linux/arch/x86/mm/kmmio.c
<<
>>
Prefs
   1/* Support for MMIO probes.
   2 * Benfit many code from kprobes
   3 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
   4 *     2007 Alexander Eichner
   5 *     2008 Pekka Paalanen <pq@iki.fi>
   6 */
   7
   8#include <linux/list.h>
   9#include <linux/rculist.h>
  10#include <linux/spinlock.h>
  11#include <linux/hash.h>
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/uaccess.h>
  16#include <linux/ptrace.h>
  17#include <linux/preempt.h>
  18#include <linux/percpu.h>
  19#include <linux/kdebug.h>
  20#include <linux/mutex.h>
  21#include <linux/io.h>
  22#include <asm/cacheflush.h>
  23#include <asm/tlbflush.h>
  24#include <linux/errno.h>
  25#include <asm/debugreg.h>
  26#include <linux/mmiotrace.h>
  27
  28#define KMMIO_PAGE_HASH_BITS 4
  29#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
  30
  31struct kmmio_fault_page {
  32        struct list_head list;
  33        struct kmmio_fault_page *release_next;
  34        unsigned long page; /* location of the fault page */
  35        pteval_t old_presence; /* page presence prior to arming */
  36        bool armed;
  37
  38        /*
  39         * Number of times this page has been registered as a part
  40         * of a probe. If zero, page is disarmed and this may be freed.
  41         * Used only by writers (RCU) and post_kmmio_handler().
  42         * Protected by kmmio_lock, when linked into kmmio_page_table.
  43         */
  44        int count;
  45};
  46
  47struct kmmio_delayed_release {
  48        struct rcu_head rcu;
  49        struct kmmio_fault_page *release_list;
  50};
  51
  52struct kmmio_context {
  53        struct kmmio_fault_page *fpage;
  54        struct kmmio_probe *probe;
  55        unsigned long saved_flags;
  56        unsigned long addr;
  57        int active;
  58};
  59
  60static DEFINE_SPINLOCK(kmmio_lock);
  61
  62/* Protected by kmmio_lock */
  63unsigned int kmmio_count;
  64
  65/* Read-protected by RCU, write-protected by kmmio_lock. */
  66static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
  67static LIST_HEAD(kmmio_probes);
  68
  69static struct list_head *kmmio_page_list(unsigned long page)
  70{
  71        return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)];
  72}
  73
  74/* Accessed per-cpu */
  75static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
  76
  77/*
  78 * this is basically a dynamic stabbing problem:
  79 * Could use the existing prio tree code or
  80 * Possible better implementations:
  81 * The Interval Skip List: A Data Structure for Finding All Intervals That
  82 * Overlap a Point (might be simple)
  83 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
  84 */
  85/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
  86static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
  87{
  88        struct kmmio_probe *p;
  89        list_for_each_entry_rcu(p, &kmmio_probes, list) {
  90                if (addr >= p->addr && addr < (p->addr + p->len))
  91                        return p;
  92        }
  93        return NULL;
  94}
  95
  96/* You must be holding RCU read lock. */
  97static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page)
  98{
  99        struct list_head *head;
 100        struct kmmio_fault_page *f;
 101
 102        page &= PAGE_MASK;
 103        head = kmmio_page_list(page);
 104        list_for_each_entry_rcu(f, head, list) {
 105                if (f->page == page)
 106                        return f;
 107        }
 108        return NULL;
 109}
 110
 111static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
 112{
 113        pmdval_t v = pmd_val(*pmd);
 114        if (clear) {
 115                *old = v & _PAGE_PRESENT;
 116                v &= ~_PAGE_PRESENT;
 117        } else  /* presume this has been called with clear==true previously */
 118                v |= *old;
 119        set_pmd(pmd, __pmd(v));
 120}
 121
 122static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
 123{
 124        pteval_t v = pte_val(*pte);
 125        if (clear) {
 126                *old = v & _PAGE_PRESENT;
 127                v &= ~_PAGE_PRESENT;
 128        } else  /* presume this has been called with clear==true previously */
 129                v |= *old;
 130        set_pte_atomic(pte, __pte(v));
 131}
 132
 133static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
 134{
 135        unsigned int level;
 136        pte_t *pte = lookup_address(f->page, &level);
 137
 138        if (!pte) {
 139                pr_err("kmmio: no pte for page 0x%08lx\n", f->page);
 140                return -1;
 141        }
 142
 143        switch (level) {
 144        case PG_LEVEL_2M:
 145                clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
 146                break;
 147        case PG_LEVEL_4K:
 148                clear_pte_presence(pte, clear, &f->old_presence);
 149                break;
 150        default:
 151                pr_err("kmmio: unexpected page level 0x%x.\n", level);
 152                return -1;
 153        }
 154
 155        __flush_tlb_one(f->page);
 156        return 0;
 157}
 158
 159/*
 160 * Mark the given page as not present. Access to it will trigger a fault.
