linux/arch/x86/mm/kmemcheck/error.c
<<
>>
Prefs
   1#include <linux/interrupt.h>
   2#include <linux/kdebug.h>
   3#include <linux/kmemcheck.h>
   4#include <linux/kernel.h>
   5#include <linux/types.h>
   6#include <linux/ptrace.h>
   7#include <linux/stacktrace.h>
   8#include <linux/string.h>
   9
  10#include "error.h"
  11#include "shadow.h"
  12
  13enum kmemcheck_error_type {
  14        KMEMCHECK_ERROR_INVALID_ACCESS,
  15        KMEMCHECK_ERROR_BUG,
  16};
  17
  18#define SHADOW_COPY_SIZE (1 << CONFIG_KMEMCHECK_SHADOW_COPY_SHIFT)
  19
  20struct kmemcheck_error {
  21        enum kmemcheck_error_type type;
  22
  23        union {
  24                /* KMEMCHECK_ERROR_INVALID_ACCESS */
  25                struct {
  26                        /* Kind of access that caused the error */
  27                        enum kmemcheck_shadow state;
  28                        /* Address and size of the erroneous read */
  29                        unsigned long   address;
  30                        unsigned int    size;
  31                };
  32        };
  33
  34        struct pt_regs          regs;
  35        struct stack_trace      trace;
  36        unsigned long           trace_entries[32];
  37
  38        /* We compress it to a char. */
  39        unsigned char           shadow_copy[SHADOW_COPY_SIZE];
  40        unsigned char           memory_copy[SHADOW_COPY_SIZE];
  41};
  42
  43/*
  44 * Create a ring queue of errors to output. We can't call printk() directly
  45 * from the kmemcheck traps, since this may call the console drivers and
  46 * result in a recursive fault.
  47 */
  48static struct kmemcheck_error error_fifo[CONFIG_KMEMCHECK_QUEUE_SIZE];
  49static unsigned int error_count;
  50static unsigned int error_rd;
  51static unsigned int error_wr;
  52static unsigned int error_missed_count;
  53
  54static struct kmemcheck_error *error_next_wr(void)
  55{
  56        struct kmemcheck_error *e;
  57
  58        if (error_count == ARRAY_SIZE(error_fifo)) {
  59                ++error_missed_count;
  60                return NULL;
  61        }
  62
  63        e = &error_fifo[error_wr];
  64        if (++error_wr == ARRAY_SIZE(error_fifo))
  65                error_wr = 0;
  66        ++error_count;
  67        return e;
  68}
  69
  70static struct kmemcheck_error *error_next_rd(void)
  71{
  72        struct kmemcheck_error *e;
  73
  74        if (error_count == 0)
  75                return NULL;
  76
  77        e = &error_fifo[error_rd];
  78        if (++error_rd == ARRAY_SIZE(error_fifo))
  79                error_rd = 0;
  80        --error_count;
  81        return e;
  82}
  83
  84void kmemcheck_error_recall(void)
  85{
  86        static const char *desc[] = {
  87                [KMEMCHECK_SHADOW_UNALLOCATED]          = "unallocated",
  88                [KMEMCHECK_SHADOW_UNINITIALIZED]        = "uninitialized",
  89                [KMEMCHECK_SHADOW_INITIALIZED]          = "initialized",
  90                [KMEMCHECK_SHADOW_FREED]                = "freed",
  91        };
  92
  93        static const char short_desc[] = {
  94                [KMEMCHECK_SHADOW_UNALLOCATED]          = 'a',
  95                [KMEMCHECK_SHADOW_UNINITIALIZED]        = 'u',
  96                [KMEMCHECK_SHADOW_INITIALIZED]          = 'i',
  97                [KMEMCHECK_SHADOW_FREED]                = 'f',
  98        };
  99
 100        struct kmemcheck_error *e;
 101        unsigned int i;
 102
 103        e = error_next_rd();
 104        if (!e)
 105                return;
 106
 107        switch (e->type) {
 108        case KMEMCHECK_ERROR_INVALID_ACCESS:
 109                printk(KERN_ERR  "WARNING: kmemcheck: Caught %d-bit read "
 110                        "from %s memory (%p)\n",
 111                        8 * e->size, e->state < ARRAY_SIZE(desc) ?
