linux/arch/x86/xen/enlighten.c
<<
>>
Prefs
   1/*
   2 * Core of Xen paravirt_ops implementation.
   3 *
   4 * This file contains the xen_paravirt_ops structure itself, and the
   5 * implementations for:
   6 * - privileged instructions
   7 * - interrupt flags
   8 * - segment operations
   9 * - booting and setup
  10 *
  11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/init.h>
  16#include <linux/smp.h>
  17#include <linux/preempt.h>
  18#include <linux/hardirq.h>
  19#include <linux/percpu.h>
  20#include <linux/delay.h>
  21#include <linux/start_kernel.h>
  22#include <linux/sched.h>
  23#include <linux/kprobes.h>
  24#include <linux/bootmem.h>
  25#include <linux/module.h>
  26#include <linux/mm.h>
  27#include <linux/page-flags.h>
  28#include <linux/highmem.h>
  29#include <linux/console.h>
  30
  31#include <xen/interface/xen.h>
  32#include <xen/interface/version.h>
  33#include <xen/interface/physdev.h>
  34#include <xen/interface/vcpu.h>
  35#include <xen/features.h>
  36#include <xen/page.h>
  37#include <xen/hvc-console.h>
  38
  39#include <asm/paravirt.h>
  40#include <asm/apic.h>
  41#include <asm/page.h>
  42#include <asm/xen/hypercall.h>
  43#include <asm/xen/hypervisor.h>
  44#include <asm/fixmap.h>
  45#include <asm/processor.h>
  46#include <asm/proto.h>
  47#include <asm/msr-index.h>
  48#include <asm/traps.h>
  49#include <asm/setup.h>
  50#include <asm/desc.h>
  51#include <asm/pgtable.h>
  52#include <asm/tlbflush.h>
  53#include <asm/reboot.h>
  54#include <asm/stackprotector.h>
  55
  56#include "xen-ops.h"
  57#include "mmu.h"
  58#include "multicalls.h"
  59
  60EXPORT_SYMBOL_GPL(hypercall_page);
  61
  62DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  63DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  64
  65enum xen_domain_type xen_domain_type = XEN_NATIVE;
  66EXPORT_SYMBOL_GPL(xen_domain_type);
  67
  68struct start_info *xen_start_info;
  69EXPORT_SYMBOL_GPL(xen_start_info);
  70
  71struct shared_info xen_dummy_shared_info;
  72
  73void *xen_initial_gdt;
  74
  75/*
  76 * Point at some empty memory to start with. We map the real shared_info
  77 * page as soon as fixmap is up and running.
  78 */
  79struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
  80
  81/*
  82 * Flag to determine whether vcpu info placement is available on all
  83 * VCPUs.  We assume it is to start with, and then set it to zero on
  84 * the first failure.  This is because it can succeed on some VCPUs
  85 * and not others, since it can involve hypervisor memory allocation,
  86 * or because the guest failed to guarantee all the appropriate
  87 * constraints on all VCPUs (ie buffer can't cross a page boundary).
  88 *
  89 * Note that any particular CPU may be using a placed vcpu structure,
  90 * but we can only optimise if the all are.
  91 *
  92 * 0: not available, 1: available
  93 */
  94static int have_vcpu_info_placement = 1;
  95
  96static void xen_vcpu_setup(int cpu)
  97{
  98        struct vcpu_register_vcpu_info info;
  99        int err;
 100        struct vcpu_info *vcpup;
 101
 102        BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
 103        per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
 104
 105        if (!have_vcpu_info_placement)
 106                return;         /* already tested, not available */
 107
 108        vcpup = &per_cpu(xen_vcpu_info, cpu);
 109
 110        info.mfn = arbitrary_virt_to_mfn(vcpup);
 111        info.offset = offset_in_page(vcpup);
 112
 113        printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
 114               cpu, vcpup, info.mfn, info.offset);
 115
 116        /* Check to see if the hypervisor will put the vcpu_info
 117           structure where we want it, which allows direct access via
 118           a percpu-variable. */
 119        err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
 120
 121        if (err) {
 122                printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
 123                have_vcpu_info_placement = 0;
 124        } else {
 125                /* This cpu is using the registered vcpu info, even if
 126                   later ones fail to. */
 127                per_cpu(xen_vcpu, cpu) = vcpup;
 128
 129                printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
 130                       cpu, vcpup);
 131        }
 132}
 133
 134/*
 135 * On restore, set the vcpu placement up again.
 136 * If it fails, then we're in a bad state, since
 137 * we can't back out from using it...