 161 *
 162 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
 163 * protection is ignored here. RCU read lock is assumed held, so the struct
 164 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
 165 * that double arming the same virtual address (page) cannot occur.
 166 *
 167 * Double disarming on the other hand is allowed, and may occur when a fault
 168 * and mmiotrace shutdown happen simultaneously.
 169 */
 170static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
 171{
 172        int ret;
 173        WARN_ONCE(f->armed, KERN_ERR "kmmio page already armed.\n");
 174        if (f->armed) {
 175                pr_warning("kmmio double-arm: page 0x%08lx, ref %d, old %d\n",
 176                                        f->page, f->count, !!f->old_presence);
 177        }
 178        ret = clear_page_presence(f, true);
 179        WARN_ONCE(ret < 0, KERN_ERR "kmmio arming 0x%08lx failed.\n", f->page);
 180        f->armed = true;
 181        return ret;
 182}
 183
 184/** Restore the given page to saved presence state. */
 185static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
 186{
 187        int ret = clear_page_presence(f, false);
 188        WARN_ONCE(ret < 0,
 189                        KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page);
 190        f->armed = false;
 191}
 192
 193/*
 194 * This is being called from do_page_fault().
 195 *
 196 * We may be in an interrupt or a critical section. Also prefecthing may
 197 * trigger a page fault. We may be in the middle of process switch.
 198 * We cannot take any locks, because we could be executing especially
 199 * within a kmmio critical section.
 200 *
 201 * Local interrupts are disabled, so preemption cannot happen.
 202 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
 203 */
 204/*
 205 * Interrupts are disabled on entry as trap3 is an interrupt gate
 206 * and they remain disabled thorough out this function.
 207 */
 208int kmmio_handler(struct pt_regs *regs, unsigned long addr)
 209{
 210        struct kmmio_context *ctx;
 211        struct kmmio_fault_page *faultpage;
 212        int ret = 0; /* default to fault not handled */
 213
 214        /*
 215         * Preemption is now disabled to prevent process switch during
 216         * single stepping. We can only handle one active kmmio trace
 217         * per cpu, so ensure that we finish it before something else
 218         * gets to run. We also hold the RCU read lock over single
 219         * stepping to avoid looking up the probe and kmmio_fault_page
 220         * again.
 221         */
 222        preempt_disable();
 223        rcu_read_lock();
 224
 225        faultpage = get_kmmio_fault_page(addr);
 226        if (!faultpage) {
 227                /*
 228                 * Either this page fault is not caused by kmmio, or
 229                 * another CPU just pulled the kmmio probe from under
 230                 * our feet. The latter case should not be possible.
 231                 */
 232                goto no_kmmio;
 233        }
 234
 235        ctx = &get_cpu_var(kmmio_ctx);
 236        if (ctx->active) {
 237                if (addr == ctx->addr) {
 238                        /*
 239                         * A second fault on the same page means some other
 240                         * condition needs handling by do_page_fault(), the
 241                         * page really not being present is the most common.
