqchip_in_kernel(kvm))
2321                        goto get_irqchip_out;
2322                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2323                if (r)
2324                        goto get_irqchip_out;
2325                r = -EFAULT;
2326                if (copy_to_user(argp, chip, sizeof *chip))
2327                        goto get_irqchip_out;
2328                r = 0;
2329        get_irqchip_out:
2330                kfree(chip);
2331                if (r)
2332                        goto out;
2333                break;
2334        }
2335        case KVM_SET_IRQCHIP: {
2336                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2337                struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2338
2339                r = -ENOMEM;
2340                if (!chip)
2341                        goto out;
2342                r = -EFAULT;
2343                if (copy_from_user(chip, argp, sizeof *chip))
2344                        goto set_irqchip_out;
2345                r = -ENXIO;
2346                if (!irqchip_in_kernel(kvm))
2347                        goto set_irqchip_out;
2348                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2349                if (r)
2350                        goto set_irqchip_out;
2351                r = 0;
2352        set_irqchip_out:
2353                kfree(chip);
2354                if (r)
2355                        goto out;
2356                break;
2357        }
2358        case KVM_GET_PIT: {
2359                r = -EFAULT;
2360                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2361                        goto out;
2362                r = -ENXIO;
2363                if (!kvm->arch.vpit)
2364                        goto out;
2365                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2366                if (r)
2367                        goto out;
2368                r = -EFAULT;
2369                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2370                        goto out;
2371                r = 0;
2372                break;
2373        }
2374        case KVM_SET_PIT: {
2375                r = -EFAULT;
2376                if (copy_from_user(&u.ps, argp, sizeof u.ps))
2377                        goto out;
2378                r = -ENXIO;
2379                if (!kvm->arch.vpit)
2380                        goto out;
2381                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2382                if (r)
2383                        goto out;
2384                r = 0;
2385                break;
2386        }
2387        case KVM_GET_PIT2: {
2388                r = -ENXIO;
2389                if (!kvm->arch.vpit)
2390                        goto out;
2391                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2392                if (r)
2393                        goto out;
2394                r = -EFAULT;
2395                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2396                        goto out;
2397                r = 0;
2398                break;
2399        }
2400        case KVM_SET_PIT2: {
2401                r = -EFAULT;
2402                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2403                        goto out;
2404                r = -ENXIO;
2405                if (!kvm->arch.vpit)
2406                        goto out;
2407                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2408                if (r)
2409                        goto out;
2410                r = 0;
2411                break;
2412        }
2413        case KVM_REINJECT_CONTROL: {
2414                struct kvm_reinject_control control;
2415                r =  -EFAULT;
2416                if (copy_from_user(&control, argp, sizeof(control)))
2417                        goto out;
2418                r = kvm_vm_ioctl_reinject(kvm, &control);
2419                if (r)
2420                        goto out;
2421                r = 0;
2422                break;
2423        }
2424        default:
2425                ;
2426        }
2427out:
2428        return r;
2429}
2430
2431static void kvm_init_msr_list(void)
2432{
2433        u32 dummy[2];
2434        unsigned i, j;
2435
2436        for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2437                if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2438                        continue;
2439                if (j < i)
2440                        msrs_to_save[j] = msrs_to_save[i];
2441                j++;
2442        }
2443        num_msrs_to_save = j;
2444}
2445
2446static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2447                           const void *v)
2448{
2449        if (vcpu->arch.apic &&
2450            !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2451                return 0;
2452
2453        return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2454}
2455
2456static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2457{
2458        if (vcpu->arch.apic &&
2459            !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2460                return 0;
2461
2462        return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2463}
2464
2465static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2466                               struct kvm_vcpu *vcpu)
2467{
2468        void *data = val;
2469        int r = X86EMUL_CONTINUE;
2470
2471        while (bytes) {
2472                gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2473                unsigned offset = addr & (PAGE_SIZE-1);
2474                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2475                int ret;
2476
2477                if (gpa == UNMAPPED_GVA) {
2478                        r = X86EMUL_PROPAGATE_FAULT;
2479                        goto out;
2480                }
2481                ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2482                if (ret < 0) {
2483                        r = X86EMUL_UNHANDLEABLE;
2484                        goto out;
2485                }
2486
2487                bytes -= toread;
2488                data += toread;
2489                addr += toread;
2490        }
2491out:
2492        return r;
2493}
2494
2495static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2496                                struct kvm_vcpu *vcpu)
2497{
2498        void *data = val;
2499        int r = X86EMUL_CONTINUE;
2500
2501        while (bytes) {
2502                gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2503                unsigned offset = addr & (PAGE_SIZE-1);
2504                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2505                int ret;
2506
2507                if (gpa == UNMAPPED_GVA) {
2508                        r = X86EMUL_PROPAGATE_FAULT;
2509                        goto out;
2510                }
2511                ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2512                if (ret < 0) {
2513                        r = X86EMUL_UNHANDLEABLE;
2514                        goto out;
2515                }
2516
2517                bytes -= towrite;
2518                data += towrite;
2519                addr += towrite;
2520        }
2521out:
2522        return r;
2523}
2524
2525
2526static int emulator_read_emulated(unsigned long addr,
2527                                  void *val,
2528                                  unsigned int bytes,
2529                                  struct kvm_vcpu *vcpu)
2530{
2531        gpa_t                 gpa;
2532
2533        if (vcpu->mmio_read_completed) {
2534                memcpy(val, vcpu->mmio_data, bytes);
2535                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2536                               vcpu->mmio_phys_addr, *(u64 *)val);
2537                vcpu->mmio_read_completed = 0;
2538                return X86EMUL_CONTINUE;
2539        }
2540
2541        gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2542
2543        /* For APIC access vmexit */
2544        if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2545                goto mmio;
2546
2547        if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2548                                == X86EMUL_CONTINUE)
2549                return X86EMUL_CONTINUE;
2550        if (gpa == UNMAPPED_GVA)
2551                return X86EMUL_PROPAGATE_FAULT;
2552
2553mmio:
2554        /*
2555         * Is this MMIO handled locally?
2556         */
2557        if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2558                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2559                return X86EMUL_CONTINUE;
2560        }
2561
2562        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2563
2564        vcpu->mmio_needed = 1;
2565        vcpu->mmio_phys_addr = gpa;
2566        vcpu->mmio_size = bytes;
2567        vcpu->mmio_is_write = 0;
2568
2569        return X86EMUL_UNHANDLEABLE;
2570}
2571
2572int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2573                          const void *val, int bytes)
2574{
2575        int ret;
2576
2577        ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2578        if (ret < 0)
2579                return 0;
2580        kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2581        return 1;
2582}
2583
2584static int emulator_write_emulated_onepage(unsigned long addr,
2585                                           const void *val,
2586                                           unsigned int bytes,
2587                                           struct kvm_vcpu *vcpu)
2588{
2589        gpa_t                 gpa;
2590
2591        gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2592
2593        if (gpa == UNMAPPED_GVA) {
2594                kvm_inject_page_fault(vcpu, addr, 2);
2595                return X86EMUL_PROPAGATE_FAULT;
2596        }
2597
2598        /* For APIC access vmexit */
2599        if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2600                goto mmio;
2601
2602        if (emulator_write_phys(vcpu, gpa, val, bytes))
2603                return X86EMUL_CONTINUE;
2604
2605mmio:
2606        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2607        /*
2608         * Is this MMIO handled locally?