 138 */
 139void xen_vcpu_restore(void)
 140{
 141        if (have_vcpu_info_placement) {
 142                int cpu;
 143
 144                for_each_online_cpu(cpu) {
 145                        bool other_cpu = (cpu != smp_processor_id());
 146
 147                        if (other_cpu &&
 148                            HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
 149                                BUG();
 150
 151                        xen_vcpu_setup(cpu);
 152
 153                        if (other_cpu &&
 154                            HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
 155                                BUG();
 156                }
 157
 158                BUG_ON(!have_vcpu_info_placement);
 159        }
 160}
 161
 162static void __init xen_banner(void)
 163{
 164        unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
 165        struct xen_extraversion extra;
 166        HYPERVISOR_xen_version(XENVER_extraversion, &extra);
 167
 168        printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
 169               pv_info.name);
 170        printk(KERN_INFO "Xen version: %d.%d%s%s\n",
 171               version >> 16, version & 0xffff, extra.extraversion,
 172               xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
 173}
 174
 175static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
 176static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
 177
 178static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 179                      unsigned int *cx, unsigned int *dx)
 180{
 181        unsigned maskebx = ~0;
 182        unsigned maskecx = ~0;
 183        unsigned maskedx = ~0;
 184
 185        /*
 186         * Mask out inconvenient features, to try and disable as many
 187         * unsupported kernel subsystems as possible.
 188         */
 189        switch (*ax) {
 190        case 1:
 191                maskecx = cpuid_leaf1_ecx_mask;
 192                maskedx = cpuid_leaf1_edx_mask;
 193                break;
 194
 195        case 0xb:
 196                /* Suppress extended topology stuff */
 197                maskebx = 0;
 198                break;
 199        }
 200
 201        asm(XEN_EMULATE_PREFIX "cpuid"
 202                : "=a" (*ax),
 203                  "=b" (*bx),
 204                  "=c" (*cx),
 205                  "=d" (*dx)
 206                : "0" (*ax), "2" (*cx));
 207
 208        *bx &= maskebx;
 209        *cx &= maskecx;
 210        *dx &= maskedx;
 211}
 212
 213static __init void xen_init_cpuid_mask(void)
 214{
 215        unsigned int ax, bx, cx, dx;
 216
 217        cpuid_leaf1_edx_mask =
 218                ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
 219                  (1 << X86_FEATURE_MCA)  |  /* disable MCA */
 220                  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
 221
 222        if (!xen_initial_domain())
 223                cpuid_leaf1_edx_mask &=
 224                        ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
 225                          (1 << X86_FEATURE_ACPI));  /* disable ACPI */
 226
 227        ax = 1;
 228        cx = 0;
 229        xen_cpuid(&ax, &bx, &cx, &dx);
 230
 231        /* cpuid claims we support xsave; try enabling it to see what happens */
 232        if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
 233                unsigned long cr4;
 234
 235                set_in_cr4(X86_CR4_OSXSAVE);
 236                
 237                cr4 = read_cr4();
 238
 239                if ((cr4 & X86_CR4_OSXSAVE) == 0)
 240                        cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
 241
 242                clear_in_cr4(X86_CR4_OSXSAVE);
 243        }
 244}
 245
 246static void xen_set_debugreg(int reg, unsigned long val)
 247{
 248        HYPERVISOR_set_debugreg(reg, val);
 249}
 250
 251static unsigned long xen_get_debugreg(int reg)
 252{
 253        return HYPERVISOR_get_debugreg(reg);
 254}
 255
 256static void xen_end_context_switch(struct task_struct *next)
 257{
 258        xen_mc_flush();
 259        paravirt_end_context_switch(next);
 260}
 261
 262static unsigned long xen_store_tr(void)
 263{
 264        return 0;
 265}
 266
 267/*
 268 * Set the page permissions for a particular virtual address.  If the
 269 * address is a vmalloc mapping (or other non-linear mapping), then
 270 * find the linear mapping of the page and also set its protections to
 271 * match.
