linux/block/as-iosched.c
<<
>>
Prefs
   1/*
   2 *  Anticipatory & deadline i/o scheduler.
   3 *
   4 *  Copyright (C) 2002 Jens Axboe <axboe@kernel.dk>
   5 *                     Nick Piggin <nickpiggin@yahoo.com.au>
   6 *
   7 */
   8#include <linux/kernel.h>
   9#include <linux/fs.h>
  10#include <linux/blkdev.h>
  11#include <linux/elevator.h>
  12#include <linux/bio.h>
  13#include <linux/module.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/compiler.h>
  17#include <linux/rbtree.h>
  18#include <linux/interrupt.h>
  19
  20/*
  21 * See Documentation/block/as-iosched.txt
  22 */
  23
  24/*
  25 * max time before a read is submitted.
  26 */
  27#define default_read_expire (HZ / 8)
  28
  29/*
  30 * ditto for writes, these limits are not hard, even
  31 * if the disk is capable of satisfying them.
  32 */
  33#define default_write_expire (HZ / 4)
  34
  35/*
  36 * read_batch_expire describes how long we will allow a stream of reads to
  37 * persist before looking to see whether it is time to switch over to writes.
  38 */
  39#define default_read_batch_expire (HZ / 2)
  40
  41/*
  42 * write_batch_expire describes how long we want a stream of writes to run for.
  43 * This is not a hard limit, but a target we set for the auto-tuning thingy.
  44 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
  45 * a short amount of time...
  46 */
  47#define default_write_batch_expire (HZ / 8)
  48
  49/*
  50 * max time we may wait to anticipate a read (default around 6ms)
  51 */
  52#define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
  53
  54/*
  55 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
  56 * however huge values tend to interfere and not decay fast enough. A program
  57 * might be in a non-io phase of operation. Waiting on user input for example,
  58 * or doing a lengthy computation. A small penalty can be justified there, and
  59 * will still catch out those processes that constantly have large thinktimes.
  60 */
  61#define MAX_THINKTIME (HZ/50UL)
  62
  63/* Bits in as_io_context.state */
  64enum as_io_states {
  65        AS_TASK_RUNNING=0,      /* Process has not exited */
  66        AS_TASK_IOSTARTED,      /* Process has started some IO */
  67        AS_TASK_IORUNNING,      /* Process has completed some IO */
  68};
  69
  70enum anticipation_status {
  71        ANTIC_OFF=0,            /* Not anticipating (normal operation)  */
  72        ANTIC_WAIT_REQ,         /* The last read has not yet completed  */
  73        ANTIC_WAIT_NEXT,        /* Currently anticipating a request vs
  74                                   last read (which has completed) */
  75        ANTIC_FINISHED,         /* Anticipating but have found a candidate
  76                                 * or timed out */
  77};
  78
  79struct as_data {
  80        /*
  81         * run time data
  82         */
  83
  84        struct request_queue *q;        /* the "owner" queue */
  85
  86        /*
  87         * requests (as_rq s) are present on both sort_list and fifo_list
  88         */
  89        struct rb_root sort_list[2];
  90        struct list_head fifo_list[2];
  91
  92        struct request *next_rq[2];     /* next in sort order */
  93        sector_t last_sector[2];        /* last SYNC & ASYNC sectors */
  94
  95        unsigned long exit_prob;        /* probability a task will exit while
  96                                           being waited on */
  97        unsigned long exit_no_coop;     /* probablility an exited task will
  98                                           not be part of a later cooperating
  99                                           request */
 100        unsigned long new_ttime_total;  /* mean thinktime on new proc */
 101        unsigned long new_ttime_mean;
 102        u64 new_seek_total;             /* mean seek on new proc */
 103        sector_t new_seek_mean;
 104
 105        unsigned long current_batch_expires;
 106        unsigned long last_check_fifo[2];
 107        int changed_batch;              /* 1: waiting for old batch to end */
 108        int new_batch;                  /* 1: waiting on first read complete */
 109        int batch_data_dir;             /* current batch SYNC / ASYNC */
 110        int write_batch_count;          /* max # of reqs in a write batch */
 111        int current_write_count;        /* how many requests left this batch */
 112        int write_batch_idled;          /* has the write batch gone idle? */
 113
 114        enum anticipation_status antic_status;
 115        unsigned long antic_start;      /* jiffies: when it started */
 116        struct timer_list antic_timer;  /* anticipatory scheduling timer */
 117        struct work_struct antic_work;  /* Deferred unplugging */
 118        struct io_context *io_context;  /* Identify the expected process */
 119        int ioc_finished; /* IO associated with io_context is finished */
 120        int nr_dispatched;
 121
 122        /*
 123         * settings that change how the i/o scheduler behaves
 124         */
 125        unsigned long fifo_expire[2];
 126        unsigned long batch_expire[2];
 127        unsigned long antic_expire;
 128};
 129
 130/*
 131 * per-request data.