2609         */
2610        if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2611                return X86EMUL_CONTINUE;
2612
2613        vcpu->mmio_needed = 1;
2614        vcpu->mmio_phys_addr = gpa;
2615        vcpu->mmio_size = bytes;
2616        vcpu->mmio_is_write = 1;
2617        memcpy(vcpu->mmio_data, val, bytes);
2618
2619        return X86EMUL_CONTINUE;
2620}
2621
2622int emulator_write_emulated(unsigned long addr,
2623                                   const void *val,
2624                                   unsigned int bytes,
2625                                   struct kvm_vcpu *vcpu)
2626{
2627        /* Crossing a page boundary? */
2628        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2629                int rc, now;
2630
2631                now = -addr & ~PAGE_MASK;
2632                rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2633                if (rc != X86EMUL_CONTINUE)
2634                        return rc;
2635                addr += now;
2636                val += now;
2637                bytes -= now;
2638        }
2639        return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2640}
2641EXPORT_SYMBOL_GPL(emulator_write_emulated);
2642
2643static int emulator_cmpxchg_emulated(unsigned long addr,
2644                                     const void *old,
2645                                     const void *new,
2646                                     unsigned int bytes,
2647                                     struct kvm_vcpu *vcpu)
2648{
2649        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2650#ifndef CONFIG_X86_64
2651        /* guests cmpxchg8b have to be emulated atomically */
2652        if (bytes == 8) {
2653                gpa_t gpa;
2654                struct page *page;
2655                char *kaddr;
2656                u64 val;
2657
2658                gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2659
2660                if (gpa == UNMAPPED_GVA ||
2661                   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2662                        goto emul_write;
2663
2664                if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2665                        goto emul_write;
2666
2667                val = *(u64 *)new;
2668
2669                page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2670
2671                kaddr = kmap_atomic(page, KM_USER0);
2672                set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2673                kunmap_atomic(kaddr, KM_USER0);
2674                kvm_release_page_dirty(page);
2675        }
2676emul_write:
2677#endif
2678
2679        return emulator_write_emulated(addr, new, bytes, vcpu);
2680}
2681
2682static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2683{
2684        return kvm_x86_ops->get_segment_base(vcpu, seg);
2685}
2686
2687int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2688{
2689        kvm_mmu_invlpg(vcpu, address);
2690        return X86EMUL_CONTINUE;
2691}
2692
2693int emulate_clts(struct kvm_vcpu *vcpu)
2694{
2695        kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2696        return X86EMUL_CONTINUE;
2697}
2698
2699int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2700{
2701        struct kvm_vcpu *vcpu = ctxt->vcpu;
2702
2703        switch (dr) {
2704        case 0 ... 3:
2705                *dest = kvm_x86_ops->get_dr(vcpu, dr);
2706                return X86EMUL_CONTINUE;
2707        default:
2708                pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2709                return X86EMUL_UNHANDLEABLE;
2710        }
2711}
2712
2713int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2714{
2715        unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2716        int exception;
2717
2718        kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2719        if (exception) {
2720                /* FIXME: better handling */
2721                return X86EMUL_UNHANDLEABLE;
2722        }
2723        return X86EMUL_CONTINUE;
2724}
2725
2726void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2727{
2728        u8 opcodes[4];
2729        unsigned long rip = kvm_rip_read(vcpu);
2730        unsigned long rip_linear;
2731
2732        if (!printk_ratelimit())
2733                return;
2734
2735        rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2736
2737        kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2738
2739        printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2740               context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2741}
2742EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2743
2744static struct x86_emulate_ops emulate_ops = {
2745        .read_std            = kvm_read_guest_virt,
2746        .read_emulated       = emulator_read_emulated,
2747        .write_emulated      = emulator_write_emulated,
2748        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2749};
2750
2751static void cache_all_regs(struct kvm_vcpu *vcpu)
2752{
2753        kvm_register_read(vcpu, VCPU_REGS_RAX);
2754        kvm_register_read(vcpu, VCPU_REGS_RSP);
2755        kvm_register_read(vcpu, VCPU_REGS_RIP);
2756        vcpu->arch.regs_dirty = ~0;
2757}
2758
2759int emulate_instruction(struct kvm_vcpu *vcpu,
2760                        struct kvm_run *run,
2761                        unsigned long cr2,
2762                        u16 error_code,
2763                        int emulation_type)
2764{
2765        int r, shadow_mask;
2766        struct decode_cache *c;
2767
2768        kvm_clear_exception_queue(vcpu);
2769        vcpu->arch.mmio_fault_cr2 = cr2;
2770        /*
2771         * TODO: fix emulate.c to use guest_read/write_register
2772         * instead of direct ->regs accesses, can save hundred cycles
2773         * on Intel for instructions that don't read/change RSP, for
2774         * for example.
2775         */
2776        cache_all_regs(vcpu);
2777
2778        vcpu->mmio_is_write = 0;
2779        vcpu->arch.pio.string = 0;
2780
2781        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2782                int cs_db, cs_l;
2783                kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2784
2785                vcpu->arch.emulate_ctxt.vcpu = vcpu;
2786                vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2787                vcpu->arch.emulate_ctxt.mode =
2788                        (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2789                        ? X86EMUL_MODE_REAL : cs_l
2790                        ? X86EMUL_MODE_PROT64 : cs_db
2791                        ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2792
2793                r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2794
2795                /* Only allow emulation of specific instructions on #UD
2796                 * (namely VMMCALL, sysenter, sysexit, syscall)*/
2797                c = &vcpu->arch.emulate_ctxt.decode;
2798                if (emulation_type & EMULTYPE_TRAP_UD) {
2799                        if (!c->twobyte)
2800                                return EMULATE_FAIL;
2801                        switch (c->b) {
2802                        case 0x01: /* VMMCALL */
2803                                if (c->modrm_mod != 3 || c->modrm_rm != 1)
2804                                        return EMULATE_FAIL;
2805                                break;
2806                        case 0x34: /* sysenter */
2807                        case 0x35: /* sysexit */
2808                                if (c->modrm_mod != 0 || c->modrm_rm != 0)
2809                                        return EMULATE_FAIL;
2810                                break;
2811                        case 0x05: /* syscall */
2812                                if (c->modrm_mod != 0 || c->modrm_rm != 0)
2813                                        return EMULATE_FAIL;
2814                                break;
2815                        default:
2816                                return EMULATE_FAIL;
2817                        }
2818
2819                        if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2820                                return EMULATE_FAIL;
2821                }
2822
2823                ++vcpu->stat.insn_emulation;
2824                if (r)  {
2825                        ++vcpu->stat.insn_emulation_fail;
2826                        if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2827                                return EMULATE_DONE;
2828                        return EMULATE_FAIL;
2829                }
2830        }
2831
2832        if (emulation_type & EMULTYPE_SKIP) {
2833                kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2834                return EMULATE_DONE;
2835        }
2836
2837        r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2838        shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2839
2840        if (r == 0)
2841                kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2842
2843        if (vcpu->arch.pio.string)
2844                return EMULATE_DO_MMIO;
2845
2846        if ((r || vcpu->mmio_is_write) && run) {
2847                run->exit_reason = KVM_EXIT_MMIO;
2848                run->mmio.phys_addr = vcpu->mmio_phys_addr;
2849                memcpy(run->mmio.data, vcpu->mmio_data, 8);
2850                run->mmio.len = vcpu->mmio_size;
2851                run->mmio.is_write = vcpu->mmio_is_write;
2852        }
2853
2854        if (r) {
2855                if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2856                        return EMULATE_DONE;
2857                if (!vcpu->mmio_needed) {
2858                        kvm_report_emulation_failure(vcpu, "mmio");
2859                        return EMULATE_FAIL;
2860                }
2861                return EMULATE_DO_MMIO;
2862        }
2863
2864        kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2865
2866        if (vcpu->mmio_is_write) {
2867                vcpu->mmio_needed = 0;
2868                return EMULATE_DO_MMIO;
2869        }
2870
2871        return EMULATE_DONE;
2872}
2873EXPORT_SYMBOL_GPL(emulate_instruction);
2874
2875static int pio_copy_data(struct kvm_vcpu *vcpu)
2876{
2877        void *p = vcpu->arch.pio_data;
2878        gva_t q = vcpu->arch.pio.guest_gva;
2879        unsigned bytes;
2880        int ret;
2881
2882        bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2883        if (vcpu->arch.pio.in)
2884                ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2885        else
2886                ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2887        return ret;
2888}
2889
2890int complete_pio(struct kvm_vcpu *vcpu)
2891{
2892        struct kvm_pio_request *io = &vcpu->arch.pio;
2893        long delta;
2894        int r;
2895        unsigned long val;
2896
2897        if (!io->string) {
2898                if (io->in) {
2899                        val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2900                        memcpy(&val, vcpu->arch.pio_data, io->size);
2901                        kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2902                }
2903        } else {
2904                if (io->in) {
2905                        r = pio_copy_data(vcpu);
2906                        if (r)
2907                                return r;
2908                }
2909
2910                delta = 1;
2911                if (io->rep) {
2912                        delta *= io->cur_count;
2913                        /*
2914                         * The size of the register should really depend on
2915                         * current address size.