 272 */
 273static void set_aliased_prot(void *v, pgprot_t prot)
 274{
 275        int level;
 276        pte_t *ptep;
 277        pte_t pte;
 278        unsigned long pfn;
 279        struct page *page;
 280
 281        ptep = lookup_address((unsigned long)v, &level);
 282        BUG_ON(ptep == NULL);
 283
 284        pfn = pte_pfn(*ptep);
 285        page = pfn_to_page(pfn);
 286
 287        pte = pfn_pte(pfn, prot);
 288
 289        if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 290                BUG();
 291
 292        if (!PageHighMem(page)) {
 293                void *av = __va(PFN_PHYS(pfn));
 294
 295                if (av != v)
 296                        if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
 297                                BUG();
 298        } else
 299                kmap_flush_unused();
 300}
 301
 302static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 303{
 304        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 305        int i;
 306
 307        for(i = 0; i < entries; i += entries_per_page)
 308                set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 309}
 310
 311static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 312{
 313        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 314        int i;
 315
 316        for(i = 0; i < entries; i += entries_per_page)
 317                set_aliased_prot(ldt + i, PAGE_KERNEL);
 318}
 319
 320static void xen_set_ldt(const void *addr, unsigned entries)
 321{
 322        struct mmuext_op *op;
 323        struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 324
 325        op = mcs.args;
 326        op->cmd = MMUEXT_SET_LDT;
 327        op->arg1.linear_addr = (unsigned long)addr;
 328        op->arg2.nr_ents = entries;
 329
 330        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 331
 332        xen_mc_issue(PARAVIRT_LAZY_CPU);
 333}
 334
 335static void xen_load_gdt(const struct desc_ptr *dtr)
 336{
 337        unsigned long va = dtr->address;
 338        unsigned int size = dtr->size + 1;
 339        unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
 340        unsigned long frames[pages];
 341        int f;
 342
 343        /*
 344         * A GDT can be up to 64k in size, which corresponds to 8192
 345         * 8-byte entries, or 16 4k pages..
 346         */
 347
 348        BUG_ON(size > 65536);
 349        BUG_ON(va & ~PAGE_MASK);
 350
 351        for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 352                int level;
 353                pte_t *ptep;
 354                unsigned long pfn, mfn;
 355                void *virt;
 356
 357                /*
 358                 * The GDT is per-cpu and is in the percpu data area.
 359                 * That can be virtually mapped, so we need to do a
 360                 * page-walk to get the underlying MFN for the
 361                 * hypercall.  The page can also be in the kernel's
 362                 * linear range, so we need to RO that mapping too.
 363                 */
 364                ptep = lookup_address(va, &level);
 365                BUG_ON(ptep == NULL);
 366
 367                pfn = pte_pfn(*ptep);
 368                mfn = pfn_to_mfn(pfn);
 369                virt = __va(PFN_PHYS(pfn));
 370
 371                frames[f] = mfn;
 372
 373                make_lowmem_page_readonly((void *)va);
 374                make_lowmem_page_readonly(virt);
 375        }
 376
 377        if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 378                BUG();
 379}
 380
 381/*
 382 * load_gdt for early boot, when the gdt is only mapped once
 383 */
 384static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
 385{
 386        unsigned long va = dtr->address;
 387        unsigned int size = dtr->size + 1;
 388        unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
 389        unsigned long frames[pages];
 390        int f;
 391
 392        /*
 393         * A GDT can be up to 64k in size, which corresponds to 8192
 394         * 8-byte entries, or 16 4k pages..
 395         */
 396
 397        BUG_ON(size > 65536);
 398        BUG_ON(va & ~PAGE_MASK);
 399
 400        for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 401                pte_t pte;
 402                unsigned long pfn, mfn;
 403
 404                pfn = virt_to_pfn(va);
 405                mfn = pfn_to_mfn(pfn);
 406
 407                pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 408
 409                if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 410                        BUG();
 411
 412                frames[f] = mfn;
 413        }
 414
 415        if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 416                BUG();
 417}
 418
 419static void load_TLS_descriptor(struct thread_struct *t,
 420                                unsigned int cpu, unsigned int i)
 421{
 422        struct desc_struct *gdt = get_cpu_gdt_table(cpu);
 423        xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 424        struct multicall_space mc = __xen_mc_entry(0);
 425
 426        MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 427}
 428
 429static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 430{
 431        /*
 432         * XXX sleazy hack: If we're being called in a lazy-cpu zone
 433         * and lazy gs handling is enabled, it means we're in a
 434         * context switch, and %gs has just been saved.  This means we
 435         * can zero it out to prevent faults on exit from the
 436         * hypervisor if the next process has no %gs.  Either way, it
 437         * has been saved, and the new value will get loaded properly.
 438         * This will go away as soon as Xen has been modified to not
 439         * save/restore %gs for normal hypercalls.
 440         *
 441         * On x86_64, this hack is not used for %gs, because gs points
 442         * to KERNEL_GS_BASE (and uses it for PDA references), so we
 443         * must not zero %gs on x86_64
 444         *
 445         * For x86_64, we need to zero %fs, otherwise we may get an
 446         * exception between the new %fs descriptor being loaded and
 447         * %fs being effectively cleared at __switch_to().
