linux/arch/x86/mm/fault.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   4 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   5 */
   6#include <linux/magic.h>                /* STACK_END_MAGIC              */
   7#include <linux/sched.h>                /* test_thread_flag(), ...      */
   8#include <linux/kdebug.h>               /* oops_begin/end, ...          */
   9#include <linux/module.h>               /* search_exception_table       */
  10#include <linux/bootmem.h>              /* max_low_pfn                  */
  11#include <linux/kprobes.h>              /* __kprobes, ...               */
  12#include <linux/mmiotrace.h>            /* kmmio_handler, ...           */
  13#include <linux/perf_event.h>           /* perf_sw_event                */
  14
  15#include <asm/traps.h>                  /* dotraplinkage, ...           */
  16#include <asm/pgalloc.h>                /* pgd_*(), ...                 */
  17#include <asm/kmemcheck.h>              /* kmemcheck_*(), ...           */
  18
  19/*
  20 * Page fault error code bits:
  21 *
  22 *   bit 0 ==    0: no page found       1: protection fault
  23 *   bit 1 ==    0: read access         1: write access
  24 *   bit 2 ==    0: kernel-mode access  1: user-mode access
  25 *   bit 3 ==                           1: use of reserved bit detected
  26 *   bit 4 ==                           1: fault was an instruction fetch
  27 */
  28enum x86_pf_error_code {
  29
  30        PF_PROT         =               1 << 0,
  31        PF_WRITE        =               1 << 1,
  32        PF_USER         =               1 << 2,
  33        PF_RSVD         =               1 << 3,
  34        PF_INSTR        =               1 << 4,
  35};
  36
  37/*
  38 * Returns 0 if mmiotrace is disabled, or if the fault is not
  39 * handled by mmiotrace:
  40 */
  41static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
  42{
  43        if (unlikely(is_kmmio_active()))
  44                if (kmmio_handler(regs, addr) == 1)
  45                        return -1;
  46        return 0;
  47}
  48
  49static inline int notify_page_fault(struct pt_regs *regs)
  50{
  51        int ret = 0;
  52
  53        /* kprobe_running() needs smp_processor_id() */
  54        if (kprobes_built_in() && !user_mode_vm(regs)) {
  55                preempt_disable();
  56                if (kprobe_running() && kprobe_fault_handler(regs, 14))
  57                        ret = 1;
  58                preempt_enable();
  59        }
  60
  61        return ret;
  62}
  63
  64/*
  65 * Prefetch quirks:
  66 *
  67 * 32-bit mode:
  68 *
  69 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  70 *   Check that here and ignore it.
  71 *
  72 * 64-bit mode:
  73 *
  74 *   Sometimes the CPU reports invalid exceptions on prefetch.
  75 *   Check that here and ignore it.
  76 *
  77 * Opcode checker based on code by Richard Brunner.
  78 */
  79static inline int
  80check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  81                      unsigned char opcode, int *prefetch)
  82{
  83        unsigned char instr_hi = opcode & 0xf0;
  84        unsigned char instr_lo = opcode & 0x0f;
  85
  86        switch (instr_hi) {
  87        case 0x20:
  88        case 0x30:
  89                /*
  90                 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  91                 * In X86_64 long mode, the CPU will signal invalid
  92                 * opcode if some of these prefixes are present so
  93                 * X86_64 will never get here anyway
  94                 */
  95                return ((instr_lo & 7) == 0x6);
  96#ifdef CONFIG_X86_64
  97        case 0x40:
  98                /*
  99                 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
 100                 * Need to figure out under what instruction mode the
 101                 * instruction was issued. Could check the LDT for lm,
 102                 * but for now it's good enough to assume that long
 103                 * mode only uses well known segments or kernel.