2916                         */
2917                        val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2918                        val -= delta;
2919                        kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2920                }
2921                if (io->down)
2922                        delta = -delta;
2923                delta *= io->size;
2924                if (io->in) {
2925                        val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2926                        val += delta;
2927                        kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2928                } else {
2929                        val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2930                        val += delta;
2931                        kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2932                }
2933        }
2934
2935        io->count -= io->cur_count;
2936        io->cur_count = 0;
2937
2938        return 0;
2939}
2940
2941static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
2942{
2943        /* TODO: String I/O for in kernel device */
2944        int r;
2945
2946        if (vcpu->arch.pio.in)
2947                r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2948                                    vcpu->arch.pio.size, pd);
2949        else
2950                r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2951                                     vcpu->arch.pio.size, pd);
2952        return r;
2953}
2954
2955static int pio_string_write(struct kvm_vcpu *vcpu)
2956{
2957        struct kvm_pio_request *io = &vcpu->arch.pio;
2958        void *pd = vcpu->arch.pio_data;
2959        int i, r = 0;
2960
2961        for (i = 0; i < io->cur_count; i++) {
2962                if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
2963                                     io->port, io->size, pd)) {
2964                        r = -EOPNOTSUPP;
2965                        break;
2966                }
2967                pd += io->size;
2968        }
2969        return r;
2970}
2971
2972int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2973                  int size, unsigned port)
2974{
2975        unsigned long val;
2976
2977        vcpu->run->exit_reason = KVM_EXIT_IO;
2978        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2979        vcpu->run->io.size = vcpu->arch.pio.size = size;
2980        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2981        vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2982        vcpu->run->io.port = vcpu->arch.pio.port = port;
2983        vcpu->arch.pio.in = in;
2984        vcpu->arch.pio.string = 0;
2985        vcpu->arch.pio.down = 0;
2986        vcpu->arch.pio.rep = 0;
2987
2988        trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2989                      size, 1);
2990
2991        val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2992        memcpy(vcpu->arch.pio_data, &val, 4);
2993
2994        if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
2995                complete_pio(vcpu);
2996                return 1;
2997        }
2998        return 0;
2999}
3000EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3001
3002int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
3003                  int size, unsigned long count, int down,
3004                  gva_t address, int rep, unsigned port)
3005{
3006        unsigned now, in_page;
3007        int ret = 0;
3008
3009        vcpu->run->exit_reason = KVM_EXIT_IO;
3010        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3011        vcpu->run->io.size = vcpu->arch.pio.size = size;
3012        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3013        vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3014        vcpu->run->io.port = vcpu->arch.pio.port = port;
3015        vcpu->arch.pio.in = in;
3016        vcpu->arch.pio.string = 1;
3017        vcpu->arch.pio.down = down;
3018        vcpu->arch.pio.rep = rep;
3019
3020        trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3021                      size, count);
3022
3023        if (!count) {
3024                kvm_x86_ops->skip_emulated_instruction(vcpu);
3025                return 1;
3026        }
3027
3028        if (!down)
3029                in_page = PAGE_SIZE - offset_in_page(address);
3030        else
3031                in_page = offset_in_page(address) + size;
3032        now = min(count, (unsigned long)in_page / size);
3033        if (!now)
3034                now = 1;
3035        if (down) {
3036                /*
3037                 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
3038                 */
3039                pr_unimpl(vcpu, "guest string pio down\n");
3040                kvm_inject_gp(vcpu, 0);
3041                return 1;
3042        }
3043        vcpu->run->io.count = now;
3044        vcpu->arch.pio.cur_count = now;
3045
3046        if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3047                kvm_x86_ops->skip_emulated_instruction(vcpu);
3048
3049        vcpu->arch.pio.guest_gva = address;
3050
3051        if (!vcpu->arch.pio.in) {
3052                /* string PIO write */
3053                ret = pio_copy_data(vcpu);
3054                if (ret == X86EMUL_PROPAGATE_FAULT) {
3055                        kvm_inject_gp(vcpu, 0);
3056                        return 1;
3057                }
3058                if (ret == 0 && !pio_string_write(vcpu)) {
3059                        complete_pio(vcpu);
3060                        if (vcpu->arch.pio.count == 0)
3061                                ret = 1;
3062                }
3063        }
3064        /* no string PIO read support yet */
3065
3066        return ret;
3067}
3068EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3069
3070static void bounce_off(void *info)
3071{
3072        /* nothing */
3073}
3074
3075static unsigned int  ref_freq;
3076static unsigned long tsc_khz_ref;
3077
3078static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3079                                     void *data)
3080{
3081        struct cpufreq_freqs *freq = data;
3082        struct kvm *kvm;
3083        struct kvm_vcpu *vcpu;
3084        int i, send_ipi = 0;
3085
3086        if (!ref_freq)
3087                ref_freq = freq->old;
3088
3089        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3090                return 0;
3091        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3092                return 0;
3093        per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
3094
3095        spin_lock(&kvm_lock);
3096        list_for_each_entry(kvm, &vm_list, vm_list) {
3097                kvm_for_each_vcpu(i, vcpu, kvm) {
3098                        if (vcpu->cpu != freq->cpu)
3099                                continue;
3100                        if (!kvm_request_guest_time_update(vcpu))
3101                                continue;
3102                        if (vcpu->cpu != smp_processor_id())
3103                                send_ipi++;
3104                }
3105        }
3106        spin_unlock(&kvm_lock);
3107
3108        if (freq->old < freq->new && send_ipi) {
3109                /*
3110                 * We upscale the frequency.  Must make the guest
3111                 * doesn't see old kvmclock values while running with
3112                 * the new frequency, otherwise we risk the guest sees
3113                 * time go backwards.
3114                 *
3115                 * In case we update the frequency for another cpu
3116                 * (which might be in guest context) send an interrupt
3117                 * to kick the cpu out of guest context.  Next time
3118                 * guest context is entered kvmclock will be updated,
3119                 * so the guest will not see stale values.
3120                 */
3121                smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3122        }
3123        return 0;
3124}
3125
3126static struct notifier_block kvmclock_cpufreq_notifier_block = {
3127        .notifier_call  = kvmclock_cpufreq_notifier
3128};
3129
3130int kvm_arch_init(void *opaque)
3131{
3132        int r, cpu;
3133        struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3134
3135        if (kvm_x86_ops) {
3136                printk(KERN_ERR "kvm: already loaded the other module\n");
3137                r = -EEXIST;
3138                goto out;
3139        }
3140
3141        if (!ops->cpu_has_kvm_support()) {
3142                printk(KERN_ERR "kvm: no hardware support\n");
3143                r = -EOPNOTSUPP;
3144                goto out;
3145        }
3146        if (ops->disabled_by_bios()) {
3147                printk(KERN_ERR "kvm: disabled by bios\n");
3148                r = -EOPNOTSUPP;
3149                goto out;
3150        }
3151
3152        r = kvm_mmu_module_init();
3153        if (r)
3154                goto out;
3155
3156        kvm_init_msr_list();
3157
3158        kvm_x86_ops = ops;
3159        kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3160        kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3161        kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3162                        PT_DIRTY_MASK, PT64_NX_MASK, 0);
3163
3164        for_each_possible_cpu(cpu)
3165                per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3166        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3167                tsc_khz_ref = tsc_khz;
3168                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3169                                          CPUFREQ_TRANSITION_NOTIFIER);
3170        }
3171
3172        return 0;
3173
3174out:
3175        return r;
3176}
3177
3178void kvm_arch_exit(void)
3179{
3180        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3181                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3182                                            CPUFREQ_TRANSITION_NOTIFIER);
3183        kvm_x86_ops = NULL;
3184        kvm_mmu_module_exit();
3185}
3186
3187int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3188{
3189        ++vcpu->stat.halt_exits;
3190        if (irqchip_in_kernel(vcpu->kvm)) {
3191                vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3192                return 1;
3193        } else {
3194                vcpu->run->exit_reason = KVM_EXIT_HLT;
3195                return 0;
3196        }
3197}
3198EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3199
3200static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3201                           unsigned long a1)
3202{
3203        if (is_long_mode(vcpu))
3204                return a0;
3205        else
3206                return a0 | ((gpa_t)a1 << 32);
3207}
3208
3209int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3210{
3211        unsigned long nr, a0, a1, a2, a3, ret;
3212        int r = 1;
3213
3214        nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3215        a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3216        a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3217        a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3218        a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3219
3220        trace_kvm_hypercall(nr, a0, a1, a2, a3);
3221
3222        if (!is_long_mode(vcpu)) {
3223                nr &= 0xFFFFFFFF;
3224                a0 &= 0xFFFFFFFF;
3225                a1 &= 0xFFFFFFFF;
3226                a2 &= 0xFFFFFFFF;
3227                a3 &= 0xFFFFFFFF;
3228        }
3229
3230        if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3231                ret = -KVM_EPERM;
3232                goto out;
3233        }
3234
3235        switch (nr) {
3236        case KVM_HC_VAPIC_POLL_IRQ:
3237                ret = 0;
3238                break;
3239        case KVM_HC_MMU_OP:
3240                r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3241                break;
3242        default:
3243                ret = -KVM_ENOSYS;
3244                break;
3245        }
3246out:
3247        kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3248        ++vcpu->stat.hypercalls;
3249        return r;
3250}
3251EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3252
3253int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3254{
3255        char instruction[3];
3256        int ret = 0;
3257        unsigned long rip = kvm_rip_read(vcpu);
3258
3259
3260        /*
3261         * Blow out the MMU to ensure that no other VCPU has an active mapping
3262         * to ensure that the updated hypercall appears atomically across all
3263         * VCPUs.