 112                                desc[e->state] : "(invalid shadow state)",
 113                        (void *) e->address);
 114
 115                printk(KERN_INFO);
 116                for (i = 0; i < SHADOW_COPY_SIZE; ++i)
 117                        printk("%02x", e->memory_copy[i]);
 118                printk("\n");
 119
 120                printk(KERN_INFO);
 121                for (i = 0; i < SHADOW_COPY_SIZE; ++i) {
 122                        if (e->shadow_copy[i] < ARRAY_SIZE(short_desc))
 123                                printk(" %c", short_desc[e->shadow_copy[i]]);
 124                        else
 125                                printk(" ?");
 126                }
 127                printk("\n");
 128                printk(KERN_INFO "%*c\n", 2 + 2
 129                        * (int) (e->address & (SHADOW_COPY_SIZE - 1)), '^');
 130                break;
 131        case KMEMCHECK_ERROR_BUG:
 132                printk(KERN_EMERG "ERROR: kmemcheck: Fatal error\n");
 133                break;
 134        }
 135
 136        __show_regs(&e->regs, 1);
 137        print_stack_trace(&e->trace, 0);
 138}
 139
 140static void do_wakeup(unsigned long data)
 141{
 142        while (error_count > 0)
 143                kmemcheck_error_recall();
 144
 145        if (error_missed_count > 0) {
 146                printk(KERN_WARNING "kmemcheck: Lost %d error reports because "
 147                        "the queue was too small\n", error_missed_count);
 148                error_missed_count = 0;
 149        }
 150}
 151
 152static DECLARE_TASKLET(kmemcheck_tasklet, &do_wakeup, 0);
 153
 154/*
 155 * Save the context of an error report.
 156 */
 157void kmemcheck_error_save(enum kmemcheck_shadow state,
 158        unsigned long address, unsigned int size, struct pt_regs *regs)
 159{
 160        static unsigned long prev_ip;
 161
 162        struct kmemcheck_error *e;
 163        void *shadow_copy;
 164        void *memory_copy;
 165
 166        /* Don't report several adjacent errors from the same EIP. */
 167        if (regs->ip == prev_ip)
 168                return;
 169        prev_ip = regs->ip;
 170
 171        e = error_next_wr();
 172        if (!e)
 173                return;
 174
 175        e->type = KMEMCHECK_ERROR_INVALID_ACCESS;
 176
 177        e->state = state;
 178        e->address = address;
 179        e->size = size;
 180
 181        /* Save regs */
 182        memcpy(&e->regs, regs, sizeof(*regs));
 183
 184        /* Save stack trace */
 185        e->trace.nr_entries = 0;
 186        e->trace.entries = e->trace_entries;
 187        e->trace.max_entries = ARRAY_SIZE(e->trace_entries);
 188        e->trace.skip = 0;
 189        save_stack_trace_bp(&e->trace, regs->bp);
 190
 191        /* Round address down to nearest 16 bytes */
 192        shadow_copy = kmemcheck_shadow_lookup(address
 193                & ~(SHADOW_COPY_SIZE - 1));
 194        BUG_ON(!shadow_copy);
 195
 196        memcpy(e->shadow_copy, shadow_copy, SHADOW_COPY_SIZE);
 197
 198        kmemcheck_show_addr(address);
 199        memory_copy = (void *) (address & ~(SHADOW_COPY_SIZE - 1));
 200        memcpy(e->memory_copy, memory_copy, SHADOW_COPY_SIZE);
 201        kmemcheck_hide_addr(address);
 202
 203        tasklet_hi_schedule_first(&kmemcheck_tasklet);
 204}
 205
 206/*
 207 * Save the context of a kmemcheck bug.
 208 */
 209void kmemcheck_error_save_bug(struct pt_regs *regs)
 210{
 211        struct kmemcheck_error *e;
 212
 213        e = error_next_wr();
 214        if (!e)
 215                return;
 216
 217        e->type = KMEMCHECK_ERROR_BUG;
 218
 219        memcpy(&e->regs, regs, sizeof(*regs));
 220
 221        e->trace.nr_entries = 0;
 222        e->trace.entries = e->trace_entries;
 223        e->trace.max_entries = ARRAY_SIZE(e->trace_entries);
 224        e->trace.skip = 1;
 225        save_stack_trace(&e->trace);
 226
 227        tasklet_hi_schedule_first(&kmemcheck_tasklet);
 228}
 229