 104                 */
 105                return (!user_mode(regs)) || (regs->cs == __USER_CS);
 106#endif
 107        case 0x60:
 108                /* 0x64 thru 0x67 are valid prefixes in all modes. */
 109                return (instr_lo & 0xC) == 0x4;
 110        case 0xF0:
 111                /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 112                return !instr_lo || (instr_lo>>1) == 1;
 113        case 0x00:
 114                /* Prefetch instruction is 0x0F0D or 0x0F18 */
 115                if (probe_kernel_address(instr, opcode))
 116                        return 0;
 117
 118                *prefetch = (instr_lo == 0xF) &&
 119                        (opcode == 0x0D || opcode == 0x18);
 120                return 0;
 121        default:
 122                return 0;
 123        }
 124}
 125
 126static int
 127is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 128{
 129        unsigned char *max_instr;
 130        unsigned char *instr;
 131        int prefetch = 0;
 132
 133        /*
 134         * If it was a exec (instruction fetch) fault on NX page, then
 135         * do not ignore the fault:
 136         */
 137        if (error_code & PF_INSTR)
 138                return 0;
 139
 140        instr = (void *)convert_ip_to_linear(current, regs);
 141        max_instr = instr + 15;
 142
 143        if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
 144                return 0;
 145
 146        while (instr < max_instr) {
 147                unsigned char opcode;
 148
 149                if (probe_kernel_address(instr, opcode))
 150                        break;
 151
 152                instr++;
 153
 154                if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 155                        break;
 156        }
 157        return prefetch;
 158}
 159
 160static void
 161force_sig_info_fault(int si_signo, int si_code, unsigned long address,
 162                     struct task_struct *tsk)
 163{
 164        siginfo_t info;
 165
 166        info.si_signo   = si_signo;
 167        info.si_errno   = 0;
 168        info.si_code    = si_code;
 169        info.si_addr    = (void __user *)address;
 170        info.si_addr_lsb = si_code == BUS_MCEERR_AR ? PAGE_SHIFT : 0;
 171
 172        force_sig_info(si_signo, &info, tsk);
 173}
 174
 175DEFINE_SPINLOCK(pgd_lock);
 176LIST_HEAD(pgd_list);
 177
 178#ifdef CONFIG_X86_32
 179static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 180{
 181        unsigned index = pgd_index(address);
 182        pgd_t *pgd_k;
 183        pud_t *pud, *pud_k;
 184        pmd_t *pmd, *pmd_k;
 185
 186        pgd += index;
 187        pgd_k = init_mm.pgd + index;
 188
 189        if (!pgd_present(*pgd_k))
 190                return NULL;
 191
 192        /*
 193         * set_pgd(pgd, *pgd_k); here would be useless on PAE
 194         * and redundant with the set_pmd() on non-PAE. As would
 195         * set_pud.
 196         */
 197        pud = pud_offset(pgd, address);
 198        pud_k = pud_offset(pgd_k, address);
 199        if (!pud_present(*pud_k))
 200                return NULL;
 201
 202        pmd = pmd_offset(pud, address);
 203        pmd_k = pmd_offset(pud_k, address);
 204        if (!pmd_present(*pmd_k))
 205                return NULL;
 206
 207        if (!pmd_present(*pmd))
 208                set_pmd(pmd, *pmd_k);
 209        else
 210                BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
 211
 212        return pmd_k;
 213}
 214
 215void vmalloc_sync_all(void)
 216{
 217        unsigned long address;
 218
 219        if (SHARED_KERNEL_PMD)
 220                return;
 221
 222        for (address = VMALLOC_START & PMD_MASK;
 223             address >= TASK_SIZE && address < FIXADDR_TOP;
 224             address += PMD_SIZE) {
 225
 226                unsigned long flags;
 227                struct page *page;
 228
 229                spin_lock_irqsave(&pgd_lock, flags);
 230                list_for_each_entry(page, &pgd_list, lru) {
 231                        if (!vmalloc_sync_one(page_address(page), address))
 232                                break;
 233                }
 234                spin_unlock_irqrestore(&pgd_lock, flags);
 235        }
 236}
 237
 238/*
 239 * 32-bit:
 240 *
 241 *   Handle a fault on the vmalloc or module mapping area
 242 */
 243static noinline int vmalloc_fault(unsigned long address)
 244{
 245        unsigned long pgd_paddr;
 246        pmd_t *pmd_k;
 247        pte_t *pte_k;
 248
 249        /* Make sure we are in vmalloc area: */
 250        if (!(address >= VMALLOC_START && address < VMALLOC_END))
 251                return -1;
 252
 253        /*
 254         * Synchronize this task's top level page-table
 255         * with the 'reference' page table.
 256         *
 257         * Do _not_ use "current" here. We might be inside
 258         * an interrupt in the middle of a task switch..
 259         */
 260        pgd_paddr = read_cr3();
 261        pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 262        if (!pmd_k)
 263                return -1;
 264
 265        pte_k = pte_offset_kernel(pmd_k, address);
 266        if (!pte_present(*pte_k))
 267                return -1;
 268
 269        return 0;
 270}
 271
 272/*
 273 * Did it hit the DOS screen memory VA from vm86 mode?
