linux/arch/x86/mm/pageattr.c
<<
>>
Prefs
   1/*
   2 * Copyright 2002 Andi Kleen, SuSE Labs.
   3 * Thanks to Ben LaHaise for precious feedback.
   4 */
   5#include <linux/highmem.h>
   6#include <linux/bootmem.h>
   7#include <linux/module.h>
   8#include <linux/sched.h>
   9#include <linux/slab.h>
  10#include <linux/mm.h>
  11#include <linux/interrupt.h>
  12#include <linux/seq_file.h>
  13#include <linux/debugfs.h>
  14#include <linux/pfn.h>
  15#include <linux/percpu.h>
  16
  17#include <asm/e820.h>
  18#include <asm/processor.h>
  19#include <asm/tlbflush.h>
  20#include <asm/sections.h>
  21#include <asm/setup.h>
  22#include <asm/uaccess.h>
  23#include <asm/pgalloc.h>
  24#include <asm/proto.h>
  25#include <asm/pat.h>
  26
  27/*
  28 * The current flushing context - we pass it instead of 5 arguments:
  29 */
  30struct cpa_data {
  31        unsigned long   *vaddr;
  32        pgprot_t        mask_set;
  33        pgprot_t        mask_clr;
  34        int             numpages;
  35        int             flags;
  36        unsigned long   pfn;
  37        unsigned        force_split : 1;
  38        int             curpage;
  39        struct page     **pages;
  40};
  41
  42/*
  43 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  44 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  45 * entries change the page attribute in parallel to some other cpu
  46 * splitting a large page entry along with changing the attribute.
  47 */
  48static DEFINE_SPINLOCK(cpa_lock);
  49
  50#define CPA_FLUSHTLB 1
  51#define CPA_ARRAY 2
  52#define CPA_PAGES_ARRAY 4
  53
  54#ifdef CONFIG_PROC_FS
  55static unsigned long direct_pages_count[PG_LEVEL_NUM];
  56
  57void update_page_count(int level, unsigned long pages)
  58{
  59        unsigned long flags;
  60
  61        /* Protect against CPA */
  62        spin_lock_irqsave(&pgd_lock, flags);
  63        direct_pages_count[level] += pages;
  64        spin_unlock_irqrestore(&pgd_lock, flags);
  65}
  66
  67static void split_page_count(int level)
  68{
  69        direct_pages_count[level]--;
  70        direct_pages_count[level - 1] += PTRS_PER_PTE;
  71}
  72
  73void arch_report_meminfo(struct seq_file *m)
  74{
  75        seq_printf(m, "DirectMap4k:    %8lu kB\n",
  76                        direct_pages_count[PG_LEVEL_4K] << 2);
  77#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  78        seq_printf(m, "DirectMap2M:    %8lu kB\n",
  79                        direct_pages_count[PG_LEVEL_2M] << 11);
  80#else
  81        seq_printf(m, "DirectMap4M:    %8lu kB\n",
  82                        direct_pages_count[PG_LEVEL_2M] << 12);
  83#endif
  84#ifdef CONFIG_X86_64
  85        if (direct_gbpages)
  86                seq_printf(m, "DirectMap1G:    %8lu kB\n",
  87                        direct_pages_count[PG_LEVEL_1G] << 20);
  88#endif
  89}
  90#else
  91static inline void split_page_count(int level) { }
  92#endif
  93
  94#ifdef CONFIG_X86_64
  95
  96static inline unsigned long highmap_start_pfn(void)
  97{
  98        return __pa(_text) >> PAGE_SHIFT;
  99}
 100
 101static inline unsigned long highmap_end_pfn(void)
 102{
 103        return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
 104}
 105
 106#endif
 107
 108#ifdef CONFIG_DEBUG_PAGEALLOC
 109# define debug_pagealloc 1
 110#else
 111# define debug_pagealloc 0
 112#endif
 113
 114static inline int
 115within(unsigned long addr, unsigned long start, unsigned long end)
 116{
 117        return addr >= start && addr < end;
 118}
 119
 120/*
 121 * Flushing functions
 122 */
 123
 124/**
 125 * clflush_cache_range - flush a cache range with clflush
 126 * @addr:       virtual start address
 127 * @size:       number of bytes to flush
 128 *
 129 * clflush is an unordered instruction which needs fencing with mfence
 130 * to avoid ordering issues.
 131 */
 132void clflush_cache_range(void *vaddr, unsigned int size)
 133{
 134        void *vend = vaddr + size - 1;
 135
 136        mb();
 137
 138        for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
 139                clflush(vaddr);
 140        /*
 141         * Flush any possible final partial cacheline:
 142         */
 143        clflush(vend);
 144
 145        mb();
 146}
 147EXPORT_SYMBOL_GPL(clflush_cache_range);
 148
 149static void __cpa_flush_all(void *arg)
 150{
 151        unsigned long cache = (unsigned long)arg;
 152
 153        /*
 154         * Flush all to work around Errata in early athlons regarding
 155         * large page flushing.