 448         */
 449        if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
 450#ifdef CONFIG_X86_32
 451                lazy_load_gs(0);
 452#else
 453                loadsegment(fs, 0);
 454#endif
 455        }
 456
 457        xen_mc_batch();
 458
 459        load_TLS_descriptor(t, cpu, 0);
 460        load_TLS_descriptor(t, cpu, 1);
 461        load_TLS_descriptor(t, cpu, 2);
 462
 463        xen_mc_issue(PARAVIRT_LAZY_CPU);
 464}
 465
 466#ifdef CONFIG_X86_64
 467static void xen_load_gs_index(unsigned int idx)
 468{
 469        if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 470                BUG();
 471}
 472#endif
 473
 474static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 475                                const void *ptr)
 476{
 477        xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 478        u64 entry = *(u64 *)ptr;
 479
 480        preempt_disable();
 481
 482        xen_mc_flush();
 483        if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 484                BUG();
 485
 486        preempt_enable();
 487}
 488
 489static int cvt_gate_to_trap(int vector, const gate_desc *val,
 490                            struct trap_info *info)
 491{
 492        unsigned long addr;
 493
 494        if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
 495                return 0;
 496
 497        info->vector = vector;
 498
 499        addr = gate_offset(*val);
 500#ifdef CONFIG_X86_64
 501        /*
 502         * Look for known traps using IST, and substitute them
 503         * appropriately.  The debugger ones are the only ones we care
 504         * about.  Xen will handle faults like double_fault and
 505         * machine_check, so we should never see them.  Warn if
 506         * there's an unexpected IST-using fault handler.
 507         */
 508        if (addr == (unsigned long)debug)
 509                addr = (unsigned long)xen_debug;
 510        else if (addr == (unsigned long)int3)
 511                addr = (unsigned long)xen_int3;
 512        else if (addr == (unsigned long)stack_segment)
 513                addr = (unsigned long)xen_stack_segment;
 514        else if (addr == (unsigned long)double_fault ||
 515                 addr == (unsigned long)nmi) {
 516                /* Don't need to handle these */
 517                return 0;
 518#ifdef CONFIG_X86_MCE
 519        } else if (addr == (unsigned long)machine_check) {
 520                return 0;
 521#endif
 522        } else {
 523                /* Some other trap using IST? */
 524                if (WARN_ON(val->ist != 0))
 525                        return 0;
 526        }
 527#endif  /* CONFIG_X86_64 */
 528        info->address = addr;
 529
 530        info->cs = gate_segment(*val);
 531        info->flags = val->dpl;
 532        /* interrupt gates clear IF */
 533        if (val->type == GATE_INTERRUPT)
 534                info->flags |= 1 << 2;
 535
 536        return 1;
 537}
 538
 539/* Locations of each CPU's IDT */
 540static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 541
 542/* Set an IDT entry.  If the entry is part of the current IDT, then
 543   also update Xen. */
 544static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 545{
 546        unsigned long p = (unsigned long)&dt[entrynum];
 547        unsigned long start, end;
 548
 549        preempt_disable();
 550
 551        start = __get_cpu_var(idt_desc).address;
 552        end = start + __get_cpu_var(idt_desc).size + 1;
 553
 554        xen_mc_flush();
 555
 556        native_write_idt_entry(dt, entrynum, g);
 557
 558        if (p >= start && (p + 8) <= end) {
 559                struct trap_info info[2];
 560
 561                info[1].address = 0;
 562
 563                if (cvt_gate_to_trap(entrynum, g, &info[0]))
 564                        if (HYPERVISOR_set_trap_table(info))
 565                                BUG();
 566        }
 567
 568        preempt_enable();
 569}
 570
 571static void xen_convert_trap_info(const struct desc_ptr *desc,
 572                                  struct trap_info *traps)
 573{
 574        unsigned in, out, count;
 575
 576        count = (desc->size+1) / sizeof(gate_desc);
 577        BUG_ON(count > 256);
 578
 579        for (in = out = 0; in < count; in++) {
 580                gate_desc *entry = (gate_desc*)(desc->address) + in;
 581
 582                if (cvt_gate_to_trap(in, entry, &traps[out]))
 583                        out++;
 584        }
 585        traps[out].address = 0;
 586}
 587
 588void xen_copy_trap_info(struct trap_info *traps)
 589{
 590        const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
 591
 592        xen_convert_trap_info(desc, traps);
 593}
 594
 595/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 596   hold a spinlock to protect the static traps[] array (static because
 597   it avoids allocation, and saves stack space). */
 598static void xen_load_idt(const struct desc_ptr *desc)
 599{
 600        static DEFINE_SPINLOCK(lock);
 601        static struct trap_info traps[257];
 602
 603        spin_lock(&lock);
 604
 605        __get_cpu_var(idt_desc) = *desc;
 606
 607        xen_convert_trap_info(desc, traps);
 608
 609        xen_mc_flush();
 610        if (HYPERVISOR_set_trap_table(traps))
 611                BUG();
 612
 613        spin_unlock(&lock);
 614}
 615
 616/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 617   they're handled differently. */
 618static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 619                                const void *desc, int type)
 620{
 621        preempt_disable();
 622
 623        switch (type) {
 624        case DESC_LDT:
 625        case DESC_TSS:
 626                /* ignore */
 627                break;
 628
 629        default: {
 630                xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 631
 632                xen_mc_flush();
 633                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 634                        BUG();
 635        }
 636
 637        }
 638
 639        preempt_enable();
 640}
 641
 642/*
 643 * Version of write_gdt_entry for use at early boot-time needed to
 644 * update an entry as simply as possible.