 274 */
 275static inline void
 276check_v8086_mode(struct pt_regs *regs, unsigned long address,
 277                 struct task_struct *tsk)
 278{
 279        unsigned long bit;
 280
 281        if (!v8086_mode(regs))
 282                return;
 283
 284        bit = (address - 0xA0000) >> PAGE_SHIFT;
 285        if (bit < 32)
 286                tsk->thread.screen_bitmap |= 1 << bit;
 287}
 288
 289static bool low_pfn(unsigned long pfn)
 290{
 291        return pfn < max_low_pfn;
 292}
 293
 294static void dump_pagetable(unsigned long address)
 295{
 296        pgd_t *base = __va(read_cr3());
 297        pgd_t *pgd = &base[pgd_index(address)];
 298        pmd_t *pmd;
 299        pte_t *pte;
 300
 301#ifdef CONFIG_X86_PAE
 302        printk("*pdpt = %016Lx ", pgd_val(*pgd));
 303        if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 304                goto out;
 305#endif
 306        pmd = pmd_offset(pud_offset(pgd, address), address);
 307        printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 308
 309        /*
 310         * We must not directly access the pte in the highpte
 311         * case if the page table is located in highmem.
 312         * And let's rather not kmap-atomic the pte, just in case
 313         * it's allocated already:
 314         */
 315        if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 316                goto out;
 317
 318        pte = pte_offset_kernel(pmd, address);
 319        printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 320out:
 321        printk("\n");
 322}
 323
 324#else /* CONFIG_X86_64: */
 325
 326void vmalloc_sync_all(void)
 327{
 328        unsigned long address;
 329
 330        for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
 331             address += PGDIR_SIZE) {
 332
 333                const pgd_t *pgd_ref = pgd_offset_k(address);
 334                unsigned long flags;
 335                struct page *page;
 336
 337                if (pgd_none(*pgd_ref))
 338                        continue;
 339
 340                spin_lock_irqsave(&pgd_lock, flags);
 341                list_for_each_entry(page, &pgd_list, lru) {
 342                        pgd_t *pgd;
 343                        pgd = (pgd_t *)page_address(page) + pgd_index(address);
 344                        if (pgd_none(*pgd))
 345                                set_pgd(pgd, *pgd_ref);
 346                        else
 347                                BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 348                }
 349                spin_unlock_irqrestore(&pgd_lock, flags);
 350        }
 351}
 352
 353/*
 354 * 64-bit:
 355 *
 356 *   Handle a fault on the vmalloc area
 357 *
 358 * This assumes no large pages in there.
 359 */
 360static noinline int vmalloc_fault(unsigned long address)
 361{
 362        pgd_t *pgd, *pgd_ref;
 363        pud_t *pud, *pud_ref;
 364        pmd_t *pmd, *pmd_ref;
 365        pte_t *pte, *pte_ref;
 366
 367        /* Make sure we are in vmalloc area: */
 368        if (!(address >= VMALLOC_START && address < VMALLOC_END))
 369                return -1;
 370
 371        /*
 372         * Copy kernel mappings over when needed. This can also
 373         * happen within a race in page table update. In the later
 374         * case just flush:
 375         */
 376        pgd = pgd_offset(current->active_mm, address);
 377        pgd_ref = pgd_offset_k(address);
 378        if (pgd_none(*pgd_ref))
 379                return -1;
 380
 381        if (pgd_none(*pgd))
 382                set_pgd(pgd, *pgd_ref);
 383        else
 384                BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 385
 386        /*
 387         * Below here mismatches are bugs because these lower tables
 388         * are shared:
 389         */
 390
 391        pud = pud_offset(pgd, address);
 392        pud_ref = pud_offset(pgd_ref, address);
 393        if (pud_none(*pud_ref))
 394                return -1;
 395
 396        if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
 397                BUG();
 398