 132 */
 133enum arq_state {
 134        AS_RQ_NEW=0,            /* New - not referenced and not on any lists */
 135        AS_RQ_QUEUED,           /* In the request queue. It belongs to the
 136                                   scheduler */
 137        AS_RQ_DISPATCHED,       /* On the dispatch list. It belongs to the
 138                                   driver now */
 139        AS_RQ_PRESCHED,         /* Debug poisoning for requests being used */
 140        AS_RQ_REMOVED,
 141        AS_RQ_MERGED,
 142        AS_RQ_POSTSCHED,        /* when they shouldn't be */
 143};
 144
 145#define RQ_IOC(rq)      ((struct io_context *) (rq)->elevator_private)
 146#define RQ_STATE(rq)    ((enum arq_state)(rq)->elevator_private2)
 147#define RQ_SET_STATE(rq, state) ((rq)->elevator_private2 = (void *) state)
 148
 149static DEFINE_PER_CPU(unsigned long, as_ioc_count);
 150static struct completion *ioc_gone;
 151static DEFINE_SPINLOCK(ioc_gone_lock);
 152
 153static void as_move_to_dispatch(struct as_data *ad, struct request *rq);
 154static void as_antic_stop(struct as_data *ad);
 155
 156/*
 157 * IO Context helper functions
 158 */
 159
 160/* Called to deallocate the as_io_context */
 161static void free_as_io_context(struct as_io_context *aic)
 162{
 163        kfree(aic);
 164        elv_ioc_count_dec(as_ioc_count);
 165        if (ioc_gone) {
 166                /*
 167                 * AS scheduler is exiting, grab exit lock and check
 168                 * the pending io context count. If it hits zero,
 169                 * complete ioc_gone and set it back to NULL.
 170                 */
 171                spin_lock(&ioc_gone_lock);
 172                if (ioc_gone && !elv_ioc_count_read(as_ioc_count)) {
 173                        complete(ioc_gone);
 174                        ioc_gone = NULL;
 175                }
 176                spin_unlock(&ioc_gone_lock);
 177        }
 178}
 179
 180static void as_trim(struct io_context *ioc)
 181{
 182        spin_lock_irq(&ioc->lock);
 183        if (ioc->aic)
 184                free_as_io_context(ioc->aic);
 185        ioc->aic = NULL;
 186        spin_unlock_irq(&ioc->lock);
 187}
 188
 189/* Called when the task exits */
 190static void exit_as_io_context(struct as_io_context *aic)
 191{
 192        WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
 193        clear_bit(AS_TASK_RUNNING, &aic->state);
 194}
 195
 196static struct as_io_context *alloc_as_io_context(void)
 197{
 198        struct as_io_context *ret;
 199
 200        ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
 201        if (ret) {
 202                ret->dtor = free_as_io_context;
 203                ret->exit = exit_as_io_context;
 204                ret->state = 1 << AS_TASK_RUNNING;
 205                atomic_set(&ret->nr_queued, 0);
 206                atomic_set(&ret->nr_dispatched, 0);
 207                spin_lock_init(&ret->lock);
 208                ret->ttime_total = 0;
 209                ret->ttime_samples = 0;
 210                ret->ttime_mean = 0;
 211                ret->seek_total = 0;
 212                ret->seek_samples = 0;
 213                ret->seek_mean = 0;
 214                elv_ioc_count_inc(as_ioc_count);
 215        }
 216
 217        return ret;
 218}
 219
 220/*
 221 * If the current task has no AS IO context then create one and initialise it.
 222 * Then take a ref on the task's io context and return it.
 223 */
 224static struct io_context *as_get_io_context(int node)
 225{
 226        struct io_context *ioc = get_io_context(GFP_ATOMIC, node);
 227        if (ioc && !ioc->aic) {
 228                ioc->aic = alloc_as_io_context();
 229                if (!ioc->aic) {
 230                        put_io_context(ioc);
 231                        ioc = NULL;
 232                }
 233        }
 234        return ioc;
 235}
 236
 237static void as_put_io_context(struct request *rq)
 238{
 239        struct as_io_context *aic;
 240
 241        if (unlikely(!RQ_IOC(rq)))
 242                return;
 243
 244        aic = RQ_IOC(rq)->aic;
 245
 246        if (rq_is_sync(rq) && aic) {
 247                unsigned long flags;
 248
 249                spin_lock_irqsave(&aic->lock, flags);
 250                set_bit(AS_TASK_IORUNNING, &aic->state);
 251                aic->last_end_request = jiffies;
 252                spin_unlock_irqrestore(&aic->lock, flags);
 253        }
 254
 255        put_io_context(RQ_IOC(rq));
 256}
 257
 258/*
 259 * rb tree support functions
 260 */
 261#define RQ_RB_ROOT(ad, rq)      (&(ad)->sort_list[rq_is_sync((rq))])
 262
 263static void as_add_rq_rb(struct as_data *ad, struct request *rq)
 264{
 265        struct request *alias;
 266
 267        while ((unlikely(alias = elv_rb_add(RQ_RB_ROOT(ad, rq), rq)))) {
 268                as_move_to_dispatch(ad, alias);
 269                as_antic_stop(ad);
 270        }
 271}
 272
 273static inline void as_del_rq_rb(struct as_data *ad, struct request *rq)
 274{
 275        elv_rb_del(RQ_RB_ROOT(ad, rq), rq);
 276}
 277
 278/*
 279 * IO Scheduler proper
 280 */
 281
 282#define MAXBACK (1024 * 1024)   /*
 283                                 * Maximum distance the disk will go backward
 284                                 * for a request.