3264         */
3265        kvm_mmu_zap_all(vcpu->kvm);
3266
3267        kvm_x86_ops->patch_hypercall(vcpu, instruction);
3268        if (emulator_write_emulated(rip, instruction, 3, vcpu)
3269            != X86EMUL_CONTINUE)
3270                ret = -EFAULT;
3271
3272        return ret;
3273}
3274
3275static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3276{
3277        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3278}
3279
3280void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3281{
3282        struct descriptor_table dt = { limit, base };
3283
3284        kvm_x86_ops->set_gdt(vcpu, &dt);
3285}
3286
3287void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3288{
3289        struct descriptor_table dt = { limit, base };
3290
3291        kvm_x86_ops->set_idt(vcpu, &dt);
3292}
3293
3294void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3295                   unsigned long *rflags)
3296{
3297        kvm_lmsw(vcpu, msw);
3298        *rflags = kvm_x86_ops->get_rflags(vcpu);
3299}
3300
3301unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3302{
3303        unsigned long value;
3304
3305        kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3306        switch (cr) {
3307        case 0:
3308                value = vcpu->arch.cr0;
3309                break;
3310        case 2:
3311                value = vcpu->arch.cr2;
3312                break;
3313        case 3:
3314                value = vcpu->arch.cr3;
3315                break;
3316        case 4:
3317                value = vcpu->arch.cr4;
3318                break;
3319        case 8:
3320                value = kvm_get_cr8(vcpu);
3321                break;
3322        default:
3323                vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3324                return 0;
3325        }
3326
3327        return value;
3328}
3329
3330void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3331                     unsigned long *rflags)
3332{
3333        switch (cr) {
3334        case 0:
3335                kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3336                *rflags = kvm_x86_ops->get_rflags(vcpu);
3337                break;
3338        case 2:
3339                vcpu->arch.cr2 = val;
3340                break;
3341        case 3:
3342                kvm_set_cr3(vcpu, val);
3343                break;
3344        case 4:
3345                kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3346                break;
3347        case 8:
3348                kvm_set_cr8(vcpu, val & 0xfUL);
3349                break;
3350        default:
3351                vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3352        }
3353}
3354
3355static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3356{
3357        struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3358        int j, nent = vcpu->arch.cpuid_nent;
3359
3360        e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3361        /* when no next entry is found, the current entry[i] is reselected */
3362        for (j = i + 1; ; j = (j + 1) % nent) {
3363                struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3364                if (ej->function == e->function) {
3365                        ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3366                        return j;
3367                }
3368        }
3369        return 0; /* silence gcc, even though control never reaches here */
3370}
3371
3372/* find an entry with matching function, matching index (if needed), and that
3373 * should be read next (if it's stateful) */
3374static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3375        u32 function, u32 index)
3376{
3377        if (e->function != function)
3378                return 0;
3379        if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3380                return 0;
3381        if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3382            !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3383                return 0;
3384        return 1;
3385}
3386
3387struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3388                                              u32 function, u32 index)
3389{
3390        int i;
3391        struct kvm_cpuid_entry2 *best = NULL;
3392
3393        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3394                struct kvm_cpuid_entry2 *e;
3395
3396                e = &vcpu->arch.cpuid_entries[i];
3397                if (is_matching_cpuid_entry(e, function, index)) {
3398                        if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3399                                move_to_next_stateful_cpuid_entry(vcpu, i);
3400                        best = e;
3401                        break;
3402                }
3403                /*
3404                 * Both basic or both extended?
3405                 */
3406                if (((e->function ^ function) & 0x80000000) == 0)
3407                        if (!best || e->function > best->function)
3408                                best = e;
3409        }
3410        return best;
3411}
3412
3413int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3414{
3415        struct kvm_cpuid_entry2 *best;
3416
3417        best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3418        if (best)
3419                return best->eax & 0xff;
3420        return 36;
3421}
3422
3423void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3424{
3425        u32 function, index;
3426        struct kvm_cpuid_entry2 *best;
3427
3428        function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3429        index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3430        kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3431        kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3432        kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3433        kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3434        best = kvm_find_cpuid_entry(vcpu, function, index);
3435        if (best) {
3436                kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3437                kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3438                kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3439                kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3440        }
3441        kvm_x86_ops->skip_emulated_instruction(vcpu);
3442        trace_kvm_cpuid(function,
3443                        kvm_register_read(vcpu, VCPU_REGS_RAX),
3444                        kvm_register_read(vcpu, VCPU_REGS_RBX),
3445                        kvm_register_read(vcpu, VCPU_REGS_RCX),
3446                        kvm_register_read(vcpu, VCPU_REGS_RDX));
3447}
3448EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3449
3450/*
3451 * Check if userspace requested an interrupt window, and that the
3452 * interrupt window is open.
3453 *
3454 * No need to exit to userspace if we already have an interrupt queued.
3455 */
3456static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3457                                          struct kvm_run *kvm_run)
3458{
3459        return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3460                kvm_run->request_interrupt_window &&
3461                kvm_arch_interrupt_allowed(vcpu));
3462}
3463
3464static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3465                              struct kvm_run *kvm_run)
3466{
3467        kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3468        kvm_run->cr8 = kvm_get_cr8(vcpu);
3469        kvm_run->apic_base = kvm_get_apic_base(vcpu);
3470        if (irqchip_in_kernel(vcpu->kvm))
3471                kvm_run->ready_for_interrupt_injection = 1;
3472        else
3473                kvm_run->ready_for_interrupt_injection =
3474                        kvm_arch_interrupt_allowed(vcpu) &&
3475                        !kvm_cpu_has_interrupt(vcpu) &&
3476                        !kvm_event_needs_reinjection(vcpu);
3477}
3478
3479static void vapic_enter(struct kvm_vcpu *vcpu)
3480{
3481        struct kvm_lapic *apic = vcpu->arch.apic;
3482        struct page *page;
3483
3484        if (!apic || !apic->vapic_addr)
3485                return;
3486
3487        page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3488
3489        vcpu->arch.apic->vapic_page = page;
3490}
3491
3492static void vapic_exit(struct kvm_vcpu *vcpu)
3493{
3494        struct kvm_lapic *apic = vcpu->arch.apic;
3495
3496        if (!apic || !apic->vapic_addr)
3497                return;
3498
3499        down_read(&vcpu->kvm->slots_lock);
3500        kvm_release_page_dirty(apic->vapic_page);
3501        mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3502        up_read(&vcpu->kvm->slots_lock);
3503}
3504
3505static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3506{
3507        int max_irr, tpr;
3508
3509        if (!kvm_x86_ops->update_cr8_intercept)
3510                return;
3511
3512        if (!vcpu->arch.apic)
3513                return;
3514
3515        if (!vcpu->arch.apic->vapic_addr)
3516                max_irr = kvm_lapic_find_highest_irr(vcpu);
3517        else
3518                max_irr = -1;
3519
3520        if (max_irr != -1)
3521                max_irr >>= 4;
3522
3523        tpr = kvm_lapic_get_cr8(vcpu);
3524
3525        kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3526}
3527
3528static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3529{
3530        /* try to reinject previous events if any */
3531        if (vcpu->arch.exception.pending) {
3532                kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3533                                          vcpu->arch.exception.has_error_code,
3534                                          vcpu->arch.exception.error_code);
3535                return;
3536        }
3537
3538        if (vcpu->arch.nmi_injected) {
3539                kvm_x86_ops->set_nmi(vcpu);
3540                return;
3541        }
3542
3543        if (vcpu->arch.interrupt.pending) {
3544                kvm_x86_ops->set_irq(vcpu);
3545                return;
3546        }
3547
3548        /* try to inject new event if pending */
3549        if (vcpu->arch.nmi_pending) {
3550                if (kvm_x86_ops->nmi_allowed(vcpu)) {
3551                        vcpu->arch.nmi_pending = false;
3552                        vcpu->arch.nmi_injected = true;
3553                        kvm_x86_ops->set_nmi(vcpu);
3554                }
3555        } else if (kvm_cpu_has_interrupt(vcpu)) {
3556                if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3557                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3558                                            false);
3559                        kvm_x86_ops->set_irq(vcpu);
3560                }
3561        }
3562}
3563
3564static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3565{
3566        int r;
3567        bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3568                kvm_run->request_interrupt_window;
3569
3570        if (vcpu->requests)
3571                if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3572                        kvm_mmu_unload(vcpu);
3573
3574        r = kvm_mmu_reload(vcpu);
3575        if (unlikely(r))
3576                goto out;
3577
3578        if (vcpu->requests) {
3579                if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3580                        __kvm_migrate_timers(vcpu);
3581                if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3582                        kvm_write_guest_time(vcpu);
3583                if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3584                        kvm_mmu_sync_roots(vcpu);
3585                if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3586                        kvm_x86_ops->tlb_flush(vcpu);
3587                if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3588                                       &vcpu->requests)) {
3589                        kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3590                        r = 0;
3591                        goto out;
3592                }
3593                if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3594                        kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3595                        r = 0;
3596                        goto out;
3597                }
3598        }
3599
3600        preempt_disable();
3601
3602        kvm_x86_ops->prepare_guest_switch(vcpu);
3603        kvm_load_guest_fpu(vcpu);
3604
3605        local_irq_disable();
3606
3607        clear_bit(KVM_REQ_KICK, &vcpu->requests);
3608        smp_mb__after_clear_bit();
3609
3610        if (vcpu->requests || need_resched() || signal_pending(current)) {
3611                set_bit(KVM_REQ_KICK, &vcpu->requests);
3612                local_irq_enable();
3613                preempt_enable();
3614                r = 1;
3615                goto out;
3616        }
3617
3618        inject_pending_event(vcpu, kvm_run);
3619
3620        /* enable NMI/IRQ window open exits if needed */
3621        if (vcpu->arch.nmi_pending)
3622                kvm_x86_ops->enable_nmi_window(vcpu);
3623        else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3624                kvm_x86_ops->enable_irq_window(vcpu);
3625
3626        if (kvm_lapic_enabled(vcpu)) {
3627                update_cr8_intercept(vcpu);
3628                kvm_lapic_sync_to_vapic(vcpu);
3629        }
3630
3631        up_read(&vcpu->kvm->slots_lock);
3632
3633        kvm_guest_enter();
3634
3635        if (unlikely(vcpu->arch.switch_db_regs)) {
3636                set_debugreg(0, 7);
3637                set_debugreg(vcpu->arch.eff_db[0], 0);
3638                set_debugreg(vcpu->arch.eff_db[1], 1);
3639                set_debugreg(vcpu->arch.eff_db[2], 2);
3640                set_debugreg(vcpu->arch.eff_db[3], 3);
3641        }
3642
3643        trace_kvm_entry(vcpu->vcpu_id);
3644        kvm_x86_ops->run(vcpu, kvm_run);
3645
3646        if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
3647                set_debugreg(current->thread.debugreg0, 0);
3648                set_debugreg(current->thread.debugreg1, 1);
3649                set_debugreg(current->thread.debugreg2, 2);
3650                set_debugreg(current->thread.debugreg3, 3);
3651                set_debugreg(current->thread.debugreg6, 6);
3652                set_debugreg(current->thread.debugreg7, 7);
3653        }
3654
3655        set_bit(KVM_REQ_KICK, &vcpu->requests);
3656        local_irq_enable();
3657
3658        ++vcpu->stat.exits;
3659
3660        /*
3661         * We must have an instruction between local_irq_enable() and
3662         * kvm_guest_exit(), so the timer interrupt isn't delayed by
3663         * the interrupt shadow.  The stat.exits increment will do nicely.