 399        pmd = pmd_offset(pud, address);
 400        pmd_ref = pmd_offset(pud_ref, address);
 401        if (pmd_none(*pmd_ref))
 402                return -1;
 403
 404        if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
 405                BUG();
 406
 407        pte_ref = pte_offset_kernel(pmd_ref, address);
 408        if (!pte_present(*pte_ref))
 409                return -1;
 410
 411        pte = pte_offset_kernel(pmd, address);
 412
 413        /*
 414         * Don't use pte_page here, because the mappings can point
 415         * outside mem_map, and the NUMA hash lookup cannot handle
 416         * that:
 417         */
 418        if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
 419                BUG();
 420
 421        return 0;
 422}
 423
 424static const char errata93_warning[] =
 425KERN_ERR 
 426"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 427"******* Working around it, but it may cause SEGVs or burn power.\n"
 428"******* Please consider a BIOS update.\n"
 429"******* Disabling USB legacy in the BIOS may also help.\n";
 430
 431/*
 432 * No vm86 mode in 64-bit mode:
 433 */
 434static inline void
 435check_v8086_mode(struct pt_regs *regs, unsigned long address,
 436                 struct task_struct *tsk)
 437{
 438}
 439
 440static int bad_address(void *p)
 441{
 442        unsigned long dummy;
 443
 444        return probe_kernel_address((unsigned long *)p, dummy);
 445}
 446
 447static void dump_pagetable(unsigned long address)
 448{
 449        pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
 450        pgd_t *pgd = base + pgd_index(address);
 451        pud_t *pud;
 452        pmd_t *pmd;
 453        pte_t *pte;
 454
 455        if (bad_address(pgd))
 456                goto bad;
 457
 458        printk("PGD %lx ", pgd_val(*pgd));
 459
 460        if (!pgd_present(*pgd))
 461                goto out;
 462
 463        pud = pud_offset(pgd, address);
 464        if (bad_address(pud))
 465                goto bad;
 466
 467        printk("PUD %lx ", pud_val(*pud));
 468        if (!pud_present(*pud) || pud_large(*pud))
 469                goto out;
 470
 471        pmd = pmd_offset(pud, address);
 472        if (bad_address(pmd))
 473                goto bad;
 474
 475        printk("PMD %lx ", pmd_val(*pmd));
 476        if (!pmd_present(*pmd) || pmd_large(*pmd))
 477                goto out;
 478
 479        pte = pte_offset_kernel(pmd, address);
 480        if (bad_address(pte))
 481                goto bad;
 482
 483        printk("PTE %lx", pte_val(*pte));
 484out:
 485        printk("\n");
 486        return;
 487bad:
 488        printk("BAD\n");
 489}
 490
 491#endif /* CONFIG_X86_64 */
 492
 493/*
 494 * Workaround for K8 erratum #93 & buggy BIOS.
 495 *
 496 * BIOS SMM functions are required to use a specific workaround
 497 * to avoid corruption of the 64bit RIP register on C stepping K8.
 498 *
 499 * A lot of BIOS that didn't get tested properly miss this.
 500 *
 501 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 502 * Try to work around it here.
 503 *
 504 * Note we only handle faults in kernel here.
 505 * Does nothing on 32-bit.
 506 */
 507static int is_errata93(struct pt_regs *regs, unsigned long address)
 508{
 509#ifdef CONFIG_X86_64
 510        if (address != regs->ip)
 511                return 0;
 512
 513        if ((address >> 32) != 0)
 514                return 0;
 515
 516        address |= 0xffffffffUL << 32;
 517        if ((address >= (u64)_stext && address <= (u64)_etext) ||
 518            (address >= MODULES_VADDR && address <= MODULES_END)) {
 519                printk_once(errata93_warning);
 520                regs->ip = address;
 521                return 1;
 522        }
 523#endif
 524        return 0;
 525}
 526
 527/*
 528 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 529 * to illegal addresses >4GB.
 530 *
 531 * We catch this in the page fault handler because these addresses
 532 * are not reachable. Just detect this case and return.  Any code
 533 * segment in LDT is compatibility mode.