 242                         */
 243                        pr_debug("kmmio: secondary hit for 0x%08lx CPU %d.\n",
 244                                        addr, smp_processor_id());
 245
 246                        if (!faultpage->old_presence)
 247                                pr_info("kmmio: unexpected secondary hit for "
 248                                        "address 0x%08lx on CPU %d.\n", addr,
 249                                        smp_processor_id());
 250                } else {
 251                        /*
 252                         * Prevent overwriting already in-flight context.
 253                         * This should not happen, let's hope disarming at
 254                         * least prevents a panic.
 255                         */
 256                        pr_emerg("kmmio: recursive probe hit on CPU %d, "
 257                                        "for address 0x%08lx. Ignoring.\n",
 258                                        smp_processor_id(), addr);
 259                        pr_emerg("kmmio: previous hit was at 0x%08lx.\n",
 260                                                ctx->addr);
 261                        disarm_kmmio_fault_page(faultpage);
 262                }
 263                goto no_kmmio_ctx;
 264        }
 265        ctx->active++;
 266
 267        ctx->fpage = faultpage;
 268        ctx->probe = get_kmmio_probe(addr);
 269        ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
 270        ctx->addr = addr;
 271
 272        if (ctx->probe && ctx->probe->pre_handler)
 273                ctx->probe->pre_handler(ctx->probe, regs, addr);
 274
 275        /*
 276         * Enable single-stepping and disable interrupts for the faulting
 277         * context. Local interrupts must not get enabled during stepping.
 278         */
 279        regs->flags |= X86_EFLAGS_TF;
 280        regs->flags &= ~X86_EFLAGS_IF;
 281
 282        /* Now we set present bit in PTE and single step. */
 283        disarm_kmmio_fault_page(ctx->fpage);
 284
 285        /*
 286         * If another cpu accesses the same page while we are stepping,
 287         * the access will not be caught. It will simply succeed and the
 288         * only downside is we lose the event. If this becomes a problem,
 289         * the user should drop to single cpu before tracing.
 290         */
 291
 292        put_cpu_var(kmmio_ctx);
 293        return 1; /* fault handled */
 294
 295no_kmmio_ctx:
 296        put_cpu_var(kmmio_ctx);
 297no_kmmio:
 298        rcu_read_unlock();
 299        preempt_enable_no_resched();
 300        return ret;
 301}
 302
 303/*
 304 * Interrupts are disabled on entry as trap1 is an interrupt gate
 305 * and they remain disabled thorough out this function.
 306 * This must always get called as the pair to kmmio_handler().
 307 */
 308static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
 309{
 310        int ret = 0;
 311        struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
 312
 313        if (!ctx->active) {
 314                /*
 315                 * debug traps without an active context are due to either
 316                 * something external causing them (f.e. using a debugger while
 317                 * mmio tracing enabled), or erroneous behaviour
 318                 */
 319                pr_warning("kmmio: unexpected debug trap on CPU %d.\n",
 320                                                        smp_processor_id());
 321                goto out;
 322        }
 323
 324        if (ctx->probe && ctx->probe->post_handler)
 325                ctx->probe->post_handler(ctx->probe, condition, regs);
 326
 327        /* Prevent racing against release_kmmio_fault_page(). */
 328        spin_lock(&kmmio_lock);
 329        if (ctx->fpage->count)
 330                arm_kmmio_fault_page(ctx->fpage);
 331        spin_unlock(&kmmio_lock);
 332
 333        regs->flags &= ~X86_EFLAGS_TF;
 334        regs->flags |= ctx->saved_flags;
 335
 336        /* These were acquired in kmmio_handler(). */
 337        ctx->active--;
 338        BUG_ON(ctx->active);
 339        rcu_read_unlock();
 340        preempt_enable_no_resched();
 341
 342        /*
 343         * if somebody else is singlestepping across a probe point, flags
 344         * will have TF set, in which case, continue the remaining processing
 345         * of do_debug, as if this is not a probe hit.