3664         * But we need to prevent reordering, hence this barrier():
3665         */
3666        barrier();
3667
3668        kvm_guest_exit();
3669
3670        preempt_enable();
3671
3672        down_read(&vcpu->kvm->slots_lock);
3673
3674        /*
3675         * Profile KVM exit RIPs:
3676         */
3677        if (unlikely(prof_on == KVM_PROFILING)) {
3678                unsigned long rip = kvm_rip_read(vcpu);
3679                profile_hit(KVM_PROFILING, (void *)rip);
3680        }
3681
3682
3683        kvm_lapic_sync_from_vapic(vcpu);
3684
3685        r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3686out:
3687        return r;
3688}
3689
3690
3691static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3692{
3693        int r;
3694
3695        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3696                pr_debug("vcpu %d received sipi with vector # %x\n",
3697                         vcpu->vcpu_id, vcpu->arch.sipi_vector);
3698                kvm_lapic_reset(vcpu);
3699                r = kvm_arch_vcpu_reset(vcpu);
3700                if (r)
3701                        return r;
3702                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3703        }
3704
3705        down_read(&vcpu->kvm->slots_lock);
3706        vapic_enter(vcpu);
3707
3708        r = 1;
3709        while (r > 0) {
3710                if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3711                        r = vcpu_enter_guest(vcpu, kvm_run);
3712                else {
3713                        up_read(&vcpu->kvm->slots_lock);
3714                        kvm_vcpu_block(vcpu);
3715                        down_read(&vcpu->kvm->slots_lock);
3716                        if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3717                        {
3718                                switch(vcpu->arch.mp_state) {
3719                                case KVM_MP_STATE_HALTED:
3720                                        vcpu->arch.mp_state =
3721                                                KVM_MP_STATE_RUNNABLE;
3722                                case KVM_MP_STATE_RUNNABLE:
3723                                        break;
3724                                case KVM_MP_STATE_SIPI_RECEIVED:
3725                                default:
3726                                        r = -EINTR;
3727                                        break;
3728                                }
3729                        }
3730                }
3731
3732                if (r <= 0)
3733                        break;
3734
3735                clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3736                if (kvm_cpu_has_pending_timer(vcpu))
3737                        kvm_inject_pending_timer_irqs(vcpu);
3738
3739                if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3740                        r = -EINTR;
3741                        kvm_run->exit_reason = KVM_EXIT_INTR;
3742                        ++vcpu->stat.request_irq_exits;
3743                }
3744                if (signal_pending(current)) {
3745                        r = -EINTR;
3746                        kvm_run->exit_reason = KVM_EXIT_INTR;
3747                        ++vcpu->stat.signal_exits;
3748                }
3749                if (need_resched()) {
3750                        up_read(&vcpu->kvm->slots_lock);
3751                        kvm_resched(vcpu);
3752                        down_read(&vcpu->kvm->slots_lock);
3753                }
3754        }
3755
3756        up_read(&vcpu->kvm->slots_lock);
3757        post_kvm_run_save(vcpu, kvm_run);
3758
3759        vapic_exit(vcpu);
3760
3761        return r;
3762}
3763
3764int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3765{
3766        int r;
3767        sigset_t sigsaved;
3768
3769        vcpu_load(vcpu);
3770
3771        if (vcpu->sigset_active)
3772                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3773
3774        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3775                kvm_vcpu_block(vcpu);
3776                clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3777                r = -EAGAIN;
3778                goto out;
3779        }
3780
3781        /* re-sync apic's tpr */
3782        if (!irqchip_in_kernel(vcpu->kvm))
3783                kvm_set_cr8(vcpu, kvm_run->cr8);
3784
3785        if (vcpu->arch.pio.cur_count) {
3786                r = complete_pio(vcpu);
3787                if (r)
3788                        goto out;
3789        }
3790#if CONFIG_HAS_IOMEM
3791        if (vcpu->mmio_needed) {
3792                memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3793                vcpu->mmio_read_completed = 1;
3794                vcpu->mmio_needed = 0;
3795
3796                down_read(&vcpu->kvm->slots_lock);
3797                r = emulate_instruction(vcpu, kvm_run,
3798                                        vcpu->arch.mmio_fault_cr2, 0,
3799                                        EMULTYPE_NO_DECODE);
3800                up_read(&vcpu->kvm->slots_lock);
3801                if (r == EMULATE_DO_MMIO) {
3802                        /*
3803                         * Read-modify-write.  Back to userspace.
3804                         */
3805                        r = 0;
3806                        goto out;
3807                }
3808        }
3809#endif
3810        if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3811                kvm_register_write(vcpu, VCPU_REGS_RAX,
3812                                     kvm_run->hypercall.ret);
3813
3814        r = __vcpu_run(vcpu, kvm_run);
3815
3816out:
3817        if (vcpu->sigset_active)
3818                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3819
3820        vcpu_put(vcpu);
3821        return r;
3822}
3823
3824int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3825{
3826        vcpu_load(vcpu);
3827
3828        regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3829        regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3830        regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3831        regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3832        regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3833        regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3834        regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3835        regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3836#ifdef CONFIG_X86_64
3837        regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3838        regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3839        regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3840        regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3841        regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3842        regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3843        regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3844        regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3845#endif
3846
3847        regs->rip = kvm_rip_read(vcpu);
3848        regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3849
3850        /*
3851         * Don't leak debug flags in case they were set for guest debugging
3852         */
3853        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3854                regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3855
3856        vcpu_put(vcpu);
3857
3858        return 0;
3859}
3860
3861int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3862{
3863        vcpu_load(vcpu);
3864
3865        kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3866        kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3867        kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3868        kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3869        kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3870        kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3871        kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3872        kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3873#ifdef CONFIG_X86_64
3874        kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3875        kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3876        kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3877        kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3878        kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3879        kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3880        kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3881        kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3882
3883#endif
3884
3885        kvm_rip_write(vcpu, regs->rip);
3886        kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3887
3888
3889        vcpu->arch.exception.pending = false;
3890
3891        vcpu_put(vcpu);
3892
3893        return 0;
3894}
3895
3896void kvm_get_segment(struct kvm_vcpu *vcpu,
3897                     struct kvm_segment *var, int seg)
3898{
3899        kvm_x86_ops->get_segment(vcpu, var, seg);
3900}
3901
3902void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3903{
3904        struct kvm_segment cs;
3905
3906        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3907        *db = cs.db;
3908        *l = cs.l;
3909}
3910EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3911
3912int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3913                                  struct kvm_sregs *sregs)
3914{
3915        struct descriptor_table dt;
3916
3917        vcpu_load(vcpu);
3918
3919        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3920        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3921        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3922        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3923        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3924        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3925
3926        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3927        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3928
3929        kvm_x86_ops->get_idt(vcpu, &dt);
3930        sregs->idt.limit = dt.limit;
3931        sregs->idt.base = dt.base;
3932        kvm_x86_ops->get_gdt(vcpu, &dt);
3933        sregs->gdt.limit = dt.limit;
3934        sregs->gdt.base = dt.base;
3935
3936        kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3937        sregs->cr0 = vcpu->arch.cr0;
3938        sregs->cr2 = vcpu->arch.cr2;
3939        sregs->cr3 = vcpu->arch.cr3;
3940        sregs->cr4 = vcpu->arch.cr4;
3941        sregs->cr8 = kvm_get_cr8(vcpu);
3942        sregs->efer = vcpu->arch.shadow_efer;
3943        sregs->apic_base = kvm_get_apic_base(vcpu);
3944
3945        memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3946
3947        if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3948                set_bit(vcpu->arch.interrupt.nr,
3949                        (unsigned long *)sregs->interrupt_bitmap);
3950
3951        vcpu_put(vcpu);
3952
3953        return 0;
3954}
3955
3956int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3957                                    struct kvm_mp_state *mp_state)
3958{
3959        vcpu_load(vcpu);
3960        mp_state->mp_state = vcpu->arch.mp_state;
3961        vcpu_put(vcpu);
3962        return 0;
3963}
3964
3965int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3966                                    struct kvm_mp_state *mp_state)
3967{
3968        vcpu_load(vcpu);
3969        vcpu->arch.mp_state = mp_state->mp_state;
3970        vcpu_put(vcpu);
3971        return 0;
3972}
3973
3974static void kvm_set_segment(struct kvm_vcpu *vcpu,
3975                        struct kvm_segment *var, int seg)
3976{
3977        kvm_x86_ops->set_segment(vcpu, var, seg);
3978}
3979
3980static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3981                                   struct kvm_segment *kvm_desct)
3982{
3983        kvm_desct->base = get_desc_base(seg_desc);
3984        kvm_desct->limit = get_desc_limit(seg_desc);
3985        if (seg_desc->g) {
3986                kvm_desct->limit <<= 12;
3987                kvm_desct->limit |= 0xfff;
3988        }
3989        kvm_desct->selector = selector;
3990        kvm_desct->type = seg_desc->type;
3991        kvm_desct->present = seg_desc->p;
3992        kvm_desct->dpl = seg_desc->dpl;
3993        kvm_desct->db = seg_desc->d;
3994        kvm_desct->s = seg_desc->s;
3995        kvm_desct->l = seg_desc->l;
3996        kvm_desct->g = seg_desc->g;
3997        kvm_desct->avl = seg_desc->avl;
3998        if (!selector)
3999                kvm_desct->unusable = 1;
4000        else
4001                kvm_desct->unusable = 0;
4002        kvm_desct->padding = 0;
4003}
4004
4005static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4006                                          u16 selector,