 534 */
 535static int is_errata100(struct pt_regs *regs, unsigned long address)
 536{
 537#ifdef CONFIG_X86_64
 538        if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 539                return 1;
 540#endif
 541        return 0;
 542}
 543
 544static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 545{
 546#ifdef CONFIG_X86_F00F_BUG
 547        unsigned long nr;
 548
 549        /*
 550         * Pentium F0 0F C7 C8 bug workaround:
 551         */
 552        if (boot_cpu_data.f00f_bug) {
 553                nr = (address - idt_descr.address) >> 3;
 554
 555                if (nr == 6) {
 556                        do_invalid_op(regs, 0);
 557                        return 1;
 558                }
 559        }
 560#endif
 561        return 0;
 562}
 563
 564static const char nx_warning[] = KERN_CRIT
 565"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
 566
 567static void
 568show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 569                unsigned long address)
 570{
 571        if (!oops_may_print())
 572                return;
 573
 574        if (error_code & PF_INSTR) {
 575                unsigned int level;
 576
 577                pte_t *pte = lookup_address(address, &level);
 578
 579                if (pte && pte_present(*pte) && !pte_exec(*pte))
 580                        printk(nx_warning, current_uid());
 581        }
 582
 583        printk(KERN_ALERT "BUG: unable to handle kernel ");
 584        if (address < PAGE_SIZE)
 585                printk(KERN_CONT "NULL pointer dereference");
 586        else
 587                printk(KERN_CONT "paging request");
 588
 589        printk(KERN_CONT " at %p\n", (void *) address);
 590        printk(KERN_ALERT "IP:");
 591        printk_address(regs->ip, 1);
 592
 593        dump_pagetable(address);
 594}
 595
 596static noinline void
 597pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 598            unsigned long address)
 599{
 600        struct task_struct *tsk;
 601        unsigned long flags;
 602        int sig;
 603
 604        flags = oops_begin();
 605        tsk = current;
 606        sig = SIGKILL;
 607
 608        printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 609               tsk->comm, address);
 610        dump_pagetable(address);
 611
 612        tsk->thread.cr2         = address;
 613        tsk->thread.trap_no     = 14;
 614        tsk->thread.error_code  = error_code;
 615
 616        if (__die("Bad pagetable", regs, error_code))
 617                sig = 0;
 618
 619        oops_end(flags, regs, sig);
 620}
 621
 622static noinline void
 623no_context(struct pt_regs *regs, unsigned long error_code,
 624           unsigned long address)
 625{
 626        struct task_struct *tsk = current;
 627        unsigned long *stackend;
 628        unsigned long flags;
 629        int sig;
 630
 631        /* Are we prepared to handle this kernel fault? */
 632        if (fixup_exception(regs))
 633                return;
 634
 635        /*
 636         * 32-bit:
 637         *
 638         *   Valid to do another page fault here, because if this fault
 639         *   had been triggered by is_prefetch fixup_exception would have
 640         *   handled it.
 641         *
 642         * 64-bit:
 643         *
 644         *   Hall of shame of CPU/BIOS bugs.
 645         */
 646        if (is_prefetch(regs, error_code, address))
 647                return;
 648
 649        if (is_errata93(regs, address))
 650                return;
 651
 652        /*
 653         * Oops. The kernel tried to access some bad page. We'll have to
 654         * terminate things with extreme prejudice:
 655         */
 656        flags = oops_begin();
 657
 658        show_fault_oops(regs, error_code, address);
 659
 660        stackend = end_of_stack(tsk);
 661        if (*stackend != STACK_END_MAGIC)
 662                printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
 663
 664        tsk->thread.cr2         = address;
 665        tsk->thread.trap_no     = 14;
 666        tsk->thread.error_code  = error_code;
 667
 668        sig = SIGKILL;
 669        if (__die("Oops", regs, error_code))
 670                sig = 0;
 671
 672        /* Executive summary in case the body of the oops scrolled away */
 673        printk(KERN_EMERG "CR2: %016lx\n", address);
 674
 675        oops_end(flags, regs, sig);
 676}
 677
 678/*
 679 * Print out info about fatal segfaults, if the show_unhandled_signals
 680 * sysctl is set:
 681 */
 682static inline void
 683show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 684                unsigned long address, struct task_struct *tsk)
 685{
 686        if (!unhandled_signal(tsk, SIGSEGV))
 687                return;
 688
 689        if (!printk_ratelimit())
 690                return;
 691
 692        printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
 693                task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
 694                tsk->comm, task_pid_nr(tsk), address,
 695                (void *)regs->ip, (void *)regs->sp, error_code);
 696
 697        print_vma_addr(KERN_CONT " in ", regs->ip);
 698
 699        printk(KERN_CONT "\n");
 700}
 701
 702static void
 703__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 704                       unsigned long address, int si_code)
 705{
 706        struct task_struct *tsk = current;
 707
 708        /* User mode accesses just cause a SIGSEGV */
 709        if (error_code & PF_USER) {
 710                /*
 711                 * It's possible to have interrupts off here:
 712                 */
 713                local_irq_enable();
 714
 715                /*
 716                 * Valid to do another page fault here because this one came
 717                 * from user space:
 718                 */
 719                if (is_prefetch(regs, error_code, address))
 720                        return;
 721
 722                if (is_errata100(regs, address))
 723                        return;
 724
 725                if (unlikely(show_unhandled_signals))
 726                        show_signal_msg(regs, error_code, address, tsk);
 727
 728                /* Kernel addresses are always protection faults: */
 729                tsk->thread.cr2         = address;
 730                tsk->thread.error_code  = error_code | (address >= TASK_SIZE);
 731                tsk->thread.trap_no     = 14;
 732
 733                force_sig_info_fault(SIGSEGV, si_code, address, tsk);
 734
 735                return;
 736        }
 737
 738        if (is_f00f_bug(regs, address))
 739                return;
 740
 741        no_context(regs, error_code, address);
 742}
 743
 744static noinline void
 745bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 746                     unsigned long address)
 747{
 748        __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
 749}
 750
 751static void
 752__bad_area(struct pt_regs *regs, unsigned long error_code,
 753           unsigned long address, int si_code)
 754{
 755        struct mm_struct *mm = current->mm;
 756
 757        /*
 758         * Something tried to access memory that isn't in our memory map..