 156         */
 157        __flush_tlb_all();
 158
 159        if (cache && boot_cpu_data.x86 >= 4)
 160                wbinvd();
 161}
 162
 163static void cpa_flush_all(unsigned long cache)
 164{
 165        BUG_ON(irqs_disabled());
 166
 167        on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 168}
 169
 170static void __cpa_flush_range(void *arg)
 171{
 172        /*
 173         * We could optimize that further and do individual per page
 174         * tlb invalidates for a low number of pages. Caveat: we must
 175         * flush the high aliases on 64bit as well.
 176         */
 177        __flush_tlb_all();
 178}
 179
 180static void cpa_flush_range(unsigned long start, int numpages, int cache)
 181{
 182        unsigned int i, level;
 183        unsigned long addr;
 184
 185        BUG_ON(irqs_disabled());
 186        WARN_ON(PAGE_ALIGN(start) != start);
 187
 188        on_each_cpu(__cpa_flush_range, NULL, 1);
 189
 190        if (!cache)
 191                return;
 192
 193        /*
 194         * We only need to flush on one CPU,
 195         * clflush is a MESI-coherent instruction that
 196         * will cause all other CPUs to flush the same
 197         * cachelines:
 198         */
 199        for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
 200                pte_t *pte = lookup_address(addr, &level);
 201
 202                /*
 203                 * Only flush present addresses:
 204                 */
 205                if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 206                        clflush_cache_range((void *) addr, PAGE_SIZE);
 207        }
 208}
 209
 210static void cpa_flush_array(unsigned long *start, int numpages, int cache,
 211                            int in_flags, struct page **pages)
 212{
 213        unsigned int i, level;
 214        unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
 215
 216        BUG_ON(irqs_disabled());
 217
 218        on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
 219
 220        if (!cache || do_wbinvd)
 221                return;
 222
 223        /*
 224         * We only need to flush on one CPU,
 225         * clflush is a MESI-coherent instruction that
 226         * will cause all other CPUs to flush the same
 227         * cachelines:
 228         */
 229        for (i = 0; i < numpages; i++) {
 230                unsigned long addr;
 231                pte_t *pte;
 232
 233                if (in_flags & CPA_PAGES_ARRAY)
 234                        addr = (unsigned long)page_address(pages[i]);
 235                else
 236                        addr = start[i];
 237
 238                pte = lookup_address(addr, &level);
 239
 240                /*
 241                 * Only flush present addresses:
 242                 */
 243                if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 244                        clflush_cache_range((void *)addr, PAGE_SIZE);
 245        }
 246}
 247
 248/*
 249 * Certain areas of memory on x86 require very specific protection flags,
 250 * for example the BIOS area or kernel text. Callers don't always get this
 251 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 252 * checks and fixes these known static required protection bits.
 253 */
 254static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
 255                                   unsigned long pfn)
 256{
 257        pgprot_t forbidden = __pgprot(0);
 258
 259        /*
 260         * The BIOS area between 640k and 1Mb needs to be executable for
 261         * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
 262         */
 263        if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
 264                pgprot_val(forbidden) |= _PAGE_NX;
 265
 266        /*
 267         * The kernel text needs to be executable for obvious reasons
 268         * Does not cover __inittext since that is gone later on. On
 269         * 64bit we do not enforce !NX on the low mapping
 270         */
 271        if (within(address, (unsigned long)_text, (unsigned long)_etext))
 272                pgprot_val(forbidden) |= _PAGE_NX;
 273
 274        /*
 275         * The .rodata section needs to be read-only. Using the pfn
 276         * catches all aliases.
 277         */
 278        if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
 279                   __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
 280                pgprot_val(forbidden) |= _PAGE_RW;
 281
 282        prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
 283
 284        return prot;
 285}
 286
 287/*
 288 * Lookup the page table entry for a virtual address. Return a pointer
 289 * to the entry and the level of the mapping.
 290 *
 291 * Note: We return pud and pmd either when the entry is marked large
 292 * or when the present bit is not set. Otherwise we would return a
 293 * pointer to a nonexisting mapping.