4007                                          struct descriptor_table *dtable)
4008{
4009        if (selector & 1 << 2) {
4010                struct kvm_segment kvm_seg;
4011
4012                kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4013
4014                if (kvm_seg.unusable)
4015                        dtable->limit = 0;
4016                else
4017                        dtable->limit = kvm_seg.limit;
4018                dtable->base = kvm_seg.base;
4019        }
4020        else
4021                kvm_x86_ops->get_gdt(vcpu, dtable);
4022}
4023
4024/* allowed just for 8 bytes segments */
4025static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4026                                         struct desc_struct *seg_desc)
4027{
4028        struct descriptor_table dtable;
4029        u16 index = selector >> 3;
4030
4031        get_segment_descriptor_dtable(vcpu, selector, &dtable);
4032
4033        if (dtable.limit < index * 8 + 7) {
4034                kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4035                return 1;
4036        }
4037        return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4038}
4039
4040/* allowed just for 8 bytes segments */
4041static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4042                                         struct desc_struct *seg_desc)
4043{
4044        struct descriptor_table dtable;
4045        u16 index = selector >> 3;
4046
4047        get_segment_descriptor_dtable(vcpu, selector, &dtable);
4048
4049        if (dtable.limit < index * 8 + 7)
4050                return 1;
4051        return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4052}
4053
4054static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
4055                             struct desc_struct *seg_desc)
4056{
4057        u32 base_addr = get_desc_base(seg_desc);
4058
4059        return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4060}
4061
4062static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4063{
4064        struct kvm_segment kvm_seg;
4065
4066        kvm_get_segment(vcpu, &kvm_seg, seg);
4067        return kvm_seg.selector;
4068}
4069
4070static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4071                                                u16 selector,
4072                                                struct kvm_segment *kvm_seg)
4073{
4074        struct desc_struct seg_desc;
4075
4076        if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4077                return 1;
4078        seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4079        return 0;
4080}
4081
4082static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4083{
4084        struct kvm_segment segvar = {
4085                .base = selector << 4,
4086                .limit = 0xffff,
4087                .selector = selector,
4088                .type = 3,
4089                .present = 1,
4090                .dpl = 3,
4091                .db = 0,
4092                .s = 1,
4093                .l = 0,
4094                .g = 0,
4095                .avl = 0,
4096                .unusable = 0,
4097        };
4098        kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4099        return 0;
4100}
4101
4102static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4103{
4104        return (seg != VCPU_SREG_LDTR) &&
4105                (seg != VCPU_SREG_TR) &&
4106                (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_VM);
4107}
4108
4109int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4110                                int type_bits, int seg)
4111{
4112        struct kvm_segment kvm_seg;
4113
4114        if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
4115                return kvm_load_realmode_segment(vcpu, selector, seg);
4116        if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4117                return 1;
4118        kvm_seg.type |= type_bits;
4119
4120        if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4121            seg != VCPU_SREG_LDTR)
4122                if (!kvm_seg.s)
4123                        kvm_seg.unusable = 1;
4124
4125        kvm_set_segment(vcpu, &kvm_seg, seg);
4126        return 0;
4127}
4128
4129static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4130                                struct tss_segment_32 *tss)
4131{
4132        tss->cr3 = vcpu->arch.cr3;
4133        tss->eip = kvm_rip_read(vcpu);
4134        tss->eflags = kvm_x86_ops->get_rflags(vcpu);
4135        tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4136        tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4137        tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4138        tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4139        tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4140        tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4141        tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4142        tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4143        tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4144        tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4145        tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4146        tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4147        tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4148        tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4149        tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4150}
4151
4152static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4153                                  struct tss_segment_32 *tss)
4154{
4155        kvm_set_cr3(vcpu, tss->cr3);
4156
4157        kvm_rip_write(vcpu, tss->eip);
4158        kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4159
4160        kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4161        kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4162        kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4163        kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4164        kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4165        kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4166        kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4167        kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4168
4169        if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4170                return 1;
4171
4172        if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4173                return 1;
4174
4175        if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4176                return 1;
4177
4178        if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4179                return 1;
4180
4181        if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4182                return 1;
4183
4184        if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4185                return 1;
4186
4187        if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4188                return 1;
4189        return 0;
4190}
4191
4192static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4193                                struct tss_segment_16 *tss)
4194{
4195        tss->ip = kvm_rip_read(vcpu);
4196        tss->flag = kvm_x86_ops->get_rflags(vcpu);
4197        tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4198        tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4199        tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4200        tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4201        tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4202        tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4203        tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4204        tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4205
4206        tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4207        tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4208        tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4209        tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4210        tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4211        tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4212}
4213
4214static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4215                                 struct tss_segment_16 *tss)
4216{
4217        kvm_rip_write(vcpu, tss->ip);
4218        kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4219        kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4220        kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4221        kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4222        kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4223        kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4224        kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4225        kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4226        kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4227
4228        if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4229                return 1;
4230
4231        if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4232                return 1;
4233
4234        if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4235                return 1;
4236
4237        if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4238                return 1;
4239
4240        if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4241                return 1;
4242        return 0;
4243}
4244
4245static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4246                              u16 old_tss_sel, u32 old_tss_base,
4247                              struct desc_struct *nseg_desc)
4248{
4249        struct tss_segment_16 tss_segment_16;
4250        int ret = 0;
4251
4252        if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4253                           sizeof tss_segment_16))
4254                goto out;
4255
4256        save_state_to_tss16(vcpu, &tss_segment_16);
4257
4258        if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4259                            sizeof tss_segment_16))
4260                goto out;
4261
4262        if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4263                           &tss_segment_16, sizeof tss_segment_16))
4264                goto out;
4265
4266        if (old_tss_sel != 0xffff) {
4267                tss_segment_16.prev_task_link = old_tss_sel;
4268
4269                if (kvm_write_guest(vcpu->kvm,
4270                                    get_tss_base_addr(vcpu, nseg_desc),
4271                                    &tss_segment_16.prev_task_link,
4272                                    sizeof tss_segment_16.prev_task_link))
4273                        goto out;
4274        }
4275
4276        if (load_state_from_tss16(vcpu, &tss_segment_16))
4277                goto out;
4278
4279        ret = 1;
4280out:
4281        return ret;
4282}
4283
4284static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4285                       u16 old_tss_sel, u32 old_tss_base,
4286                       struct desc_struct *nseg_desc)
4287{
4288        struct tss_segment_32 tss_segment_32;
4289        int ret = 0;
4290
4291        if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4292                           sizeof tss_segment_32))
4293                goto out;
4294
4295        save_state_to_tss32(vcpu, &tss_segment_32);
4296
4297        if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4298                            sizeof tss_segment_32))
4299                goto out;
4300
4301        if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4302                           &tss_segment_32, sizeof tss_segment_32))
4303                goto out;
4304
4305        if (old_tss_sel != 0xffff) {
4306                tss_segment_32.prev_task_link = old_tss_sel;
4307
4308                if (kvm_write_guest(vcpu->kvm,
4309                                    get_tss_base_addr(vcpu, nseg_desc),
4310                                    &tss_segment_32.prev_task_link,
4311                                    sizeof tss_segment_32.prev_task_link))
4312                        goto out;
4313        }
4314
4315        if (load_state_from_tss32(vcpu, &tss_segment_32))
4316                goto out;
4317
4318        ret = 1;
4319out:
4320        return ret;
4321}
4322
4323int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4324{
4325        struct kvm_segment tr_seg;
4326        struct desc_struct cseg_desc;
4327        struct desc_struct nseg_desc;
4328        int ret = 0;
4329        u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4330        u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4331
4332        old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4333
4334        /* FIXME: Handle errors. Failure to read either TSS or their
4335         * descriptors should generate a pagefault.