 759         * Fix it, but check if it's kernel or user first..
 760         */
 761        up_read(&mm->mmap_sem);
 762
 763        __bad_area_nosemaphore(regs, error_code, address, si_code);
 764}
 765
 766static noinline void
 767bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 768{
 769        __bad_area(regs, error_code, address, SEGV_MAPERR);
 770}
 771
 772static noinline void
 773bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 774                      unsigned long address)
 775{
 776        __bad_area(regs, error_code, address, SEGV_ACCERR);
 777}
 778
 779/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
 780static void
 781out_of_memory(struct pt_regs *regs, unsigned long error_code,
 782              unsigned long address)
 783{
 784        /*
 785         * We ran out of memory, call the OOM killer, and return the userspace
 786         * (which will retry the fault, or kill us if we got oom-killed):
 787         */
 788        up_read(&current->mm->mmap_sem);
 789
 790        pagefault_out_of_memory();
 791}
 792
 793static void
 794do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 795          unsigned int fault)
 796{
 797        struct task_struct *tsk = current;
 798        struct mm_struct *mm = tsk->mm;
 799        int code = BUS_ADRERR;
 800
 801        up_read(&mm->mmap_sem);
 802
 803        /* Kernel mode? Handle exceptions or die: */
 804        if (!(error_code & PF_USER))
 805                no_context(regs, error_code, address);
 806
 807        /* User-space => ok to do another page fault: */
 808        if (is_prefetch(regs, error_code, address))
 809                return;
 810
 811        tsk->thread.cr2         = address;
 812        tsk->thread.error_code  = error_code;
 813        tsk->thread.trap_no     = 14;
 814
 815#ifdef CONFIG_MEMORY_FAILURE
 816        if (fault & VM_FAULT_HWPOISON) {
 817                printk(KERN_ERR
 818        "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 819                        tsk->comm, tsk->pid, address);
 820                code = BUS_MCEERR_AR;
 821        }
 822#endif
 823        force_sig_info_fault(SIGBUS, code, address, tsk);
 824}
 825
 826static noinline void
 827mm_fault_error(struct pt_regs *regs, unsigned long error_code,
 828               unsigned long address, unsigned int fault)
 829{
 830        if (fault & VM_FAULT_OOM) {
 831                out_of_memory(regs, error_code, address);
 832        } else {
 833                if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON))
 834                        do_sigbus(regs, error_code, address, fault);
 835                else
 836                        BUG();
 837        }
 838}
 839
 840static int spurious_fault_check(unsigned long error_code, pte_t *pte)
 841{
 842        if ((error_code & PF_WRITE) && !pte_write(*pte))
 843                return 0;
 844
 845        if ((error_code & PF_INSTR) && !pte_exec(*pte))
 846                return 0;
 847
 848        return 1;
 849}
 850
 851/*
 852 * Handle a spurious fault caused by a stale TLB entry.
 853 *
 854 * This allows us to lazily refresh the TLB when increasing the
 855 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 856 * eagerly is very expensive since that implies doing a full
 857 * cross-processor TLB flush, even if no stale TLB entries exist
 858 * on other processors.
 859 *
 860 * There are no security implications to leaving a stale TLB when
 861 * increasing the permissions on a page.