 285                                 */
 286
 287#define BACK_PENALTY    2
 288
 289/*
 290 * as_choose_req selects the preferred one of two requests of the same data_dir
 291 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
 292 */
 293static struct request *
 294as_choose_req(struct as_data *ad, struct request *rq1, struct request *rq2)
 295{
 296        int data_dir;
 297        sector_t last, s1, s2, d1, d2;
 298        int r1_wrap=0, r2_wrap=0;       /* requests are behind the disk head */
 299        const sector_t maxback = MAXBACK;
 300
 301        if (rq1 == NULL || rq1 == rq2)
 302                return rq2;
 303        if (rq2 == NULL)
 304                return rq1;
 305
 306        data_dir = rq_is_sync(rq1);
 307
 308        last = ad->last_sector[data_dir];
 309        s1 = blk_rq_pos(rq1);
 310        s2 = blk_rq_pos(rq2);
 311
 312        BUG_ON(data_dir != rq_is_sync(rq2));
 313
 314        /*
 315         * Strict one way elevator _except_ in the case where we allow
 316         * short backward seeks which are biased as twice the cost of a
 317         * similar forward seek.
 318         */
 319        if (s1 >= last)
 320                d1 = s1 - last;
 321        else if (s1+maxback >= last)
 322                d1 = (last - s1)*BACK_PENALTY;
 323        else {
 324                r1_wrap = 1;
 325                d1 = 0; /* shut up, gcc */
 326        }
 327
 328        if (s2 >= last)
 329                d2 = s2 - last;
 330        else if (s2+maxback >= last)
 331                d2 = (last - s2)*BACK_PENALTY;
 332        else {
 333                r2_wrap = 1;
 334                d2 = 0;
 335        }
 336
 337        /* Found required data */
 338        if (!r1_wrap && r2_wrap)
 339                return rq1;
 340        else if (!r2_wrap && r1_wrap)
 341                return rq2;
 342        else if (r1_wrap && r2_wrap) {
 343                /* both behind the head */
 344                if (s1 <= s2)
 345                        return rq1;
 346                else
 347                        return rq2;
 348        }
 349
 350        /* Both requests in front of the head */
 351        if (d1 < d2)
 352                return rq1;
 353        else if (d2 < d1)
 354                return rq2;
 355        else {
 356                if (s1 >= s2)
 357                        return rq1;
 358                else
 359                        return rq2;
 360        }
 361}
 362
 363/*
 364 * as_find_next_rq finds the next request after @prev in elevator order.
 365 * this with as_choose_req form the basis for how the scheduler chooses
 366 * what request to process next. Anticipation works on top of this.
 367 */
 368static struct request *
 369as_find_next_rq(struct as_data *ad, struct request *last)
 370{
 371        struct rb_node *rbnext = rb_next(&last->rb_node);
 372        struct rb_node *rbprev = rb_prev(&last->rb_node);
 373        struct request *next = NULL, *prev = NULL;
 374
 375        BUG_ON(RB_EMPTY_NODE(&last->rb_node));
 376
 377        if (rbprev)
 378                prev = rb_entry_rq(rbprev);
 379
 380        if (rbnext)
 381                next = rb_entry_rq(rbnext);
 382        else {
 383                const int data_dir = rq_is_sync(last);
 384
 385                rbnext = rb_first(&ad->sort_list[data_dir]);
 386                if (rbnext && rbnext != &last->rb_node)
 387                        next = rb_entry_rq(rbnext);
 388        }
 389
 390        return as_choose_req(ad, next, prev);
 391}
 392
 393/*
 394 * anticipatory scheduling functions follow
 395 */
 396
 397/*
 398 * as_antic_expired tells us when we have anticipated too long.