 294 */
 295pte_t *lookup_address(unsigned long address, unsigned int *level)
 296{
 297        pgd_t *pgd = pgd_offset_k(address);
 298        pud_t *pud;
 299        pmd_t *pmd;
 300
 301        *level = PG_LEVEL_NONE;
 302
 303        if (pgd_none(*pgd))
 304                return NULL;
 305
 306        pud = pud_offset(pgd, address);
 307        if (pud_none(*pud))
 308                return NULL;
 309
 310        *level = PG_LEVEL_1G;
 311        if (pud_large(*pud) || !pud_present(*pud))
 312                return (pte_t *)pud;
 313
 314        pmd = pmd_offset(pud, address);
 315        if (pmd_none(*pmd))
 316                return NULL;
 317
 318        *level = PG_LEVEL_2M;
 319        if (pmd_large(*pmd) || !pmd_present(*pmd))
 320                return (pte_t *)pmd;
 321
 322        *level = PG_LEVEL_4K;
 323
 324        return pte_offset_kernel(pmd, address);
 325}
 326EXPORT_SYMBOL_GPL(lookup_address);
 327
 328/*
 329 * Set the new pmd in all the pgds we know about:
 330 */
 331static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 332{
 333        /* change init_mm */
 334        set_pte_atomic(kpte, pte);
 335#ifdef CONFIG_X86_32
 336        if (!SHARED_KERNEL_PMD) {
 337                struct page *page;
 338
 339                list_for_each_entry(page, &pgd_list, lru) {
 340                        pgd_t *pgd;
 341                        pud_t *pud;
 342                        pmd_t *pmd;
 343
 344                        pgd = (pgd_t *)page_address(page) + pgd_index(address);
 345                        pud = pud_offset(pgd, address);
 346                        pmd = pmd_offset(pud, address);
 347                        set_pte_atomic((pte_t *)pmd, pte);
 348                }
 349        }
 350#endif
 351}
 352
 353static int
 354try_preserve_large_page(pte_t *kpte, unsigned long address,
 355                        struct cpa_data *cpa)
 356{
 357        unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
 358        pte_t new_pte, old_pte, *tmp;
 359        pgprot_t old_prot, new_prot;
 360        int i, do_split = 1;
 361        unsigned int level;
 362
 363        if (cpa->force_split)
 364                return 1;
 365
 366        spin_lock_irqsave(&pgd_lock, flags);
 367        /*
 368         * Check for races, another CPU might have split this page
 369         * up already:
 370         */
 371        tmp = lookup_address(address, &level);
 372        if (tmp != kpte)
 373                goto out_unlock;
 374
 375        switch (level) {
 376        case PG_LEVEL_2M:
 377                psize = PMD_PAGE_SIZE;
 378                pmask = PMD_PAGE_MASK;
 379                break;
 380#ifdef CONFIG_X86_64
 381        case PG_LEVEL_1G:
 382                psize = PUD_PAGE_SIZE;
 383                pmask = PUD_PAGE_MASK;
 384                break;
 385#endif
 386        default:
 387                do_split = -EINVAL;
 388                goto out_unlock;
 389        }
 390
 391        /*
 392         * Calculate the number of pages, which fit into this large
 393         * page starting at address:
 394         */
 395        nextpage_addr = (address + psize) & pmask;
 396        numpages = (nextpage_addr - address) >> PAGE_SHIFT;
 397        if (numpages < cpa->numpages)
 398                cpa->numpages = numpages;
 399
 400        /*
 401         * We are safe now. Check whether the new pgprot is the same:
 402         */
 403        old_pte = *kpte;
 404        old_prot = new_prot = pte_pgprot(old_pte);
 405
 406        pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
 407        pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
 408
 409        /*
 410         * old_pte points to the large page base address. So we need
 411         * to add the offset of the virtual address:
 412         */
 413        pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
 414        cpa->pfn = pfn;
 415
 416        new_prot = static_protections(new_prot, address, pfn);
 417
 418        /*
 419         * We need to check the full range, whether
 420         * static_protection() requires a different pgprot for one of
 421         * the pages in the range we try to preserve:
 422         */
 423        addr = address + PAGE_SIZE;
 424        pfn++;
 425        for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
 426                pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
 427
 428                if (pgprot_val(chk_prot) != pgprot_val(new_prot))
 429                        goto out_unlock;
 430        }
 431
 432        /*
 433         * If there are no changes, return. maxpages has been updated
 434         * above:
 435         */
 436        if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
 437                do_split = 0;
 438                goto out_unlock;
 439        }
 440
 441        /*
 442         * We need to change the attributes. Check, whether we can
 443         * change the large page in one go. We request a split, when
 444         * the address is not aligned and the number of pages is
 445         * smaller than the number of pages in the large page. Note
 446         * that we limited the number of possible pages already to
 447         * the number of pages in the large page.
 448         */
 449        if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
 450                /*
 451                 * The address is aligned and the number of pages
 452                 * covers the full page.
