linux/arch/x86/mm/hugetlbpage.c
<<
>>
Prefs
   1/*
   2 * IA-32 Huge TLB Page Support for Kernel.
   3 *
   4 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
   5 */
   6
   7#include <linux/init.h>
   8#include <linux/fs.h>
   9#include <linux/mm.h>
  10#include <linux/hugetlb.h>
  11#include <linux/pagemap.h>
  12#include <linux/slab.h>
  13#include <linux/err.h>
  14#include <linux/sysctl.h>
  15#include <asm/mman.h>
  16#include <asm/tlb.h>
  17#include <asm/tlbflush.h>
  18#include <asm/pgalloc.h>
  19
  20static unsigned long page_table_shareable(struct vm_area_struct *svma,
  21                                struct vm_area_struct *vma,
  22                                unsigned long addr, pgoff_t idx)
  23{
  24        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
  25                                svma->vm_start;
  26        unsigned long sbase = saddr & PUD_MASK;
  27        unsigned long s_end = sbase + PUD_SIZE;
  28
  29        /* Allow segments to share if only one is marked locked */
  30        unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
  31        unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
  32
  33        /*
  34         * match the virtual addresses, permission and the alignment of the
  35         * page table page.
  36         */
  37        if (pmd_index(addr) != pmd_index(saddr) ||
  38            vm_flags != svm_flags ||
  39            sbase < svma->vm_start || svma->vm_end < s_end)
  40                return 0;
  41
  42        return saddr;
  43}
  44
  45static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
  46{
  47        unsigned long base = addr & PUD_MASK;
  48        unsigned long end = base + PUD_SIZE;
  49
  50        /*
  51         * check on proper vm_flags and page table alignment
  52         */
  53        if (vma->vm_flags & VM_MAYSHARE &&
  54            vma->vm_start <= base && end <= vma->vm_end)
  55                return 1;
  56        return 0;
  57}
  58
  59/*
  60 * search for a shareable pmd page for hugetlb.
  61 */
  62static void huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  63{
  64        struct vm_area_struct *vma = find_vma(mm, addr);
  65        struct address_space *mapping = vma->vm_file->f_mapping;
  66        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  67                        vma->vm_pgoff;
  68        struct prio_tree_iter iter;
  69        struct vm_area_struct *svma;
  70        unsigned long saddr;
  71        pte_t *spte = NULL;
  72
  73        if (!vma_shareable(vma, addr))
  74                return;
  75
  76        spin_lock(&mapping->i_mmap_lock);
  77        vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) {
  78                if (svma == vma)
  79                        continue;
  80
  81                saddr = page_table_shareable(svma, vma, addr, idx);
  82                if (saddr) {
  83                        spte = huge_pte_offset(svma->vm_mm, saddr);
  84                        if (spte) {
  85                                get_page(virt_to_page(spte));
  86                                break;
  87                        }
  88                }
  89        }
  90
  91        if (!spte)
  92                goto out;
  93
  94        spin_lock(&mm->page_table_lock);
  95        if (pud_none(*pud))
  96                pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK));
  97        else
  98                put_page(virt_to_page(spte));
  99        spin_unlock(&mm->page_table_lock);
 100out:
 101        spin_unlock(&mapping->i_mmap_lock);
 102}
 103
 104/*
 105 * unmap huge page backed by shared pte.
 106 *
 107 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 108 * indicated by page_count > 1, unmap is achieved by clearing pud and
 109 * decrementing the ref count. If count == 1, the pte page is not shared.
 110 *
 111 * called with vma->vm_mm->page_table_lock held.