 399 * The funny "absolute difference" math on the elapsed time is to handle
 400 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
 401 */
 402static int as_antic_expired(struct as_data *ad)
 403{
 404        long delta_jif;
 405
 406        delta_jif = jiffies - ad->antic_start;
 407        if (unlikely(delta_jif < 0))
 408                delta_jif = -delta_jif;
 409        if (delta_jif < ad->antic_expire)
 410                return 0;
 411
 412        return 1;
 413}
 414
 415/*
 416 * as_antic_waitnext starts anticipating that a nice request will soon be
 417 * submitted. See also as_antic_waitreq
 418 */
 419static void as_antic_waitnext(struct as_data *ad)
 420{
 421        unsigned long timeout;
 422
 423        BUG_ON(ad->antic_status != ANTIC_OFF
 424                        && ad->antic_status != ANTIC_WAIT_REQ);
 425
 426        timeout = ad->antic_start + ad->antic_expire;
 427
 428        mod_timer(&ad->antic_timer, timeout);
 429
 430        ad->antic_status = ANTIC_WAIT_NEXT;
 431}
 432
 433/*
 434 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
 435 * until the request that we're anticipating on has finished. This means we
 436 * are timing from when the candidate process wakes up hopefully.
 437 */
 438static void as_antic_waitreq(struct as_data *ad)
 439{
 440        BUG_ON(ad->antic_status == ANTIC_FINISHED);
 441        if (ad->antic_status == ANTIC_OFF) {
 442                if (!ad->io_context || ad->ioc_finished)
 443                        as_antic_waitnext(ad);
 444                else
 445                        ad->antic_status = ANTIC_WAIT_REQ;
 446        }
 447}
 448
 449/*
 450 * This is called directly by the functions in this file to stop anticipation.
 451 * We kill the timer and schedule a call to the request_fn asap.
 452 */
 453static void as_antic_stop(struct as_data *ad)
 454{
 455        int status = ad->antic_status;
 456
 457        if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
 458                if (status == ANTIC_WAIT_NEXT)
 459                        del_timer(&ad->antic_timer);
 460                ad->antic_status = ANTIC_FINISHED;
 461                /* see as_work_handler */
 462                kblockd_schedule_work(ad->q, &ad->antic_work);
 463        }
 464}
 465
 466/*
 467 * as_antic_timeout is the timer function set by as_antic_waitnext.
 468 */
 469static void as_antic_timeout(unsigned long data)
 470{
 471        struct request_queue *q = (struct request_queue *)data;
 472        struct as_data *ad = q->elevator->elevator_data;
 473        unsigned long flags;
 474
 475        spin_lock_irqsave(q->queue_lock, flags);
 476        if (ad->antic_status == ANTIC_WAIT_REQ
 477                        || ad->antic_status == ANTIC_WAIT_NEXT) {
 478                struct as_io_context *aic;
 479                spin_lock(&ad->io_context->lock);
 480                aic = ad->io_context->aic;
 481
 482                ad->antic_status = ANTIC_FINISHED;
 483                kblockd_schedule_work(q, &ad->antic_work);
 484
 485                if (aic->ttime_samples == 0) {
 486                        /* process anticipated on has exited or timed out*/
 487                        ad->exit_prob = (7*ad->exit_prob + 256)/8;
 488                }
 489                if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
 490                        /* process not "saved" by a cooperating request */
 491                        ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
 492                }
 493                spin_unlock(&ad->io_context->lock);
 494        }
 495        spin_unlock_irqrestore(q->queue_lock, flags);
 496}
 497
 498static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
 499                                unsigned long ttime)
 500{
 501        /* fixed point: 1.0 == 1<<8 */
 502        if (aic->ttime_samples == 0) {
 503                ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
 504                ad->new_ttime_mean = ad->new_ttime_total / 256;
 505
 506                ad->exit_prob = (7*ad->exit_prob)/8;
 507        }
 508        aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
 509        aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
 510        aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
 511}
 512
 513static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
 514                                sector_t sdist)
 515{
 516        u64 total;
 517
 518        if (aic->seek_samples == 0) {
 519                ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
 520                ad->new_seek_mean = ad->new_seek_total / 256;
 521        }
 522
 523        /*
 524         * Don't allow the seek distance to get too large from the
 525         * odd fragment, pagein, etc
 526         */
 527        if (aic->seek_samples <= 60) /* second&third seek */
 528                sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
 529        else
 530                sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
 531
 532        aic->seek_samples = (7*aic->seek_samples + 256) / 8;
 533        aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
 534        total = aic->seek_total + (aic->seek_samples/2);
 535        do_div(total, aic->seek_samples);
 536        aic->seek_mean = (sector_t)total;
 537}
 538
 539/*
 540 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
 541 * updates @aic->ttime_mean based on that. It is called when a new
 542 * request is queued.