 645 */
 646static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 647                                            const void *desc, int type)
 648{
 649        switch (type) {
 650        case DESC_LDT:
 651        case DESC_TSS:
 652                /* ignore */
 653                break;
 654
 655        default: {
 656                xmaddr_t maddr = virt_to_machine(&dt[entry]);
 657
 658                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 659                        dt[entry] = *(struct desc_struct *)desc;
 660        }
 661
 662        }
 663}
 664
 665static void xen_load_sp0(struct tss_struct *tss,
 666                         struct thread_struct *thread)
 667{
 668        struct multicall_space mcs = xen_mc_entry(0);
 669        MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
 670        xen_mc_issue(PARAVIRT_LAZY_CPU);
 671}
 672
 673static void xen_set_iopl_mask(unsigned mask)
 674{
 675        struct physdev_set_iopl set_iopl;
 676
 677        /* Force the change at ring 0. */
 678        set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
 679        HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
 680}
 681
 682static void xen_io_delay(void)
 683{
 684}
 685
 686#ifdef CONFIG_X86_LOCAL_APIC
 687static u32 xen_apic_read(u32 reg)
 688{
 689        return 0;
 690}
 691
 692static void xen_apic_write(u32 reg, u32 val)
 693{
 694        /* Warn to see if there's any stray references */
 695        WARN_ON(1);
 696}
 697
 698static u64 xen_apic_icr_read(void)
 699{
 700        return 0;
 701}
 702
 703static void xen_apic_icr_write(u32 low, u32 id)
 704{
 705        /* Warn to see if there's any stray references */
 706        WARN_ON(1);
 707}
 708
 709static void xen_apic_wait_icr_idle(void)
 710{
 711        return;
 712}
 713
 714static u32 xen_safe_apic_wait_icr_idle(void)
 715{
 716        return 0;
 717}
 718
 719static void set_xen_basic_apic_ops(void)
 720{
 721        apic->read = xen_apic_read;
 722        apic->write = xen_apic_write;
 723        apic->icr_read = xen_apic_icr_read;
 724        apic->icr_write = xen_apic_icr_write;
 725        apic->wait_icr_idle = xen_apic_wait_icr_idle;
 726        apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
 727}
 728
 729#endif
 730
 731
 732static void xen_clts(void)
 733{
 734        struct multicall_space mcs;
 735
 736        mcs = xen_mc_entry(0);
 737
 738        MULTI_fpu_taskswitch(mcs.mc, 0);
 739
 740        xen_mc_issue(PARAVIRT_LAZY_CPU);
 741}
 742
 743static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
 744
 745static unsigned long xen_read_cr0(void)
 746{
 747        unsigned long cr0 = percpu_read(xen_cr0_value);
 748
 749        if (unlikely(cr0 == 0)) {
 750                cr0 = native_read_cr0();
 751                percpu_write(xen_cr0_value, cr0);
 752        }
 753
 754        return cr0;
 755}
 756
 757static void xen_write_cr0(unsigned long cr0)
 758{
 759        struct multicall_space mcs;
 760
 761        percpu_write(xen_cr0_value, cr0);
 762
 763        /* Only pay attention to cr0.TS; everything else is
 764           ignored. */
 765        mcs = xen_mc_entry(0);
 766
 767        MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
 768
 769        xen_mc_issue(PARAVIRT_LAZY_CPU);
 770}
 771
 772static void xen_write_cr4(unsigned long cr4)
 773{
 774        cr4 &= ~X86_CR4_PGE;
 775        cr4 &= ~X86_CR4_PSE;
 776
 777        native_write_cr4(cr4);
 778}
 779
 780static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
 781{
 782        int ret;
 783
 784        ret = 0;
 785
 786        switch (msr) {
 787#ifdef CONFIG_X86_64
 788                unsigned which;
 789                u64 base;
 790
 791        case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
 792        case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
 793        case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
 794
 795        set:
 796                base = ((u64)high << 32) | low;
 797                if (HYPERVISOR_set_segment_base(which, base) != 0)