 453                 */
 454                new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
 455                __set_pmd_pte(kpte, address, new_pte);
 456                cpa->flags |= CPA_FLUSHTLB;
 457                do_split = 0;
 458        }
 459
 460out_unlock:
 461        spin_unlock_irqrestore(&pgd_lock, flags);
 462
 463        return do_split;
 464}
 465
 466static int split_large_page(pte_t *kpte, unsigned long address)
 467{
 468        unsigned long flags, pfn, pfninc = 1;
 469        unsigned int i, level;
 470        pte_t *pbase, *tmp;
 471        pgprot_t ref_prot;
 472        struct page *base;
 473
 474        if (!debug_pagealloc)
 475                spin_unlock(&cpa_lock);
 476        base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
 477        if (!debug_pagealloc)
 478                spin_lock(&cpa_lock);
 479        if (!base)
 480                return -ENOMEM;
 481
 482        spin_lock_irqsave(&pgd_lock, flags);
 483        /*
 484         * Check for races, another CPU might have split this page
 485         * up for us already:
 486         */
 487        tmp = lookup_address(address, &level);
 488        if (tmp != kpte)
 489                goto out_unlock;
 490
 491        pbase = (pte_t *)page_address(base);
 492        paravirt_alloc_pte(&init_mm, page_to_pfn(base));
 493        ref_prot = pte_pgprot(pte_clrhuge(*kpte));
 494        /*
 495         * If we ever want to utilize the PAT bit, we need to
 496         * update this function to make sure it's converted from
 497         * bit 12 to bit 7 when we cross from the 2MB level to
 498         * the 4K level:
 499         */
 500        WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
 501
 502#ifdef CONFIG_X86_64
 503        if (level == PG_LEVEL_1G) {
 504                pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
 505                pgprot_val(ref_prot) |= _PAGE_PSE;
 506        }
 507#endif
 508
 509        /*
 510         * Get the target pfn from the original entry:
 511         */
 512        pfn = pte_pfn(*kpte);
 513        for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
 514                set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
 515
 516        if (address >= (unsigned long)__va(0) &&
 517                address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
 518                split_page_count(level);
 519
 520#ifdef CONFIG_X86_64
 521        if (address >= (unsigned long)__va(1UL<<32) &&
 522                address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
 523                split_page_count(level);
 524#endif
 525
 526        /*
 527         * Install the new, split up pagetable.
 528         *
 529         * We use the standard kernel pagetable protections for the new
 530         * pagetable protections, the actual ptes set above control the
 531         * primary protection behavior:
 532         */
 533        __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
 534
 535        /*
 536         * Intel Atom errata AAH41 workaround.
 537         *
 538         * The real fix should be in hw or in a microcode update, but
 539         * we also probabilistically try to reduce the window of having
 540         * a large TLB mixed with 4K TLBs while instruction fetches are
 541         * going on.
 542         */
 543        __flush_tlb_all();
 544
 545        base = NULL;
 546
 547out_unlock:
 548        /*
 549         * If we dropped out via the lookup_address check under
 550         * pgd_lock then stick the page back into the pool:
 551         */
 552        if (base)
 553                __free_page(base);
 554        spin_unlock_irqrestore(&pgd_lock, flags);
 555
 556        return 0;
 557}
 558
 559static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
 560                               int primary)
 561{
 562        /*
 563         * Ignore all non primary paths.
 564         */
 565        if (!primary)
 566                return 0;
 567
 568        /*
 569         * Ignore the NULL PTE for kernel identity mapping, as it is expected
 570         * to have holes.
 571         * Also set numpages to '1' indicating that we processed cpa req for
 572         * one virtual address page and its pfn. TBD: numpages can be set based
 573         * on the initial value and the level returned by lookup_address().
 574         */
 575        if (within(vaddr, PAGE_OFFSET,
 576                   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
 577                cpa->numpages = 1;
 578                cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
 579                return 0;
 580        } else {
 581                WARN(1, KERN_WARNING "CPA: called for zero pte. "
 582                        "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
 583                        *cpa->vaddr);
 584
 585                return -EFAULT;
 586        }
 587}
 588
 589static int __change_page_attr(struct cpa_data *cpa, int primary)
 590{
 591        unsigned long address;
 592        int do_split, err;
 593        unsigned int level;
 594        pte_t *kpte, old_pte;
 595
 596        if (cpa->flags & CPA_PAGES_ARRAY) {
 597                struct page *page = cpa->pages[cpa->curpage];
 598                if (unlikely(PageHighMem(page)))
 599                        return 0;
 600                address = (unsigned long)page_address(page);
 601        } else if (cpa->flags & CPA_ARRAY)
 602                address = cpa->vaddr[cpa->curpage];
 603        else
 604                address = *cpa->vaddr;
 605repeat:
 606        kpte = lookup_address(address, &level);
 607        if (!kpte)
 608                return __cpa_process_fault(cpa, address, primary);
 609
 610        old_pte = *kpte;
 611        if (!pte_val(old_pte))
 612                return __cpa_process_fault(cpa, address, primary);
 613
 614        if (level == PG_LEVEL_4K) {
 615                pte_t new_pte;
 616                pgprot_t new_prot = pte_pgprot(old_pte);
 617                unsigned long pfn = pte_pfn(old_pte);
 618
 619                pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
 620                pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
 621
 622                new_prot = static_protections(new_prot, address, pfn);
 623
 624                /*
 625                 * We need to keep the pfn from the existing PTE,
 626                 * after all we're only going to change it's attributes
 627                 * not the memory it points to
 628                 */
 629                new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
 630                cpa->pfn = pfn;
 631                /*
 632                 * Do we really change anything ?