 112 *
 113 * returns: 1 successfully unmapped a shared pte page
 114 *          0 the underlying pte page is not shared, or it is the last user
 115 */
 116int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 117{
 118        pgd_t *pgd = pgd_offset(mm, *addr);
 119        pud_t *pud = pud_offset(pgd, *addr);
 120
 121        BUG_ON(page_count(virt_to_page(ptep)) == 0);
 122        if (page_count(virt_to_page(ptep)) == 1)
 123                return 0;
 124
 125        pud_clear(pud);
 126        put_page(virt_to_page(ptep));
 127        *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
 128        return 1;
 129}
 130
 131pte_t *huge_pte_alloc(struct mm_struct *mm,
 132                        unsigned long addr, unsigned long sz)
 133{
 134        pgd_t *pgd;
 135        pud_t *pud;
 136        pte_t *pte = NULL;
 137
 138        pgd = pgd_offset(mm, addr);
 139        pud = pud_alloc(mm, pgd, addr);
 140        if (pud) {
 141                if (sz == PUD_SIZE) {
 142                        pte = (pte_t *)pud;
 143                } else {
 144                        BUG_ON(sz != PMD_SIZE);
 145                        if (pud_none(*pud))
 146                                huge_pmd_share(mm, addr, pud);
 147                        pte = (pte_t *) pmd_alloc(mm, pud, addr);
 148                }
 149        }
 150        BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
 151
 152        return pte;
 153}
 154
 155pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 156{
 157        pgd_t *pgd;
 158        pud_t *pud;
 159        pmd_t *pmd = NULL;
 160
 161        pgd = pgd_offset(mm, addr);
 162        if (pgd_present(*pgd)) {
 163                pud = pud_offset(pgd, addr);
 164                if (pud_present(*pud)) {
 165                        if (pud_large(*pud))
 166                                return (pte_t *)pud;
 167                        pmd = pmd_offset(pud, addr);
 168                }
 169        }
 170        return (pte_t *) pmd;
 171}
 172
 173#if 0   /* This is just for testing */
 174struct page *
 175follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
 176{
 177        unsigned long start = address;
 178        int length = 1;
 179        int nr;
 180        struct page *page;
 181        struct vm_area_struct *vma;
 182
 183        vma = find_vma(mm, addr);
 184        if (!vma || !is_vm_hugetlb_page(vma))
 185                return ERR_PTR(-EINVAL);
 186
 187        pte = huge_pte_offset(mm, address);
 188
 189        /* hugetlb should be locked, and hence, prefaulted */
 190        WARN_ON(!pte || pte_none(*pte));
 191
 192        page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
 193
 194        WARN_ON(!PageHead(page));
 195
 196        return page;
 197}
 198
 199int pmd_huge(pmd_t pmd)
 200{
 201        return 0;
 202}
 203
 204int pud_huge(pud_t pud)
 205{
 206        return 0;
 207}
 208
 209struct page *
 210follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 211                pmd_t *pmd, int write)
 212{
 213        return NULL;
 214}
 215
 216#else
 217
 218struct page *
 219follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
 220{
 221        return ERR_PTR(-EINVAL);
 222}
 223
 224int pmd_huge(pmd_t pmd)
 225{
 226        return !!(pmd_val(pmd) & _PAGE_PSE);
 227}
 228
 229int pud_huge(pud_t pud)
 230{
 231        return !!(pud_val(pud) & _PAGE_PSE);
 232}
 233
 234struct page *
 235follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 236                pmd_t *pmd, int write)
 237{
 238        struct page *page;
 239
 240        page = pte_page(*(pte_t *)pmd);
 241        if (page)
 242                page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
 243        return page;
 244}
 245
 246struct page *
 247follow_huge_pud(struct mm_struct *mm, unsigned long address,
 248                pud_t *pud, int write)
 249{
 250        struct page *page;
 251
 252        page = pte_page(*(pte_t *)pud);
 253        if (page)
 254                page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
 255        return page;
 256}
 257
 258#endif
 259
 260/* x86_64 also uses this file */
 261
 262#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 263static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
 264                unsigned long addr, unsigned long len,
 265                unsigned long pgoff, unsigned long flags)
 266{
 267        struct hstate *h = hstate_file(file);
 268        struct mm_struct *mm = current->mm;
 269        struct vm_area_struct *vma;
 270        unsigned long start_addr;
 271
 272        if (len > mm->cached_hole_size) {
 273                start_addr = mm->free_area_cache;
 274        } else {
 275                start_addr = TASK_UNMAPPED_BASE;
 276                mm->cached_hole_size = 0;
 277        }
 278
 279full_search:
 280        addr = ALIGN(start_addr, huge_page_size(h));
 281
 282        for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
 283                /* At this point:  (!vma || addr < vma->vm_end). */
 284                if (TASK_SIZE - len < addr) {
 285                        /*
 286                         * Start a new search - just in case we missed
 287                         * some holes.