 346         */
 347        if (!(regs->flags & X86_EFLAGS_TF))
 348                ret = 1;
 349out:
 350        put_cpu_var(kmmio_ctx);
 351        return ret;
 352}
 353
 354/* You must be holding kmmio_lock. */
 355static int add_kmmio_fault_page(unsigned long page)
 356{
 357        struct kmmio_fault_page *f;
 358
 359        page &= PAGE_MASK;
 360        f = get_kmmio_fault_page(page);
 361        if (f) {
 362                if (!f->count)
 363                        arm_kmmio_fault_page(f);
 364                f->count++;
 365                return 0;
 366        }
 367
 368        f = kzalloc(sizeof(*f), GFP_ATOMIC);
 369        if (!f)
 370                return -1;
 371
 372        f->count = 1;
 373        f->page = page;
 374
 375        if (arm_kmmio_fault_page(f)) {
 376                kfree(f);
 377                return -1;
 378        }
 379
 380        list_add_rcu(&f->list, kmmio_page_list(f->page));
 381
 382        return 0;
 383}
 384
 385/* You must be holding kmmio_lock. */
 386static void release_kmmio_fault_page(unsigned long page,
 387                                struct kmmio_fault_page **release_list)
 388{
 389        struct kmmio_fault_page *f;
 390
 391        page &= PAGE_MASK;
 392        f = get_kmmio_fault_page(page);
 393        if (!f)
 394                return;
 395
 396        f->count--;
 397        BUG_ON(f->count < 0);
 398        if (!f->count) {
 399                disarm_kmmio_fault_page(f);
 400                f->release_next = *release_list;
 401                *release_list = f;
 402        }
 403}
 404
 405/*
 406 * With page-unaligned ioremaps, one or two armed pages may contain
 407 * addresses from outside the intended mapping. Events for these addresses
 408 * are currently silently dropped. The events may result only from programming
 409 * mistakes by accessing addresses before the beginning or past the end of a
 410 * mapping.
 411 */
 412int register_kmmio_probe(struct kmmio_probe *p)
 413{
 414        unsigned long flags;
 415        int ret = 0;
 416        unsigned long size = 0;
 417        const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
 418
 419        spin_lock_irqsave(&kmmio_lock, flags);
 420        if (get_kmmio_probe(p->addr)) {
 421                ret = -EEXIST;
 422                goto out;
 423        }
 424        kmmio_count++;
 425        list_add_rcu(&p->list, &kmmio_probes);
 426        while (size < size_lim) {
 427                if (add_kmmio_fault_page(p->addr + size))
 428                        pr_err("kmmio: Unable to set page fault.\n");
 429                size += PAGE_SIZE;
 430        }
 431out:
 432        spin_unlock_irqrestore(&kmmio_lock, flags);
 433        /*
 434         * XXX: What should I do here?
 435         * Here was a call to global_flush_tlb(), but it does not exist
 436         * anymore. It seems it's not needed after all.