4336         */
4337        if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4338                goto out;
4339
4340        if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4341                goto out;
4342
4343        if (reason != TASK_SWITCH_IRET) {
4344                int cpl;
4345
4346                cpl = kvm_x86_ops->get_cpl(vcpu);
4347                if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4348                        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4349                        return 1;
4350                }
4351        }
4352
4353        if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4354                kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4355                return 1;
4356        }
4357
4358        if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4359                cseg_desc.type &= ~(1 << 1); //clear the B flag
4360                save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4361        }
4362
4363        if (reason == TASK_SWITCH_IRET) {
4364                u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4365                kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4366        }
4367
4368        /* set back link to prev task only if NT bit is set in eflags
4369           note that old_tss_sel is not used afetr this point */
4370        if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4371                old_tss_sel = 0xffff;
4372
4373        /* set back link to prev task only if NT bit is set in eflags
4374           note that old_tss_sel is not used afetr this point */
4375        if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4376                old_tss_sel = 0xffff;
4377
4378        if (nseg_desc.type & 8)
4379                ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4380                                         old_tss_base, &nseg_desc);
4381        else
4382                ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4383                                         old_tss_base, &nseg_desc);
4384
4385        if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4386                u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4387                kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4388        }
4389
4390        if (reason != TASK_SWITCH_IRET) {
4391                nseg_desc.type |= (1 << 1);
4392                save_guest_segment_descriptor(vcpu, tss_selector,
4393                                              &nseg_desc);
4394        }
4395
4396        kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4397        seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4398        tr_seg.type = 11;
4399        kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4400out:
4401        return ret;
4402}
4403EXPORT_SYMBOL_GPL(kvm_task_switch);
4404
4405int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4406                                  struct kvm_sregs *sregs)
4407{
4408        int mmu_reset_needed = 0;
4409        int pending_vec, max_bits;
4410        struct descriptor_table dt;
4411
4412        vcpu_load(vcpu);
4413
4414        dt.limit = sregs->idt.limit;
4415        dt.base = sregs->idt.base;
4416        kvm_x86_ops->set_idt(vcpu, &dt);
4417        dt.limit = sregs->gdt.limit;
4418        dt.base = sregs->gdt.base;
4419        kvm_x86_ops->set_gdt(vcpu, &dt);
4420
4421        vcpu->arch.cr2 = sregs->cr2;
4422        mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4423        vcpu->arch.cr3 = sregs->cr3;
4424
4425        kvm_set_cr8(vcpu, sregs->cr8);
4426
4427        mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4428        kvm_x86_ops->set_efer(vcpu, sregs->efer);
4429        kvm_set_apic_base(vcpu, sregs->apic_base);
4430
4431        kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4432
4433        mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4434        kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4435        vcpu->arch.cr0 = sregs->cr0;
4436
4437        mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4438        kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4439        if (!is_long_mode(vcpu) && is_pae(vcpu))
4440                load_pdptrs(vcpu, vcpu->arch.cr3);
4441
4442        if (mmu_reset_needed)
4443                kvm_mmu_reset_context(vcpu);
4444
4445        max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4446        pending_vec = find_first_bit(
4447                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4448        if (pending_vec < max_bits) {
4449                kvm_queue_interrupt(vcpu, pending_vec, false);
4450                pr_debug("Set back pending irq %d\n", pending_vec);
4451                if (irqchip_in_kernel(vcpu->kvm))
4452                        kvm_pic_clear_isr_ack(vcpu->kvm);
4453        }
4454
4455        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4456        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4457        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4458        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4459        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4460        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4461
4462        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4463        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4464
4465        update_cr8_intercept(vcpu);
4466
4467        /* Older userspace won't unhalt the vcpu on reset. */
4468        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4469            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4470            !(vcpu->arch.cr0 & X86_CR0_PE))
4471                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4472
4473        vcpu_put(vcpu);
4474
4475        return 0;
4476}
4477
4478int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4479                                        struct kvm_guest_debug *dbg)
4480{
4481        int i, r;
4482
4483        vcpu_load(vcpu);
4484
4485        if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4486            (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4487                for (i = 0; i < KVM_NR_DB_REGS; ++i)
4488                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4489                vcpu->arch.switch_db_regs =
4490                        (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4491        } else {
4492                for (i = 0; i < KVM_NR_DB_REGS; i++)
4493                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4494                vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4495        }
4496
4497        r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4498
4499        if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4500                kvm_queue_exception(vcpu, DB_VECTOR);
4501        else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4502                kvm_queue_exception(vcpu, BP_VECTOR);
4503
4504        vcpu_put(vcpu);
4505
4506        return r;
4507}
4508
4509/*
4510 * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4511 * we have asm/x86/processor.h
4512 */
4513struct fxsave {
4514        u16     cwd;
4515        u16     swd;
4516        u16     twd;
4517        u16     fop;
4518        u64     rip;
4519        u64     rdp;
4520        u32     mxcsr;
4521        u32     mxcsr_mask;
4522        u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4523#ifdef CONFIG_X86_64
4524        u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4525#else
4526        u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4527#endif
4528};
4529
4530/*
4531 * Translate a guest virtual address to a guest physical address.
4532 */
4533int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4534                                    struct kvm_translation *tr)
4535{
4536        unsigned long vaddr = tr->linear_address;
4537        gpa_t gpa;
4538
4539        vcpu_load(vcpu);
4540        down_read(&vcpu->kvm->slots_lock);
4541        gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4542        up_read(&vcpu->kvm->slots_lock);
4543        tr->physical_address = gpa;
4544        tr->valid = gpa != UNMAPPED_GVA;
4545        tr->writeable = 1;
4546        tr->usermode = 0;
4547        vcpu_put(vcpu);
4548
4549        return 0;
4550}
4551
4552int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4553{
4554        struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4555
4556        vcpu_load(vcpu);
4557
4558        memcpy(fpu->fpr, fxsave->st_space, 128);
4559        fpu->fcw = fxsave->cwd;
4560        fpu->fsw = fxsave->swd;
4561        fpu->ftwx = fxsave->twd;
4562        fpu->last_opcode = fxsave->fop;
4563        fpu->last_ip = fxsave->rip;
4564        fpu->last_dp = fxsave->rdp;
4565        memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4566
4567        vcpu_put(vcpu);
4568
4569        return 0;
4570}
4571
4572int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4573{
4574        struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4575
4576        vcpu_load(vcpu);
4577
4578        memcpy(fxsave->st_space, fpu->fpr, 128);
4579        fxsave->cwd = fpu->fcw;
4580        fxsave->swd = fpu->fsw;
4581        fxsave->twd = fpu->ftwx;
4582        fxsave->fop = fpu->last_opcode;
4583        fxsave->rip = fpu->last_ip;
4584        fxsave->rdp = fpu->last_dp;
4585        memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4586
4587        vcpu_put(vcpu);
4588
4589        return 0;
4590}
4591
4592void fx_init(struct kvm_vcpu *vcpu)
4593{
4594        unsigned after_mxcsr_mask;
4595
4596        /*
4597         * Touch the fpu the first time in non atomic context as if
4598         * this is the first fpu instruction the exception handler
4599         * will fire before the instruction returns and it'll have to
4600         * allocate ram with GFP_KERNEL.