 633                 */
 634                if (pte_val(old_pte) != pte_val(new_pte)) {
 635                        set_pte_atomic(kpte, new_pte);
 636                        cpa->flags |= CPA_FLUSHTLB;
 637                }
 638                cpa->numpages = 1;
 639                return 0;
 640        }
 641
 642        /*
 643         * Check, whether we can keep the large page intact
 644         * and just change the pte:
 645         */
 646        do_split = try_preserve_large_page(kpte, address, cpa);
 647        /*
 648         * When the range fits into the existing large page,
 649         * return. cp->numpages and cpa->tlbflush have been updated in
 650         * try_large_page:
 651         */
 652        if (do_split <= 0)
 653                return do_split;
 654
 655        /*
 656         * We have to split the large page:
 657         */
 658        err = split_large_page(kpte, address);
 659        if (!err) {
 660                /*
 661                 * Do a global flush tlb after splitting the large page
 662                 * and before we do the actual change page attribute in the PTE.
 663                 *
 664                 * With out this, we violate the TLB application note, that says
 665                 * "The TLBs may contain both ordinary and large-page
 666                 *  translations for a 4-KByte range of linear addresses. This
 667                 *  may occur if software modifies the paging structures so that
 668                 *  the page size used for the address range changes. If the two
 669                 *  translations differ with respect to page frame or attributes
 670                 *  (e.g., permissions), processor behavior is undefined and may
 671                 *  be implementation-specific."
 672                 *
 673                 * We do this global tlb flush inside the cpa_lock, so that we
 674                 * don't allow any other cpu, with stale tlb entries change the
 675                 * page attribute in parallel, that also falls into the
 676                 * just split large page entry.
 677                 */
 678                flush_tlb_all();
 679                goto repeat;
 680        }
 681
 682        return err;
 683}
 684
 685static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
 686
 687static int cpa_process_alias(struct cpa_data *cpa)
 688{
 689        struct cpa_data alias_cpa;
 690        unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
 691        unsigned long vaddr;
 692        int ret;
 693
 694        if (cpa->pfn >= max_pfn_mapped)
 695                return 0;
 696
 697#ifdef CONFIG_X86_64
 698        if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
 699                return 0;
 700#endif
 701        /*
 702         * No need to redo, when the primary call touched the direct
 703         * mapping already:
 704         */
 705        if (cpa->flags & CPA_PAGES_ARRAY) {
 706                struct page *page = cpa->pages[cpa->curpage];
 707                if (unlikely(PageHighMem(page)))
 708                        return 0;
 709                vaddr = (unsigned long)page_address(page);
 710        } else if (cpa->flags & CPA_ARRAY)
 711                vaddr = cpa->vaddr[cpa->curpage];
 712        else
 713                vaddr = *cpa->vaddr;
 714
 715        if (!(within(vaddr, PAGE_OFFSET,
 716                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
 717
 718                alias_cpa = *cpa;
 719                alias_cpa.vaddr = &laddr;
 720                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
 721
 722                ret = __change_page_attr_set_clr(&alias_cpa, 0);
 723                if (ret)
 724                        return ret;
 725        }
 726
 727#ifdef CONFIG_X86_64
 728        /*
 729         * If the primary call didn't touch the high mapping already
 730         * and the physical address is inside the kernel map, we need
 731         * to touch the high mapped kernel as well:
 732         */
 733        if (!within(vaddr, (unsigned long)_text, _brk_end) &&
 734            within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
 735                unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
 736                                               __START_KERNEL_map - phys_base;
 737                alias_cpa = *cpa;
 738                alias_cpa.vaddr = &temp_cpa_vaddr;
 739                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
 740
 741                /*
 742                 * The high mapping range is imprecise, so ignore the
 743                 * return value.
 744                 */
 745                __change_page_attr_set_clr(&alias_cpa, 0);
 746        }
 747#endif
 748
 749        return 0;
 750}
 751
 752static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
 753{
 754        int ret, numpages = cpa->numpages;
 755
 756        while (numpages) {
 757                /*
 758                 * Store the remaining nr of pages for the large page
 759                 * preservation check.
 760                 */
 761                cpa->numpages = numpages;
 762                /* for array changes, we can't use large page */
 763                if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
 764                        cpa->numpages = 1;
 765
 766                if (!debug_pagealloc)
 767                        spin_lock(&cpa_lock);
 768                ret = __change_page_attr(cpa, checkalias);
 769                if (!debug_pagealloc)
 770                        spin_unlock(&cpa_lock);
 771                if (ret)
 772                        return ret;
 773
 774                if (checkalias) {
 775                        ret = cpa_process_alias(cpa);
 776                        if (ret)
 777                                return ret;
 778                }
 779
 780                /*
 781                 * Adjust the number of pages with the result of the
 782                 * CPA operation. Either a large page has been
 783                 * preserved or a single page update happened.