 798                        ret = -EIO;
 799                break;
 800#endif
 801
 802        case MSR_STAR:
 803        case MSR_CSTAR:
 804        case MSR_LSTAR:
 805        case MSR_SYSCALL_MASK:
 806        case MSR_IA32_SYSENTER_CS:
 807        case MSR_IA32_SYSENTER_ESP:
 808        case MSR_IA32_SYSENTER_EIP:
 809                /* Fast syscall setup is all done in hypercalls, so
 810                   these are all ignored.  Stub them out here to stop
 811                   Xen console noise. */
 812                break;
 813
 814        default:
 815                ret = native_write_msr_safe(msr, low, high);
 816        }
 817
 818        return ret;
 819}
 820
 821void xen_setup_shared_info(void)
 822{
 823        if (!xen_feature(XENFEAT_auto_translated_physmap)) {
 824                set_fixmap(FIX_PARAVIRT_BOOTMAP,
 825                           xen_start_info->shared_info);
 826
 827                HYPERVISOR_shared_info =
 828                        (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
 829        } else
 830                HYPERVISOR_shared_info =
 831                        (struct shared_info *)__va(xen_start_info->shared_info);
 832
 833#ifndef CONFIG_SMP
 834        /* In UP this is as good a place as any to set up shared info */
 835        xen_setup_vcpu_info_placement();
 836#endif
 837
 838        xen_setup_mfn_list_list();
 839}
 840
 841/* This is called once we have the cpu_possible_map */
 842void xen_setup_vcpu_info_placement(void)
 843{
 844        int cpu;
 845
 846        for_each_possible_cpu(cpu)
 847                xen_vcpu_setup(cpu);
 848
 849        /* xen_vcpu_setup managed to place the vcpu_info within the
 850           percpu area for all cpus, so make use of it */
 851        if (have_vcpu_info_placement) {
 852                printk(KERN_INFO "Xen: using vcpu_info placement\n");
 853
 854                pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
 855                pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
 856                pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
 857                pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
 858                pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
 859        }
 860}
 861
 862static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
 863                          unsigned long addr, unsigned len)
 864{
 865        char *start, *end, *reloc;
 866        unsigned ret;
 867
 868        start = end = reloc = NULL;
 869
 870#define SITE(op, x)                                                     \
 871        case PARAVIRT_PATCH(op.x):                                      \
 872        if (have_vcpu_info_placement) {                                 \
 873                start = (char *)xen_##x##_direct;                       \
 874                end = xen_##x##_direct_end;                             \
 875                reloc = xen_##x##_direct_reloc;                         \
 876        }                                                               \
 877        goto patch_site
 878
 879        switch (type) {
 880                SITE(pv_irq_ops, irq_enable);
 881                SITE(pv_irq_ops, irq_disable);
 882                SITE(pv_irq_ops, save_fl);
 883                SITE(pv_irq_ops, restore_fl);
 884#undef SITE
 885
 886        patch_site:
 887                if (start == NULL || (end-start) > len)
 888                        goto default_patch;
 889
 890                ret = paravirt_patch_insns(insnbuf, len, start, end);
 891
 892                /* Note: because reloc is assigned from something that
 893                   appears to be an array, gcc assumes it's non-null,
 894                   but doesn't know its relationship with start and
 895                   end. */
 896                if (reloc > start && reloc < end) {
 897                        int reloc_off = reloc - start;
 898                        long *relocp = (long *)(insnbuf + reloc_off);
 899                        long delta = start - (char *)addr;
 900