 543 */
 544static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
 545                                struct request *rq)
 546{
 547        int data_dir = rq_is_sync(rq);
 548        unsigned long thinktime = 0;
 549        sector_t seek_dist;
 550
 551        if (aic == NULL)
 552                return;
 553
 554        if (data_dir == BLK_RW_SYNC) {
 555                unsigned long in_flight = atomic_read(&aic->nr_queued)
 556                                        + atomic_read(&aic->nr_dispatched);
 557                spin_lock(&aic->lock);
 558                if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
 559                        test_bit(AS_TASK_IOSTARTED, &aic->state)) {
 560                        /* Calculate read -> read thinktime */
 561                        if (test_bit(AS_TASK_IORUNNING, &aic->state)
 562                                                        && in_flight == 0) {
 563                                thinktime = jiffies - aic->last_end_request;
 564                                thinktime = min(thinktime, MAX_THINKTIME-1);
 565                        }
 566                        as_update_thinktime(ad, aic, thinktime);
 567
 568                        /* Calculate read -> read seek distance */
 569                        if (aic->last_request_pos < blk_rq_pos(rq))
 570                                seek_dist = blk_rq_pos(rq) -
 571                                            aic->last_request_pos;
 572                        else
 573                                seek_dist = aic->last_request_pos -
 574                                            blk_rq_pos(rq);
 575                        as_update_seekdist(ad, aic, seek_dist);
 576                }
 577                aic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
 578                set_bit(AS_TASK_IOSTARTED, &aic->state);
 579                spin_unlock(&aic->lock);
 580        }
 581}
 582
 583/*
 584 * as_close_req decides if one request is considered "close" to the
 585 * previous one issued.
 586 */
 587static int as_close_req(struct as_data *ad, struct as_io_context *aic,
 588                        struct request *rq)
 589{
 590        unsigned long delay;    /* jiffies */
 591        sector_t last = ad->last_sector[ad->batch_data_dir];
 592        sector_t next = blk_rq_pos(rq);
 593        sector_t delta; /* acceptable close offset (in sectors) */
 594        sector_t s;
 595
 596        if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
 597                delay = 0;
 598        else
 599                delay = jiffies - ad->antic_start;
 600
 601        if (delay == 0)
 602                delta = 8192;
 603        else if (delay <= (20 * HZ / 1000) && delay <= ad->antic_expire)
 604                delta = 8192 << delay;
 605        else
 606                return 1;
 607
 608        if ((last <= next + (delta>>1)) && (next <= last + delta))
 609                return 1;
 610
 611        if (last < next)
 612                s = next - last;
 613        else
 614                s = last - next;
 615
 616        if (aic->seek_samples == 0) {
 617                /*
 618                 * Process has just started IO. Use past statistics to
 619                 * gauge success possibility
 620                 */
 621                if (ad->new_seek_mean > s) {
 622                        /* this request is better than what we're expecting */
 623                        return 1;
 624                }
 625
 626        } else {
 627                if (aic->seek_mean > s) {
 628                        /* this request is better than what we're expecting */
 629                        return 1;
 630                }
 631        }
 632
 633        return 0;
 634}
 635
 636/*
 637 * as_can_break_anticipation returns true if we have been anticipating this
 638 * request.
 639 *
 640 * It also returns true if the process against which we are anticipating
 641 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
 642 * dispatch it ASAP, because we know that application will not be submitting
 643 * any new reads.
 644 *
 645 * If the task which has submitted the request has exited, break anticipation.
 646 *
 647 * If this task has queued some other IO, do not enter enticipation.
 648 */
 649static int as_can_break_anticipation(struct as_data *ad, struct request *rq)
 650{
 651        struct io_context *ioc;
 652        struct as_io_context *aic;
 653
 654        ioc = ad->io_context;
 655        BUG_ON(!ioc);
 656        spin_lock(&ioc->lock);
 657
 658        if (rq && ioc == RQ_IOC(rq)) {
 659                /* request from same process */
 660                spin_unlock(&ioc->lock);
 661                return 1;
 662        }
 663
 664        if (ad->ioc_finished && as_antic_expired(ad)) {
 665                /*
 666                 * In this situation status should really be FINISHED,
 667                 * however the timer hasn't had the chance to run yet.
 668                 */
 669                spin_unlock(&ioc->lock);
 670                return 1;
 671        }
 672
 673        aic = ioc->aic;
 674        if (!aic) {
 675                spin_unlock(&ioc->lock);
 676                return 0;
 677        }
 678
 679        if (atomic_read(&aic->nr_queued) > 0) {
 680                /* process has more requests queued */
 681                spin_unlock(&ioc->lock);
 682                return 1;
 683        }
 684
 685        if (atomic_read(&aic->nr_dispatched) > 0) {
 686                /* process has more requests dispatched */
 687                spin_unlock(&ioc->lock);
 688                return 1;
 689        }
 690
 691        if (rq && rq_is_sync(rq) && as_close_req(ad, aic, rq)) {
 692                /*
 693                 * Found a close request that is not one of ours.
 694                 *
 695                 * This makes close requests from another process update
 696                 * our IO history. Is generally useful when there are
 697                 * two or more cooperating processes working in the same
 698                 * area.