 862 */
 863static noinline int
 864spurious_fault(unsigned long error_code, unsigned long address)
 865{
 866        pgd_t *pgd;
 867        pud_t *pud;
 868        pmd_t *pmd;
 869        pte_t *pte;
 870        int ret;
 871
 872        /* Reserved-bit violation or user access to kernel space? */
 873        if (error_code & (PF_USER | PF_RSVD))
 874                return 0;
 875
 876        pgd = init_mm.pgd + pgd_index(address);
 877        if (!pgd_present(*pgd))
 878                return 0;
 879
 880        pud = pud_offset(pgd, address);
 881        if (!pud_present(*pud))
 882                return 0;
 883
 884        if (pud_large(*pud))
 885                return spurious_fault_check(error_code, (pte_t *) pud);
 886
 887        pmd = pmd_offset(pud, address);
 888        if (!pmd_present(*pmd))
 889                return 0;
 890
 891        if (pmd_large(*pmd))
 892                return spurious_fault_check(error_code, (pte_t *) pmd);
 893
 894        pte = pte_offset_kernel(pmd, address);
 895        if (!pte_present(*pte))
 896                return 0;
 897
 898        ret = spurious_fault_check(error_code, pte);
 899        if (!ret)
 900                return 0;
 901
 902        /*
 903         * Make sure we have permissions in PMD.
 904         * If not, then there's a bug in the page tables:
 905         */
 906        ret = spurious_fault_check(error_code, (pte_t *) pmd);
 907        WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
 908
 909        return ret;
 910}
 911
 912int show_unhandled_signals = 1;
 913
 914static inline int
 915access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
 916{
 917        if (write) {
 918                /* write, present and write, not present: */
 919                if (unlikely(!(vma->vm_flags & VM_WRITE)))
 920                        return 1;
 921                return 0;
 922        }
 923
 924        /* read, present: */
 925        if (unlikely(error_code & PF_PROT))
 926                return 1;
 927
 928        /* read, not present: */
 929        if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
 930                return 1;
 931
 932        return 0;
 933}
 934
 935static int fault_in_kernel_space(unsigned long address)
 936{
 937        return address >= TASK_SIZE_MAX;
 938}
 939
 940/*
 941 * This routine handles page faults.  It determines the address,
 942 * and the problem, and then passes it off to one of the appropriate
 943 * routines.
 944 */
 945dotraplinkage void __kprobes
 946do_page_fault(struct pt_regs *regs, unsigned long error_code)
 947{
 948        struct vm_area_struct *vma;
 949        struct task_struct *tsk;
 950        unsigned long address;
 951        struct mm_struct *mm;
 952        int write;
 953        int fault;
 954
 955        tsk = current;
 956        mm = tsk->mm;
 957
 958        /* Get the faulting address: */
 959        address = read_cr2();
 960
 961        /*
 962         * Detect and handle instructions that would cause a page fault for
 963         * both a tracked kernel page and a userspace page.
 964         */
 965        if (kmemcheck_active(regs))
 966                kmemcheck_hide(regs);
 967        prefetchw(&mm->mmap_sem);
 968
 969        if (unlikely(kmmio_fault(regs, address)))
 970                return;
 971
 972        /*
 973         * We fault-in kernel-space virtual memory on-demand. The
 974         * 'reference' page table is init_mm.pgd.
 975         *
 976         * NOTE! We MUST NOT take any locks for this case. We may
 977         * be in an interrupt or a critical region, and should
 978         * only copy the information from the master page table,
 979         * nothing more.
 980         *
 981         * This verifies that the fault happens in kernel space
 982         * (error_code & 4) == 0, and that the fault was not a
 983         * protection error (error_code & 9) == 0.
 984         */
 985        if (unlikely(fault_in_kernel_space(address))) {
 986                if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
 987                        if (vmalloc_fault(address) >= 0)
 988                                return;
 989
 990                        if (kmemcheck_fault(regs, address, error_code))
 991                                return;
 992                }
 993
 994                /* Can handle a stale RO->RW TLB: */
 995                if (spurious_fault(error_code, address))
 996                        return;
 997
 998                /* kprobes don't want to hook the spurious faults: */
 999                if (notify_page_fault(regs))
1000                        return;
1001                /*
1002                 * Don't take the mm semaphore here. If we fixup a prefetch
1003                 * fault we could otherwise deadlock:
1004                 */
1005                bad_area_nosemaphore(regs, error_code, address);
1006
1007                return;
1008        }
1009
1010        /* kprobes don't want to hook the spurious faults: */
1011        if (unlikely(notify_page_fault(regs)))
1012                return;
1013        /*
1014         * It's safe to allow irq's after cr2 has been saved and the
1015         * vmalloc fault has been handled.