 901                        *relocp += delta;
 902                }
 903                break;
 904
 905        default_patch:
 906        default:
 907                ret = paravirt_patch_default(type, clobbers, insnbuf,
 908                                             addr, len);
 909                break;
 910        }
 911
 912        return ret;
 913}
 914
 915static const struct pv_info xen_info __initdata = {
 916        .paravirt_enabled = 1,
 917        .shared_kernel_pmd = 0,
 918
 919        .name = "Xen",
 920};
 921
 922static const struct pv_init_ops xen_init_ops __initdata = {
 923        .patch = xen_patch,
 924};
 925
 926static const struct pv_time_ops xen_time_ops __initdata = {
 927        .sched_clock = xen_sched_clock,
 928};
 929
 930static const struct pv_cpu_ops xen_cpu_ops __initdata = {
 931        .cpuid = xen_cpuid,
 932
 933        .set_debugreg = xen_set_debugreg,
 934        .get_debugreg = xen_get_debugreg,
 935
 936        .clts = xen_clts,
 937
 938        .read_cr0 = xen_read_cr0,
 939        .write_cr0 = xen_write_cr0,
 940
 941        .read_cr4 = native_read_cr4,
 942        .read_cr4_safe = native_read_cr4_safe,
 943        .write_cr4 = xen_write_cr4,
 944
 945        .wbinvd = native_wbinvd,
 946
 947        .read_msr = native_read_msr_safe,
 948        .write_msr = xen_write_msr_safe,
 949        .read_tsc = native_read_tsc,
 950        .read_pmc = native_read_pmc,
 951
 952        .iret = xen_iret,
 953        .irq_enable_sysexit = xen_sysexit,
 954#ifdef CONFIG_X86_64
 955        .usergs_sysret32 = xen_sysret32,
 956        .usergs_sysret64 = xen_sysret64,
 957#endif
 958
 959        .load_tr_desc = paravirt_nop,
 960        .set_ldt = xen_set_ldt,
 961        .load_gdt = xen_load_gdt,
 962        .load_idt = xen_load_idt,
 963        .load_tls = xen_load_tls,
 964#ifdef CONFIG_X86_64
 965        .load_gs_index = xen_load_gs_index,
 966#endif
 967
 968        .alloc_ldt = xen_alloc_ldt,
 969        .free_ldt = xen_free_ldt,
 970
 971        .store_gdt = native_store_gdt,
 972        .store_idt = native_store_idt,
 973        .store_tr = xen_store_tr,
 974
 975        .write_ldt_entry = xen_write_ldt_entry,
 976        .write_gdt_entry = xen_write_gdt_entry,
 977        .write_idt_entry = xen_write_idt_entry,
 978        .load_sp0 = xen_load_sp0,
 979
 980        .set_iopl_mask = xen_set_iopl_mask,
 981        .io_delay = xen_io_delay,
 982
 983        /* Xen takes care of %gs when switching to usermode for us */
 984        .swapgs = paravirt_nop,
 985
 986        .start_context_switch = paravirt_start_context_switch,
 987        .end_context_switch = xen_end_context_switch,
 988};
 989
 990static const struct pv_apic_ops xen_apic_ops __initdata = {
 991#ifdef CONFIG_X86_LOCAL_APIC
 992        .startup_ipi_hook = paravirt_nop,
 993#endif
 994};
 995
 996static void xen_reboot(int reason)
 997{
 998        struct sched_shutdown r = { .reason = reason };
 999
1000#ifdef CONFIG_SMP
1001        smp_send_stop();
1002#endif
1003
1004        if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1005                BUG();
1006}
1007
1008static void xen_restart(char *msg)
1009{
1010        xen_reboot(SHUTDOWN_reboot);
1011}
1012
1013static void xen_emergency_restart(void)
1014{
1015        xen_reboot(SHUTDOWN_reboot);
1016}
1017
1018static void xen_machine_halt(void)
1019{
1020        xen_reboot(SHUTDOWN_poweroff);
1021}
1022
1023static void xen_crash_shutdown(struct pt_regs *regs)
1024{
1025        xen_reboot(SHUTDOWN_crash);
1026}
1027
1028static const struct machine_ops __initdata xen_machine_ops = {
1029        .restart = xen_restart,
1030        .halt = xen_machine_halt,
1031        .power_off = xen_machine_halt,
1032        .shutdown = xen_machine_halt,
1033        .crash_shutdown = xen_crash_shutdown,
1034        .emergency_restart = xen_emergency_restart,
1035};
1036
1037/*
1038 * Set up the GDT and segment registers for -fstack-protector.  Until
1039 * we do this, we have to be careful not to call any stack-protected
1040 * function, which is most of the kernel.