 699                 */
 700                if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
 701                        if (aic->ttime_samples == 0)
 702                                ad->exit_prob = (7*ad->exit_prob + 256)/8;
 703
 704                        ad->exit_no_coop = (7*ad->exit_no_coop)/8;
 705                }
 706
 707                as_update_iohist(ad, aic, rq);
 708                spin_unlock(&ioc->lock);
 709                return 1;
 710        }
 711
 712        if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
 713                /* process anticipated on has exited */
 714                if (aic->ttime_samples == 0)
 715                        ad->exit_prob = (7*ad->exit_prob + 256)/8;
 716
 717                if (ad->exit_no_coop > 128) {
 718                        spin_unlock(&ioc->lock);
 719                        return 1;
 720                }
 721        }
 722
 723        if (aic->ttime_samples == 0) {
 724                if (ad->new_ttime_mean > ad->antic_expire) {
 725                        spin_unlock(&ioc->lock);
 726                        return 1;
 727                }
 728                if (ad->exit_prob * ad->exit_no_coop > 128*256) {
 729                        spin_unlock(&ioc->lock);
 730                        return 1;
 731                }
 732        } else if (aic->ttime_mean > ad->antic_expire) {
 733                /* the process thinks too much between requests */
 734                spin_unlock(&ioc->lock);
 735                return 1;
 736        }
 737        spin_unlock(&ioc->lock);
 738        return 0;
 739}
 740
 741/*
 742 * as_can_anticipate indicates whether we should either run rq
 743 * or keep anticipating a better request.
 744 */
 745static int as_can_anticipate(struct as_data *ad, struct request *rq)
 746{
 747#if 0 /* disable for now, we need to check tag level as well */
 748        /*
 749         * SSD device without seek penalty, disable idling
 750         */
 751        if (blk_queue_nonrot(ad->q)) axman
 752                return 0;
 753#endif
 754
 755        if (!ad->io_context)
 756                /*
 757                 * Last request submitted was a write
 758                 */
 759                return 0;
 760
 761        if (ad->antic_status == ANTIC_FINISHED)
 762                /*
 763                 * Don't restart if we have just finished. Run the next request
 764                 */
 765                return 0;
 766
 767        if (as_can_break_anticipation(ad, rq))
 768                /*
 769                 * This request is a good candidate. Don't keep anticipating,
 770                 * run it.
 771                 */
 772                return 0;
 773
 774        /*
 775         * OK from here, we haven't finished, and don't have a decent request!
 776         * Status is either ANTIC_OFF so start waiting,
 777         * ANTIC_WAIT_REQ so continue waiting for request to finish
 778         * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
 779         */
 780
 781        return 1;
 782}
 783
 784/*
 785 * as_update_rq must be called whenever a request (rq) is added to
 786 * the sort_list. This function keeps caches up to date, and checks if the
 787 * request might be one we are "anticipating"
 788 */
 789static void as_update_rq(struct as_data *ad, struct request *rq)
 790{
 791        const int data_dir = rq_is_sync(rq);
 792
 793        /* keep the next_rq cache up to date */
 794        ad->next_rq[data_dir] = as_choose_req(ad, rq, ad->next_rq[data_dir]);
 795
 796        /*
 797         * have we been anticipating this request?
 798         * or does it come from the same process as the one we are anticipating
 799         * for?
 800         */
 801        if (ad->antic_status == ANTIC_WAIT_REQ
 802                        || ad->antic_status == ANTIC_WAIT_NEXT) {
 803                if (as_can_break_anticipation(ad, rq))
 804                        as_antic_stop(ad);
 805        }
 806}
 807
 808/*
 809 * Gathers timings and resizes the write batch automatically
 810 */
 811static void update_write_batch(struct as_data *ad)
 812{
 813        unsigned long batch = ad->batch_expire[BLK_RW_ASYNC];
 814        long write_time;
 815
 816        write_time = (jiffies - ad->current_batch_expires) + batch;
 817        if (write_time < 0)
 818                write_time = 0;
 819
 820        if (write_time > batch && !ad->write_batch_idled) {
 821                if (write_time > batch * 3)
 822                        ad->write_batch_count /= 2;
 823                else
 824                        ad->write_batch_count--;
 825        } else if (write_time < batch && ad->current_write_count == 0) {
 826                if (batch > write_time * 3)
 827                        ad->write_batch_count *= 2;
 828                else
 829                        ad->write_batch_count++;
 830        }
 831
 832        if (ad->write_batch_count < 1)
 833                ad->write_batch_count = 1;
 834}
 835
 836/*
 837 * as_completed_request is to be called when a request has completed and
 838 * returned something to the requesting process, be it an error or data.