 784                 */
 785                BUG_ON(cpa->numpages > numpages);
 786                numpages -= cpa->numpages;
 787                if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
 788                        cpa->curpage++;
 789                else
 790                        *cpa->vaddr += cpa->numpages * PAGE_SIZE;
 791
 792        }
 793        return 0;
 794}
 795
 796static inline int cache_attr(pgprot_t attr)
 797{
 798        return pgprot_val(attr) &
 799                (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
 800}
 801
 802static int change_page_attr_set_clr(unsigned long *addr, int numpages,
 803                                    pgprot_t mask_set, pgprot_t mask_clr,
 804                                    int force_split, int in_flag,
 805                                    struct page **pages)
 806{
 807        struct cpa_data cpa;
 808        int ret, cache, checkalias;
 809        unsigned long baddr = 0;
 810
 811        /*
 812         * Check, if we are requested to change a not supported
 813         * feature:
 814         */
 815        mask_set = canon_pgprot(mask_set);
 816        mask_clr = canon_pgprot(mask_clr);
 817        if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
 818                return 0;
 819
 820        /* Ensure we are PAGE_SIZE aligned */
 821        if (in_flag & CPA_ARRAY) {
 822                int i;
 823                for (i = 0; i < numpages; i++) {
 824                        if (addr[i] & ~PAGE_MASK) {
 825                                addr[i] &= PAGE_MASK;
 826                                WARN_ON_ONCE(1);
 827                        }
 828                }
 829        } else if (!(in_flag & CPA_PAGES_ARRAY)) {
 830                /*
 831                 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
 832                 * No need to cehck in that case
 833                 */
 834                if (*addr & ~PAGE_MASK) {
 835                        *addr &= PAGE_MASK;
 836                        /*
 837                         * People should not be passing in unaligned addresses:
 838                         */
 839                        WARN_ON_ONCE(1);
 840                }
 841                /*
 842                 * Save address for cache flush. *addr is modified in the call
 843                 * to __change_page_attr_set_clr() below.
 844                 */
 845                baddr = *addr;
 846        }
 847
 848        /* Must avoid aliasing mappings in the highmem code */
 849        kmap_flush_unused();
 850
 851        vm_unmap_aliases();
 852
 853        cpa.vaddr = addr;
 854        cpa.pages = pages;
 855        cpa.numpages = numpages;
 856        cpa.mask_set = mask_set;
 857        cpa.mask_clr = mask_clr;
 858        cpa.flags = 0;
 859        cpa.curpage = 0;
 860        cpa.force_split = force_split;
 861
 862        if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
 863                cpa.flags |= in_flag;
 864
 865        /* No alias checking for _NX bit modifications */
 866        checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
 867
 868        ret = __change_page_attr_set_clr(&cpa, checkalias);
 869
 870        /*
 871         * Check whether we really changed something:
 872         */
 873        if (!(cpa.flags & CPA_FLUSHTLB))
 874                goto out;
 875
 876        /*
 877         * No need to flush, when we did not set any of the caching
 878         * attributes:
 879         */
 880        cache = cache_attr(mask_set);
 881
 882        /*
 883         * On success we use clflush, when the CPU supports it to
 884         * avoid the wbindv. If the CPU does not support it and in the
 885         * error case we fall back to cpa_flush_all (which uses
 886         * wbindv):
 887         */
 888        if (!ret && cpu_has_clflush) {
 889                if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
 890                        cpa_flush_array(addr, numpages, cache,
 891                                        cpa.flags, pages);
 892                } else
 893                        cpa_flush_range(baddr, numpages, cache);
 894        } else
 895                cpa_flush_all(cache);
 896
 897out:
 898        return ret;
 899}
 900
 901static inline int change_page_attr_set(unsigned long *addr, int numpages,
 902                                       pgprot_t mask, int array)
 903{
 904        return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
 905                (array ? CPA_ARRAY : 0), NULL);
 906}
 907
 908static inline int change_page_attr_clear(unsigned long *addr, int numpages,
 909                                         pgprot_t mask, int array)
 910{
 911        return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
 912                (array ? CPA_ARRAY : 0), NULL);
 913}
 914
 915static inline int cpa_set_pages_array(struct page **pages, int numpages,
 916                                       pgprot_t mask)
 917{
 918        return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
 919                CPA_PAGES_ARRAY, pages);
 920}
 921
 922static inline int cpa_clear_pages_array(struct page **pages, int numpages,
 923                                         pgprot_t mask)
 924{
 925        return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
 926                CPA_PAGES_ARRAY, pages);
 927}
 928
 929int _set_memory_uc(unsigned long addr, int numpages)
 930{
 931        /*
 932         * for now UC MINUS. see comments in ioremap_nocache()
 933         */
 934        return change_page_attr_set(&addr, numpages,
 935                                    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
 936}
 937
 938int set_memory_uc(unsigned long addr, int numpages)
 939{
 940        int ret;
 941
 942        /*