1041 */
1042static void __init xen_setup_stackprotector(void)
1043{
1044        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1045        pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1046
1047        setup_stack_canary_segment(0);
1048        switch_to_new_gdt(0);
1049
1050        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1051        pv_cpu_ops.load_gdt = xen_load_gdt;
1052}
1053
1054/* First C function to be called on Xen boot */
1055asmlinkage void __init xen_start_kernel(void)
1056{
1057        pgd_t *pgd;
1058
1059        if (!xen_start_info)
1060                return;
1061
1062        xen_domain_type = XEN_PV_DOMAIN;
1063
1064        /* Install Xen paravirt ops */
1065        pv_info = xen_info;
1066        pv_init_ops = xen_init_ops;
1067        pv_time_ops = xen_time_ops;
1068        pv_cpu_ops = xen_cpu_ops;
1069        pv_apic_ops = xen_apic_ops;
1070
1071        x86_init.resources.memory_setup = xen_memory_setup;
1072        x86_init.oem.arch_setup = xen_arch_setup;
1073        x86_init.oem.banner = xen_banner;
1074
1075        x86_init.timers.timer_init = xen_time_init;
1076        x86_init.timers.setup_percpu_clockev = x86_init_noop;
1077        x86_cpuinit.setup_percpu_clockev = x86_init_noop;
1078
1079        x86_platform.calibrate_tsc = xen_tsc_khz;
1080        x86_platform.get_wallclock = xen_get_wallclock;
1081        x86_platform.set_wallclock = xen_set_wallclock;
1082
1083        /*
1084         * Set up some pagetable state before starting to set any ptes.
1085         */
1086
1087        xen_init_mmu_ops();
1088
1089        /* Prevent unwanted bits from being set in PTEs. */
1090        __supported_pte_mask &= ~_PAGE_GLOBAL;
1091        if (!xen_initial_domain())
1092                __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1093
1094        __supported_pte_mask |= _PAGE_IOMAP;
1095
1096#ifdef CONFIG_X86_64
1097        /* Work out if we support NX */
1098        check_efer();
1099#endif
1100
1101        xen_setup_features();
1102
1103        /* Get mfn list */
1104        if (!xen_feature(XENFEAT_auto_translated_physmap))
1105                xen_build_dynamic_phys_to_machine();
1106
1107        /*
1108         * Set up kernel GDT and segment registers, mainly so that
1109         * -fstack-protector code can be executed.
1110         */
1111        xen_setup_stackprotector();
1112
1113        xen_init_irq_ops();
1114        xen_init_cpuid_mask();
1115
1116#ifdef CONFIG_X86_LOCAL_APIC
1117        /*
1118         * set up the basic apic ops.
1119         */
1120        set_xen_basic_apic_ops();
1121#endif
1122
1123        if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1124                pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1125                pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1126        }
1127
1128        machine_ops = xen_machine_ops;
1129
1130        /*
1131         * The only reliable way to retain the initial address of the
1132         * percpu gdt_page is to remember it here, so we can go and
1133         * mark it RW later, when the initial percpu area is freed.
1134         */
1135        xen_initial_gdt = &per_cpu(gdt_page, 0);
1136
1137        xen_smp_init();
1138
1139        pgd = (pgd_t *)xen_start_info->pt_base;
1140
1141        /* Don't do the full vcpu_info placement stuff until we have a
1142           possible map and a non-dummy shared_info. */
1143        per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1144
1145        local_irq_disable();
1146        early_boot_irqs_off();
1147
1148        xen_raw_console_write("mapping kernel into physical memory\n");
1149        pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1150
1151        init_mm.pgd = pgd;
1152
1153        /* keep using Xen gdt for now; no urgent need to change it */
1154
1155        pv_info.kernel_rpl = 1;
1156        if (xen_feature(XENFEAT_supervisor_mode_kernel))
1157                pv_info.kernel_rpl = 0;
1158
1159        /* set the limit of our address space */
1160        xen_reserve_top();
1161
1162#ifdef CONFIG_X86_32
1163        /* set up basic CPUID stuff */
1164        cpu_detect(&new_cpu_data);
1165        new_cpu_data.hard_math = 1;
1166        new_cpu_data.wp_works_ok = 1;
1167        new_cpu_data.x86_capability[0] = cpuid_edx(1);
1168#endif
1169
1170        /* Poke various useful things into boot_params */
1171        boot_params.hdr.type_of_loader = (9 << 4) | 0;
1172        boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1173                ? __pa(xen_start_info->mod_start) : 0;
1174        boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1175        boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1176
1177        if (!xen_initial_domain()) {
1178                add_preferred_console("xenboot", 0, NULL);
1179                add_preferred_console("tty", 0, NULL);
1180                add_preferred_console("hvc", 0, NULL);
1181        }
1182
1183        xen_raw_console_write("about to get started...\n");
1184
1185        /* Start the world */
1186#ifdef CONFIG_X86_32
1187        i386_start_kernel();
1188#else
1189        x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1190#endif
1191}
1192