 839 */
 840static void as_completed_request(struct request_queue *q, struct request *rq)
 841{
 842        struct as_data *ad = q->elevator->elevator_data;
 843
 844        WARN_ON(!list_empty(&rq->queuelist));
 845
 846        if (RQ_STATE(rq) != AS_RQ_REMOVED) {
 847                WARN(1, "rq->state %d\n", RQ_STATE(rq));
 848                goto out;
 849        }
 850
 851        if (ad->changed_batch && ad->nr_dispatched == 1) {
 852                ad->current_batch_expires = jiffies +
 853                                        ad->batch_expire[ad->batch_data_dir];
 854                kblockd_schedule_work(q, &ad->antic_work);
 855                ad->changed_batch = 0;
 856
 857                if (ad->batch_data_dir == BLK_RW_SYNC)
 858                        ad->new_batch = 1;
 859        }
 860        WARN_ON(ad->nr_dispatched == 0);
 861        ad->nr_dispatched--;
 862
 863        /*
 864         * Start counting the batch from when a request of that direction is
 865         * actually serviced. This should help devices with big TCQ windows
 866         * and writeback caches
 867         */
 868        if (ad->new_batch && ad->batch_data_dir == rq_is_sync(rq)) {
 869                update_write_batch(ad);
 870                ad->current_batch_expires = jiffies +
 871                                ad->batch_expire[BLK_RW_SYNC];
 872                ad->new_batch = 0;
 873        }
 874
 875        if (ad->io_context == RQ_IOC(rq) && ad->io_context) {
 876                ad->antic_start = jiffies;
 877                ad->ioc_finished = 1;
 878                if (ad->antic_status == ANTIC_WAIT_REQ) {
 879                        /*
 880                         * We were waiting on this request, now anticipate
 881                         * the next one
 882                         */
 883                        as_antic_waitnext(ad);
 884                }
 885        }
 886
 887        as_put_io_context(rq);
 888out:
 889        RQ_SET_STATE(rq, AS_RQ_POSTSCHED);
 890}
 891
 892/*
 893 * as_remove_queued_request removes a request from the pre dispatch queue
 894 * without updating refcounts. It is expected the caller will drop the
 895 * reference unless it replaces the request at somepart of the elevator
 896 * (ie. the dispatch queue)
 897 */
 898static void as_remove_queued_request(struct request_queue *q,
 899                                     struct request *rq)
 900{
 901        const int data_dir = rq_is_sync(rq);
 902        struct as_data *ad = q->elevator->elevator_data;
 903        struct io_context *ioc;
 904
 905        WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
 906
 907        ioc = RQ_IOC(rq);
 908        if (ioc && ioc->aic) {
 909                BUG_ON(!atomic_read(&ioc->aic->nr_queued));
 910                atomic_dec(&ioc->aic->nr_queued);
 911        }
 912
 913        /*
 914         * Update the "next_rq" cache if we are about to remove its
 915         * entry
 916         */
 917        if (ad->next_rq[data_dir] == rq)
 918                ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
 919
 920        rq_fifo_clear(rq);
 921        as_del_rq_rb(ad, rq);
 922}
 923
 924/*
 925 * as_fifo_expired returns 0 if there are no expired requests on the fifo,
 926 * 1 otherwise.  It is ratelimited so that we only perform the check once per
 927 * `fifo_expire' interval.  Otherwise a large number of expired requests
 928 * would create a hopeless seekstorm.
 929 *
 930 * See as_antic_expired comment.
 931 */
 932static int as_fifo_expired(struct as_data *ad, int adir)
 933{
 934        struct request *rq;
 935        long delta_jif;
 936
 937        delta_jif = jiffies - ad->last_check_fifo[adir];
 938        if (unlikely(delta_jif < 0))
 939                delta_jif = -delta_jif;
 940        if (delta_jif < ad->fifo_expire[adir])
 941                return 0;
 942
 943        ad->last_check_fifo[adir] = jiffies;
 944
 945        if (list_empty(&ad->fifo_list[adir]))
 946                return 0;
 947
 948        rq = rq_entry_fifo(ad->fifo_list[adir].next);
 949
 950        return time_after(jiffies, rq_fifo_time(rq));
 951}
 952
 953/*
 954 * as_batch_expired returns true if the current batch has expired. A batch
 955 * is a set of reads or a set of writes.
 956 */
 957static inline int as_batch_expired(struct as_data *ad)
 958{
 959        if (ad->changed_batch || ad->new_batch)
 960                return 0;
 961
 962        if (ad->batch_data_dir == BLK_RW_SYNC)
 963                /* TODO! add a check so a complete fifo gets written? */
 964                return time_after(jiffies, ad->current_batch_expires);
 965
 966        return time_after(jiffies, ad->current_batch_expires)
 967                || ad->current_write_count == 0;
 968}
 969
 970/*
 971 * move an entry to dispatch queue
 972 */
 973static void as_move_to_dispatch(struct as_data *ad, struct request *rq)
 974{
 975        const int data_dir = rq_is_sync(rq);
 976
 977        BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
 978
 979        as_antic_stop(ad);
 980        ad->antic_status = ANTIC_OFF;
 981
 982        /*
 983         * This has to be set in order to be correctly updated by
 984         * as_find_next_rq
 985         */
 986        ad->last_sector[data_dir] = blk_rq_pos(rq) + blk_rq_sectors(rq);
 987
 988        if (data_dir == BLK_RW_SYNC) {
 989                struct io_context *ioc = RQ_IOC(rq);
 990                /* In case we have to anticipate after this */
 991                copy_io_context(&ad->io_context, &ioc);
 992        } else {
 993                if (ad->io_context) {
 994                        put_io_context(ad->io_context);
 995                        ad->io_context = NULL;
 996                }
 997
 998                if (ad->current_write_count != 0)
 999                        ad->current_write_count--;
1000        }
1001        ad->ioc_finished = 0;
1002
1003        ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
1004
1005        /*
1006         * take it off the sort and fifo list, add to dispatch queue
1007         */
1008        as_remove_queued_request(ad->q, rq);
1009        WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
1010
1011        elv_dispatch_sort(ad->q, rq);
1012
1013        RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
1014        if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1015                atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
1016        ad->nr_dispatched++;
1017}
1018
1019/*
1020 * as_dispatch_request selects the best request according to
1021 * read/write expire, batch expire, etc, and moves it to the dispatch
1022 * queue. Returns 1 if a request was found, 0 otherwise.