 437         */
 438        return ret;
 439}
 440EXPORT_SYMBOL(register_kmmio_probe);
 441
 442static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
 443{
 444        struct kmmio_delayed_release *dr = container_of(
 445                                                head,
 446                                                struct kmmio_delayed_release,
 447                                                rcu);
 448        struct kmmio_fault_page *f = dr->release_list;
 449        while (f) {
 450                struct kmmio_fault_page *next = f->release_next;
 451                BUG_ON(f->count);
 452                kfree(f);
 453                f = next;
 454        }
 455        kfree(dr);
 456}
 457
 458static void remove_kmmio_fault_pages(struct rcu_head *head)
 459{
 460        struct kmmio_delayed_release *dr =
 461                container_of(head, struct kmmio_delayed_release, rcu);
 462        struct kmmio_fault_page *f = dr->release_list;
 463        struct kmmio_fault_page **prevp = &dr->release_list;
 464        unsigned long flags;
 465
 466        spin_lock_irqsave(&kmmio_lock, flags);
 467        while (f) {
 468                if (!f->count) {
 469                        list_del_rcu(&f->list);
 470                        prevp = &f->release_next;
 471                } else {
 472                        *prevp = f->release_next;
 473                }
 474                f = f->release_next;
 475        }
 476        spin_unlock_irqrestore(&kmmio_lock, flags);
 477
 478        /* This is the real RCU destroy call. */
 479        call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
 480}
 481
 482/*
 483 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
 484 * sure that the callbacks will not be called anymore. Only after that
 485 * you may actually release your struct kmmio_probe.
 486 *
 487 * Unregistering a kmmio fault page has three steps:
 488 * 1. release_kmmio_fault_page()
 489 *    Disarm the page, wait a grace period to let all faults finish.
 490 * 2. remove_kmmio_fault_pages()
 491 *    Remove the pages from kmmio_page_table.
 492 * 3. rcu_free_kmmio_fault_pages()
 493 *    Actally free the kmmio_fault_page structs as with RCU.
 494 */
 495void unregister_kmmio_probe(struct kmmio_probe *p)
 496{
 497        unsigned long flags;
 498        unsigned long size = 0;
 499        const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
 500        struct kmmio_fault_page *release_list = NULL;
 501        struct kmmio_delayed_release *drelease;
 502
 503        spin_lock_irqsave(&kmmio_lock, flags);
 504        while (size < size_lim) {
 505                release_kmmio_fault_page(p->addr + size, &release_list);
 506                size += PAGE_SIZE;
 507        }
 508        list_del_rcu(&p->list);
 509        kmmio_count--;
 510        spin_unlock_irqrestore(&kmmio_lock, flags);
 511
 512        drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
 513        if (!drelease) {
 514                pr_crit("kmmio: leaking kmmio_fault_page objects.\n");
 515                return;
 516        }
 517        drelease->release_list = release_list;
 518
 519        /*
 520         * This is not really RCU here. We have just disarmed a set of
 521         * pages so that they cannot trigger page faults anymore. However,
 522         * we cannot remove the pages from kmmio_page_table,
 523         * because a probe hit might be in flight on another CPU. The
 524         * pages are collected into a list, and they will be removed from
 525         * kmmio_page_table when it is certain that no probe hit related to
 526         * these pages can be in flight. RCU grace period sounds like a
 527         * good choice.
 528         *
 529         * If we removed the pages too early, kmmio page fault handler might
 530         * not find the respective kmmio_fault_page and determine it's not
 531         * a kmmio fault, when it actually is. This would lead to madness.
 532         */
 533        call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
 534}
 535EXPORT_SYMBOL(unregister_kmmio_probe);
 536
 537static int
 538kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
 539{
 540        struct die_args *arg = args;
 541
 542        if (val == DIE_DEBUG && (arg->err & DR_STEP))
 543                if (post_kmmio_handler(arg->err, arg->regs) == 1)
 544                        return NOTIFY_STOP;
 545
 546        return NOTIFY_DONE;
 547}
 548
 549static struct notifier_block nb_die = {
 550        .notifier_call = kmmio_die_notifier
 551};
 552
 553int kmmio_init(void)
 554{
 555        int i;
 556
 557        for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
 558                INIT_LIST_HEAD(&kmmio_page_table[i]);
 559
 560        return register_die_notifier(&nb_die);
 561}
 562
 563void kmmio_cleanup(void)
 564{
 565        int i;
 566
 567        unregister_die_notifier(&nb_die);
 568        for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
 569                WARN_ONCE(!list_empty(&kmmio_page_table[i]),
 570                        KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
 571        }
 572}
 573