 943         * for now UC MINUS. see comments in ioremap_nocache()
 944         */
 945        ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
 946                            _PAGE_CACHE_UC_MINUS, NULL);
 947        if (ret)
 948                goto out_err;
 949
 950        ret = _set_memory_uc(addr, numpages);
 951        if (ret)
 952                goto out_free;
 953
 954        return 0;
 955
 956out_free:
 957        free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
 958out_err:
 959        return ret;
 960}
 961EXPORT_SYMBOL(set_memory_uc);
 962
 963int set_memory_array_uc(unsigned long *addr, int addrinarray)
 964{
 965        int i, j;
 966        int ret;
 967
 968        /*
 969         * for now UC MINUS. see comments in ioremap_nocache()
 970         */
 971        for (i = 0; i < addrinarray; i++) {
 972                ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
 973                                        _PAGE_CACHE_UC_MINUS, NULL);
 974                if (ret)
 975                        goto out_free;
 976        }
 977
 978        ret = change_page_attr_set(addr, addrinarray,
 979                                    __pgprot(_PAGE_CACHE_UC_MINUS), 1);
 980        if (ret)
 981                goto out_free;
 982
 983        return 0;
 984
 985out_free:
 986        for (j = 0; j < i; j++)
 987                free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
 988
 989        return ret;
 990}
 991EXPORT_SYMBOL(set_memory_array_uc);
 992
 993int _set_memory_wc(unsigned long addr, int numpages)
 994{
 995        int ret;
 996        unsigned long addr_copy = addr;
 997
 998        ret = change_page_attr_set(&addr, numpages,
 999                                    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1000        if (!ret) {
1001                ret = change_page_attr_set_clr(&addr_copy, numpages,
1002                                               __pgprot(_PAGE_CACHE_WC),
1003                                               __pgprot(_PAGE_CACHE_MASK),
1004                                               0, 0, NULL);
1005        }
1006        return ret;
1007}
1008
1009int set_memory_wc(unsigned long addr, int numpages)
1010{
1011        int ret;
1012
1013        if (!pat_enabled)
1014                return set_memory_uc(addr, numpages);
1015
1016        ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1017                _PAGE_CACHE_WC, NULL);
1018        if (ret)
1019                goto out_err;
1020
1021        ret = _set_memory_wc(addr, numpages);
1022        if (ret)
1023                goto out_free;
1024
1025        return 0;
1026
1027out_free:
1028        free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1029out_err:
1030        return ret;
1031}
1032EXPORT_SYMBOL(set_memory_wc);
1033
1034int _set_memory_wb(unsigned long addr, int numpages)
1035{
1036        return change_page_attr_clear(&addr, numpages,
1037                                      __pgprot(_PAGE_CACHE_MASK), 0);
1038}
1039
1040int set_memory_wb(unsigned long addr, int numpages)
1041{
1042        int ret;
1043
1044        ret = _set_memory_wb(addr, numpages);
1045        if (ret)
1046                return ret;
1047
1048        free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1049        return 0;
1050}
1051EXPORT_SYMBOL(set_memory_wb);
1052
1053int set_memory_array_wb(unsigned long *addr, int addrinarray)
1054{
1055        int i;
1056        int ret;
1057
1058        ret = change_page_attr_clear(addr, addrinarray,
1059                                      __pgprot(_PAGE_CACHE_MASK), 1);
1060        if (ret)
1061                return ret;
1062
1063        for (i = 0; i < addrinarray; i++)
1064                free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1065
1066        return 0;
1067}
1068EXPORT_SYMBOL(set_memory_array_wb);
1069
1070int set_memory_x(unsigned long addr, int numpages)
1071{
1072        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1073}
1074EXPORT_SYMBOL(set_memory_x);
1075
1076int set_memory_nx(unsigned long addr, int numpages)
1077{
1078        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1079}
1080EXPORT_SYMBOL(set_memory_nx);
1081
1082int set_memory_ro(unsigned long addr, int numpages)
1083{
1084        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1085}
1086EXPORT_SYMBOL_GPL(set_memory_ro);
1087
1088int set_memory_rw(unsigned long addr, int numpages)
1089{
1090        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1091}
1092EXPORT_SYMBOL_GPL(set_memory_rw);
1093
1094int set_memory_np(unsigned long addr, int numpages)
1095{
1096        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1097}
1098
1099int set_memory_4k(unsigned long addr, int numpages)
1100{
1101        return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1102                                        __pgprot(0), 1, 0, NULL);
1103}
1104
1105int set_pages_uc(struct page *page, int numpages)
1106{
1107        unsigned long addr = (unsigned long)page_address(page);
1108
1109        return set_memory_uc(addr, numpages);
1110}
1111EXPORT_SYMBOL(set_pages_uc);
1112
1113int set_pages_array_uc(struct page **pages, int addrinarray)
1114{
1115        unsigned long start;
1116        unsigned long end;
1117        int i;
1118        int free_idx;
1119
1120        for (i = 0; i < addrinarray; i++) {
1121                if (PageHighMem(pages[i]))
1122                        continue;
1123                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1124                end = start + PAGE_SIZE;
1125                if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
1126                        goto err_out;
1127        }
1128
1129        if (cpa_set_pages_array(pages, addrinarray,
1130                        __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