1016         *
1017         * User-mode registers count as a user access even for any
1018         * potential system fault or CPU buglet:
1019         */
1020        if (user_mode_vm(regs)) {
1021                local_irq_enable();
1022                error_code |= PF_USER;
1023        } else {
1024                if (regs->flags & X86_EFLAGS_IF)
1025                        local_irq_enable();
1026        }
1027
1028        if (unlikely(error_code & PF_RSVD))
1029                pgtable_bad(regs, error_code, address);
1030
1031        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1032
1033        /*
1034         * If we're in an interrupt, have no user context or are running
1035         * in an atomic region then we must not take the fault:
1036         */
1037        if (unlikely(in_atomic() || !mm)) {
1038                bad_area_nosemaphore(regs, error_code, address);
1039                return;
1040        }
1041
1042        /*
1043         * When running in the kernel we expect faults to occur only to
1044         * addresses in user space.  All other faults represent errors in
1045         * the kernel and should generate an OOPS.  Unfortunately, in the
1046         * case of an erroneous fault occurring in a code path which already
1047         * holds mmap_sem we will deadlock attempting to validate the fault
1048         * against the address space.  Luckily the kernel only validly
1049         * references user space from well defined areas of code, which are
1050         * listed in the exceptions table.
1051         *
1052         * As the vast majority of faults will be valid we will only perform
1053         * the source reference check when there is a possibility of a
1054         * deadlock. Attempt to lock the address space, if we cannot we then
1055         * validate the source. If this is invalid we can skip the address
1056         * space check, thus avoiding the deadlock:
1057         */
1058        if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1059                if ((error_code & PF_USER) == 0 &&
1060                    !search_exception_tables(regs->ip)) {
1061                        bad_area_nosemaphore(regs, error_code, address);
1062                        return;
1063                }
1064                down_read(&mm->mmap_sem);
1065        } else {
1066                /*
1067                 * The above down_read_trylock() might have succeeded in
1068                 * which case we'll have missed the might_sleep() from
1069                 * down_read():
1070                 */
1071                might_sleep();
1072        }
1073
1074        vma = find_vma(mm, address);
1075        if (unlikely(!vma)) {
1076                bad_area(regs, error_code, address);
1077                return;
1078        }
1079        if (likely(vma->vm_start <= address))
1080                goto good_area;
1081        if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1082                bad_area(regs, error_code, address);
1083                return;
1084        }
1085        if (error_code & PF_USER) {
1086                /*
1087                 * Accessing the stack below %sp is always a bug.
1088                 * The large cushion allows instructions like enter
1089                 * and pusha to work. ("enter $65535, $31" pushes
1090                 * 32 pointers and then decrements %sp by 65535.)
1091                 */
1092                if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1093                        bad_area(regs, error_code, address);
1094                        return;
1095                }
1096        }
1097        if (unlikely(expand_stack(vma, address))) {
1098                bad_area(regs, error_code, address);
1099                return;
1100        }
1101
1102        /*
1103         * Ok, we have a good vm_area for this memory access, so
1104         * we can handle it..
1105         */
1106good_area:
1107        write = error_code & PF_WRITE;
1108
1109        if (unlikely(access_error(error_code, write, vma))) {
1110                bad_area_access_error(regs, error_code, address);
1111                return;
1112        }
1113
1114        /*
1115         * If for any reason at all we couldn't handle the fault,
1116         * make sure we exit gracefully rather than endlessly redo
1117         * the fault:
1118         */
1119        fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
1120
1121        if (unlikely(fault & VM_FAULT_ERROR)) {
1122                mm_fault_error(regs, error_code, address, fault);
1123                return;
1124        }
1125
1126        if (fault & VM_FAULT_MAJOR) {
1127                tsk->maj_flt++;
1128                perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1129                                     regs, address);
1130        } else {
1131                tsk->min_flt++;
1132                perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1133                                     regs, address);
1134        }
1135
1136        check_v8086_mode(regs, address, tsk);
1137
1138        up_read(&mm->mmap_sem);
1139}
1140