 288                         */
 289                        if (start_addr != TASK_UNMAPPED_BASE) {
 290                                start_addr = TASK_UNMAPPED_BASE;
 291                                mm->cached_hole_size = 0;
 292                                goto full_search;
 293                        }
 294                        return -ENOMEM;
 295                }
 296                if (!vma || addr + len <= vma->vm_start) {
 297                        mm->free_area_cache = addr + len;
 298                        return addr;
 299                }
 300                if (addr + mm->cached_hole_size < vma->vm_start)
 301                        mm->cached_hole_size = vma->vm_start - addr;
 302                addr = ALIGN(vma->vm_end, huge_page_size(h));
 303        }
 304}
 305
 306static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
 307                unsigned long addr0, unsigned long len,
 308                unsigned long pgoff, unsigned long flags)
 309{
 310        struct hstate *h = hstate_file(file);
 311        struct mm_struct *mm = current->mm;
 312        struct vm_area_struct *vma, *prev_vma;
 313        unsigned long base = mm->mmap_base, addr = addr0;
 314        unsigned long largest_hole = mm->cached_hole_size;
 315        int first_time = 1;
 316
 317        /* don't allow allocations above current base */
 318        if (mm->free_area_cache > base)
 319                mm->free_area_cache = base;
 320
 321        if (len <= largest_hole) {
 322                largest_hole = 0;
 323                mm->free_area_cache  = base;
 324        }
 325try_again:
 326        /* make sure it can fit in the remaining address space */
 327        if (mm->free_area_cache < len)
 328                goto fail;
 329
 330        /* either no address requested or cant fit in requested address hole */
 331        addr = (mm->free_area_cache - len) & huge_page_mask(h);
 332        do {
 333                /*
 334                 * Lookup failure means no vma is above this address,
 335                 * i.e. return with success:
 336                 */
 337                if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
 338                        return addr;
 339
 340                /*
 341                 * new region fits between prev_vma->vm_end and
 342                 * vma->vm_start, use it:
 343                 */
 344                if (addr + len <= vma->vm_start &&
 345                            (!prev_vma || (addr >= prev_vma->vm_end))) {
 346                        /* remember the address as a hint for next time */
 347                        mm->cached_hole_size = largest_hole;
 348                        return (mm->free_area_cache = addr);
 349                } else {
 350                        /* pull free_area_cache down to the first hole */
 351                        if (mm->free_area_cache == vma->vm_end) {
 352                                mm->free_area_cache = vma->vm_start;
 353                                mm->cached_hole_size = largest_hole;
 354                        }
 355                }
 356
 357                /* remember the largest hole we saw so far */
 358                if (addr + largest_hole < vma->vm_start)
 359                        largest_hole = vma->vm_start - addr;
 360
 361                /* try just below the current vma->vm_start */
 362                addr = (vma->vm_start - len) & huge_page_mask(h);
 363        } while (len <= vma->vm_start);
 364
 365fail:
 366        /*
 367         * if hint left us with no space for the requested
 368         * mapping then try again:
 369         */
 370        if (first_time) {
 371                mm->free_area_cache = base;
 372                largest_hole = 0;
 373                first_time = 0;
 374                goto try_again;
 375        }
 376        /*
 377         * A failed mmap() very likely causes application failure,
 378         * so fall back to the bottom-up function here. This scenario
 379         * can happen with large stack limits and large mmap()
 380         * allocations.
 381         */
 382        mm->free_area_cache = TASK_UNMAPPED_BASE;
 383        mm->cached_hole_size = ~0UL;
 384        addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
 385                        len, pgoff, flags);
 386
 387        /*
 388         * Restore the topdown base:
 389         */
 390        mm->free_area_cache = base;
 391        mm->cached_hole_size = ~0UL;
 392
 393        return addr;
 394}
 395
 396unsigned long
 397hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 398                unsigned long len, unsigned long pgoff, unsigned long flags)
 399{
 400        struct hstate *h = hstate_file(file);
 401        struct mm_struct *mm = current->mm;
 402        struct vm_area_struct *vma;
 403
 404        if (len & ~huge_page_mask(h))
 405                return -EINVAL;
 406        if (len > TASK_SIZE)
 407                return -ENOMEM;
 408
 409        if (flags & MAP_FIXED) {
 410                if (prepare_hugepage_range(file, addr, len))
 411                        return -EINVAL;
 412                return addr;
 413        }
 414
 415        if (addr) {
 416                addr = ALIGN(addr, huge_page_size(h));
 417                vma = find_vma(mm, addr);
 418                if (TASK_SIZE - len >= addr &&
 419                    (!vma || addr + len <= vma->vm_start))
 420                        return addr;
 421        }
 422        if (mm->get_unmapped_area == arch_get_unmapped_area)
 423                return hugetlb_get_unmapped_area_bottomup(file, addr, len,
 424                                pgoff, flags);
 425        else
 426                return hugetlb_get_unmapped_area_topdown(file, addr, len,
 427                                pgoff, flags);
 428}
 429
 430#endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
 431
 432#ifdef CONFIG_X86_64
 433static __init int setup_hugepagesz(char *opt)
 434{
 435        unsigned long ps = memparse(opt, &opt);
 436        if (ps == PMD_SIZE) {
 437                hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
 438        } else if (ps == PUD_SIZE && cpu_has_gbpages) {
 439                hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
 440        } else {
 441                printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
 442                        ps >> 20);
 443                return 0;
 444        }
 445        return 1;
 446}
 447__setup("hugepagesz=", setup_hugepagesz);
 448#endif
 449