1131                return 0; /* Success */
1132        }
1133err_out:
1134        free_idx = i;
1135        for (i = 0; i < free_idx; i++) {
1136                if (PageHighMem(pages[i]))
1137                        continue;
1138                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1139                end = start + PAGE_SIZE;
1140                free_memtype(start, end);
1141        }
1142        return -EINVAL;
1143}
1144EXPORT_SYMBOL(set_pages_array_uc);
1145
1146int set_pages_wb(struct page *page, int numpages)
1147{
1148        unsigned long addr = (unsigned long)page_address(page);
1149
1150        return set_memory_wb(addr, numpages);
1151}
1152EXPORT_SYMBOL(set_pages_wb);
1153
1154int set_pages_array_wb(struct page **pages, int addrinarray)
1155{
1156        int retval;
1157        unsigned long start;
1158        unsigned long end;
1159        int i;
1160
1161        retval = cpa_clear_pages_array(pages, addrinarray,
1162                        __pgprot(_PAGE_CACHE_MASK));
1163        if (retval)
1164                return retval;
1165
1166        for (i = 0; i < addrinarray; i++) {
1167                if (PageHighMem(pages[i]))
1168                        continue;
1169                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1170                end = start + PAGE_SIZE;
1171                free_memtype(start, end);
1172        }
1173
1174        return 0;
1175}
1176EXPORT_SYMBOL(set_pages_array_wb);
1177
1178int set_pages_x(struct page *page, int numpages)
1179{
1180        unsigned long addr = (unsigned long)page_address(page);
1181
1182        return set_memory_x(addr, numpages);
1183}
1184EXPORT_SYMBOL(set_pages_x);
1185
1186int set_pages_nx(struct page *page, int numpages)
1187{
1188        unsigned long addr = (unsigned long)page_address(page);
1189
1190        return set_memory_nx(addr, numpages);
1191}
1192EXPORT_SYMBOL(set_pages_nx);
1193
1194int set_pages_ro(struct page *page, int numpages)
1195{
1196        unsigned long addr = (unsigned long)page_address(page);
1197
1198        return set_memory_ro(addr, numpages);
1199}
1200
1201int set_pages_rw(struct page *page, int numpages)
1202{
1203        unsigned long addr = (unsigned long)page_address(page);
1204
1205        return set_memory_rw(addr, numpages);
1206}
1207
1208#ifdef CONFIG_DEBUG_PAGEALLOC
1209
1210static int __set_pages_p(struct page *page, int numpages)
1211{
1212        unsigned long tempaddr = (unsigned long) page_address(page);
1213        struct cpa_data cpa = { .vaddr = &tempaddr,
1214                                .numpages = numpages,
1215                                .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1216                                .mask_clr = __pgprot(0),
1217                                .flags = 0};
1218
1219        /*
1220         * No alias checking needed for setting present flag. otherwise,
1221         * we may need to break large pages for 64-bit kernel text
1222         * mappings (this adds to complexity if we want to do this from
1223         * atomic context especially). Let's keep it simple!
1224         */
1225        return __change_page_attr_set_clr(&cpa, 0);
1226}
1227
1228static int __set_pages_np(struct page *page, int numpages)
1229{
1230        unsigned long tempaddr = (unsigned long) page_address(page);
1231        struct cpa_data cpa = { .vaddr = &tempaddr,
1232                                .numpages = numpages,
1233                                .mask_set = __pgprot(0),
1234                                .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1235                                .flags = 0};
1236
1237        /*
1238         * No alias checking needed for setting not present flag. otherwise,
1239         * we may need to break large pages for 64-bit kernel text
1240         * mappings (this adds to complexity if we want to do this from
1241         * atomic context especially). Let's keep it simple!
1242         */
1243        return __change_page_attr_set_clr(&cpa, 0);
1244}
1245
1246void kernel_map_pages(struct page *page, int numpages, int enable)
1247{
1248        if (PageHighMem(page))
1249                return;
1250        if (!enable) {
1251                debug_check_no_locks_freed(page_address(page),
1252                                           numpages * PAGE_SIZE);
1253        }
1254
1255        /*
1256         * If page allocator is not up yet then do not call c_p_a():
1257         */
1258        if (!debug_pagealloc_enabled)
1259                return;
1260
1261        /*
1262         * The return value is ignored as the calls cannot fail.
1263         * Large pages for identity mappings are not used at boot time
1264         * and hence no memory allocations during large page split.
1265         */
1266        if (enable)
1267                __set_pages_p(page, numpages);
1268        else
1269                __set_pages_np(page, numpages);
1270
1271        /*
1272         * We should perform an IPI and flush all tlbs,
1273         * but that can deadlock->flush only current cpu:
1274         */
1275        __flush_tlb_all();
1276}
1277
1278#ifdef CONFIG_HIBERNATION
1279
1280bool kernel_page_present(struct page *page)
1281{
1282        unsigned int level;
1283        pte_t *pte;
1284
1285        if (PageHighMem(page))
1286                return false;
1287
1288        pte = lookup_address((unsigned long)page_address(page), &level);
1289        return (pte_val(*pte) & _PAGE_PRESENT);
1290}
1291
1292#endif /* CONFIG_HIBERNATION */
1293
1294#endif /* CONFIG_DEBUG_PAGEALLOC */
1295
1296/*
1297 * The testcases use internal knowledge of the implementation that shouldn't
1298 * be exposed to the rest of the kernel. Include these directly here.
1299 */
1300#ifdef CONFIG_CPA_DEBUG
1301#include "pageattr-test.c"
1302#endif
1303