4601         */
4602        if (!used_math())
4603                kvm_fx_save(&vcpu->arch.host_fx_image);
4604
4605        /* Initialize guest FPU by resetting ours and saving into guest's */
4606        preempt_disable();
4607        kvm_fx_save(&vcpu->arch.host_fx_image);
4608        kvm_fx_finit();
4609        kvm_fx_save(&vcpu->arch.guest_fx_image);
4610        kvm_fx_restore(&vcpu->arch.host_fx_image);
4611        preempt_enable();
4612
4613        vcpu->arch.cr0 |= X86_CR0_ET;
4614        after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4615        vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4616        memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4617               0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4618}
4619EXPORT_SYMBOL_GPL(fx_init);
4620
4621void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4622{
4623        if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4624                return;
4625
4626        vcpu->guest_fpu_loaded = 1;
4627        kvm_fx_save(&vcpu->arch.host_fx_image);
4628        kvm_fx_restore(&vcpu->arch.guest_fx_image);
4629}
4630EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4631
4632void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4633{
4634        if (!vcpu->guest_fpu_loaded)
4635                return;
4636
4637        vcpu->guest_fpu_loaded = 0;
4638        kvm_fx_save(&vcpu->arch.guest_fx_image);
4639        kvm_fx_restore(&vcpu->arch.host_fx_image);
4640        ++vcpu->stat.fpu_reload;
4641}
4642EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4643
4644void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4645{
4646        if (vcpu->arch.time_page) {
4647                kvm_release_page_dirty(vcpu->arch.time_page);
4648                vcpu->arch.time_page = NULL;
4649        }
4650
4651        kvm_x86_ops->vcpu_free(vcpu);
4652}
4653
4654struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4655                                                unsigned int id)
4656{
4657        return kvm_x86_ops->vcpu_create(kvm, id);
4658}
4659
4660int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4661{
4662        int r;
4663
4664        /* We do fxsave: this must be aligned. */
4665        BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4666
4667        vcpu->arch.mtrr_state.have_fixed = 1;
4668        vcpu_load(vcpu);
4669        r = kvm_arch_vcpu_reset(vcpu);
4670        if (r == 0)
4671                r = kvm_mmu_setup(vcpu);
4672        vcpu_put(vcpu);
4673        if (r < 0)
4674                goto free_vcpu;
4675
4676        return 0;
4677free_vcpu:
4678        kvm_x86_ops->vcpu_free(vcpu);
4679        return r;
4680}
4681
4682void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4683{
4684        vcpu_load(vcpu);
4685        kvm_mmu_unload(vcpu);
4686        vcpu_put(vcpu);
4687
4688        kvm_x86_ops->vcpu_free(vcpu);
4689}
4690
4691int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4692{
4693        vcpu->arch.nmi_pending = false;
4694        vcpu->arch.nmi_injected = false;
4695
4696        vcpu->arch.switch_db_regs = 0;
4697        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4698        vcpu->arch.dr6 = DR6_FIXED_1;
4699        vcpu->arch.dr7 = DR7_FIXED_1;
4700
4701        return kvm_x86_ops->vcpu_reset(vcpu);
4702}
4703
4704void kvm_arch_hardware_enable(void *garbage)
4705{
4706        kvm_x86_ops->hardware_enable(garbage);
4707}
4708
4709void kvm_arch_hardware_disable(void *garbage)
4710{
4711        kvm_x86_ops->hardware_disable(garbage);
4712}
4713
4714int kvm_arch_hardware_setup(void)
4715{
4716        return kvm_x86_ops->hardware_setup();
4717}
4718
4719void kvm_arch_hardware_unsetup(void)
4720{
4721        kvm_x86_ops->hardware_unsetup();
4722}
4723
4724void kvm_arch_check_processor_compat(void *rtn)
4725{
4726        kvm_x86_ops->check_processor_compatibility(rtn);
4727}
4728
4729int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4730{
4731        struct page *page;
4732        struct kvm *kvm;
4733        int r;
4734
4735        BUG_ON(vcpu->kvm == NULL);
4736        kvm = vcpu->kvm;
4737
4738        vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4739        if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4740                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4741        else
4742                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4743
4744        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4745        if (!page) {
4746                r = -ENOMEM;
4747                goto fail;
4748        }
4749        vcpu->arch.pio_data = page_address(page);
4750
4751        r = kvm_mmu_create(vcpu);
4752        if (r < 0)
4753                goto fail_free_pio_data;
4754
4755        if (irqchip_in_kernel(kvm)) {
4756                r = kvm_create_lapic(vcpu);
4757                if (r < 0)
4758                        goto fail_mmu_destroy;
4759        }
4760
4761        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4762                                       GFP_KERNEL);
4763        if (!vcpu->arch.mce_banks) {
4764                r = -ENOMEM;
4765                goto fail_mmu_destroy;
4766        }
4767        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4768
4769        return 0;
4770
4771fail_mmu_destroy:
4772        kvm_mmu_destroy(vcpu);
4773fail_free_pio_data:
4774        free_page((unsigned long)vcpu->arch.pio_data);
4775fail:
4776        return r;
4777}
4778
4779void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4780{
4781        kvm_free_lapic(vcpu);
4782        down_read(&vcpu->kvm->slots_lock);
4783        kvm_mmu_destroy(vcpu);
4784        up_read(&vcpu->kvm->slots_lock);
4785        free_page((unsigned long)vcpu->arch.pio_data);
4786}
4787
4788struct  kvm *kvm_arch_create_vm(void)
4789{
4790        struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4791
4792        if (!kvm)
4793                return ERR_PTR(-ENOMEM);
4794
4795        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4796        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4797
4798        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4799        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4800
4801        rdtscll(kvm->arch.vm_init_tsc);
4802
4803        return kvm;
4804}
4805
4806static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4807{
4808        vcpu_load(vcpu);
4809        kvm_mmu_unload(vcpu);
4810        vcpu_put(vcpu);
4811}
4812
4813static void kvm_free_vcpus(struct kvm *kvm)
4814{
4815        unsigned int i;
4816        struct kvm_vcpu *vcpu;
4817
4818        /*
4819         * Unpin any mmu pages first.
4820         */
4821        kvm_for_each_vcpu(i, vcpu, kvm)
4822                kvm_unload_vcpu_mmu(vcpu);
4823        kvm_for_each_vcpu(i, vcpu, kvm)
4824                kvm_arch_vcpu_free(vcpu);
4825
4826        mutex_lock(&kvm->lock);
4827        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4828                kvm->vcpus[i] = NULL;
4829
4830        atomic_set(&kvm->online_vcpus, 0);
4831        mutex_unlock(&kvm->lock);
4832}
4833
4834void kvm_arch_sync_events(struct kvm *kvm)
4835{
4836        kvm_free_all_assigned_devices(kvm);
4837}
4838
4839void kvm_arch_destroy_vm(struct kvm *kvm)
4840{
4841        kvm_iommu_unmap_guest(kvm);
4842        kvm_free_pit(kvm);
4843        kfree(kvm->arch.vpic);
4844        kfree(kvm->arch.vioapic);
4845        kvm_free_vcpus(kvm);
4846        kvm_free_physmem(kvm);
4847        if (kvm->arch.apic_access_page)
4848                put_page(kvm->arch.apic_access_page);
4849        if (kvm->arch.ept_identity_pagetable)
4850                put_page(kvm->arch.ept_identity_pagetable);
4851        kfree(kvm);
4852}
4853
4854int kvm_arch_set_memory_region(struct kvm *kvm,
4855                                struct kvm_userspace_memory_region *mem,
4856                                struct kvm_memory_slot old,
4857                                int user_alloc)
4858{
4859        int npages = mem->memory_size >> PAGE_SHIFT;
4860        struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4861
4862        /*To keep backward compatibility with older userspace,
4863         *x86 needs to hanlde !user_alloc case.
4864         */
4865        if (!user_alloc) {
4866                if (npages && !old.rmap) {
4867                        unsigned long userspace_addr;
4868
4869                        down_write(&current->mm->mmap_sem);
4870                        userspace_addr = do_mmap(NULL, 0,
4871                                                 npages * PAGE_SIZE,
4872                                                 PROT_READ | PROT_WRITE,
4873                                                 MAP_PRIVATE | MAP_ANONYMOUS,
4874                                                 0);
4875                        up_write(&current->mm->mmap_sem);
4876
4877                        if (IS_ERR((void *)userspace_addr))
4878                                return PTR_ERR((void *)userspace_addr);
4879
4880                        /* set userspace_addr atomically for kvm_hva_to_rmapp */
4881                        spin_lock(&kvm->mmu_lock);
4882                        memslot->userspace_addr = userspace_addr;
4883                        spin_unlock(&kvm->mmu_lock);
4884                } else {
4885                        if (!old.user_alloc && old.rmap) {
4886                                int ret;
4887
4888                                down_write(&current->mm->mmap_sem);
4889                                ret = do_munmap(current->mm, old.userspace_addr,
4890                                                old.npages * PAGE_SIZE);
4891                                up_write(&current->mm->mmap_sem);
4892                                if (ret < 0)
4893                                        printk(KERN_WARNING
4894                                       "kvm_vm_ioctl_set_memory_region: "
4895                                       "failed to munmap memory\n");
4896                        }
4897                }
4898        }
4899
4900        spin_lock(&kvm->mmu_lock);
4901        if (!kvm->arch.n_requested_mmu_pages) {
4902                unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4903                kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4904        }
4905
4906        kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4907        spin_unlock(&kvm->mmu_lock);
4908
4909        return 0;
4910}
4911
4912void kvm_arch_flush_shadow(struct kvm *kvm)
4913{
4914        kvm_mmu_zap_all(kvm);
4915        kvm_reload_remote_mmus(kvm);
4916}
4917
4918int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4919{
4920        return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4921                || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4922                || vcpu->arch.nmi_pending ||
4923                (kvm_arch_interrupt_allowed(vcpu) &&
4924                 kvm_cpu_has_interrupt(vcpu));
4925}
4926
4927void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4928{
4929        int me;
4930        int cpu = vcpu->cpu;
4931
4932        if (waitqueue_active(&vcpu->wq)) {
4933                wake_up_interruptible(&vcpu->wq);
4934                ++vcpu->stat.halt_wakeup;
4935        }
4936
4937        me = get_cpu();
4938        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4939                if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4940                        smp_send_reschedule(cpu);
4941        put_cpu();
4942}
4943
4944int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4945{
4946        return kvm_x86_ops->interrupt_allowed(vcpu);
4947}
4948
4949EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
4950EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
4951EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
4952EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
4953EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
4954