1023 */
1024static int as_dispatch_request(struct request_queue *q, int force)
1025{
1026        struct as_data *ad = q->elevator->elevator_data;
1027        const int reads = !list_empty(&ad->fifo_list[BLK_RW_SYNC]);
1028        const int writes = !list_empty(&ad->fifo_list[BLK_RW_ASYNC]);
1029        struct request *rq;
1030
1031        if (unlikely(force)) {
1032                /*
1033                 * Forced dispatch, accounting is useless.  Reset
1034                 * accounting states and dump fifo_lists.  Note that
1035                 * batch_data_dir is reset to BLK_RW_SYNC to avoid
1036                 * screwing write batch accounting as write batch
1037                 * accounting occurs on W->R transition.
1038                 */
1039                int dispatched = 0;
1040
1041                ad->batch_data_dir = BLK_RW_SYNC;
1042                ad->changed_batch = 0;
1043                ad->new_batch = 0;
1044
1045                while (ad->next_rq[BLK_RW_SYNC]) {
1046                        as_move_to_dispatch(ad, ad->next_rq[BLK_RW_SYNC]);
1047                        dispatched++;
1048                }
1049                ad->last_check_fifo[BLK_RW_SYNC] = jiffies;
1050
1051                while (ad->next_rq[BLK_RW_ASYNC]) {
1052                        as_move_to_dispatch(ad, ad->next_rq[BLK_RW_ASYNC]);
1053                        dispatched++;
1054                }
1055                ad->last_check_fifo[BLK_RW_ASYNC] = jiffies;
1056
1057                return dispatched;
1058        }
1059
1060        /* Signal that the write batch was uncontended, so we can't time it */
1061        if (ad->batch_data_dir == BLK_RW_ASYNC && !reads) {
1062                if (ad->current_write_count == 0 || !writes)
1063                        ad->write_batch_idled = 1;
1064        }
1065
1066        if (!(reads || writes)
1067                || ad->antic_status == ANTIC_WAIT_REQ
1068                || ad->antic_status == ANTIC_WAIT_NEXT
1069                || ad->changed_batch)
1070                return 0;
1071
1072        if (!(reads && writes && as_batch_expired(ad))) {
1073                /*
1074                 * batch is still running or no reads or no writes
1075                 */
1076                rq = ad->next_rq[ad->batch_data_dir];
1077
1078                if (ad->batch_data_dir == BLK_RW_SYNC && ad->antic_expire) {
1079                        if (as_fifo_expired(ad, BLK_RW_SYNC))
1080                                goto fifo_expired;
1081
1082                        if (as_can_anticipate(ad, rq)) {
1083                                as_antic_waitreq(ad);
1084                                return 0;
1085                        }
1086                }
1087
1088                if (rq) {
1089                        /* we have a "next request" */
1090                        if (reads && !writes)
1091                                ad->current_batch_expires =
1092                                        jiffies + ad->batch_expire[BLK_RW_SYNC];
1093                        goto dispatch_request;
1094                }
1095        }
1096
1097        /*
1098         * at this point we are not running a batch. select the appropriate
1099         * data direction (read / write)
1100         */
1101
1102        if (reads) {
1103                BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[BLK_RW_SYNC]));
1104
1105                if (writes && ad->batch_data_dir == BLK_RW_SYNC)
1106                        /*
1107                         * Last batch was a read, switch to writes
1108                         */
1109                        goto dispatch_writes;
1110
1111                if (ad->batch_data_dir == BLK_RW_ASYNC) {
1112                        WARN_ON(ad->new_batch);
1113                        ad->changed_batch = 1;
1114                }
1115                ad->batch_data_dir = BLK_RW_SYNC;
1116                rq = rq_entry_fifo(ad->fifo_list[BLK_RW_SYNC].next);
1117                ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1118                goto dispatch_request;
1119        }
1120
1121        /*
1122         * the last batch was a read
1123         */
1124
1125        if (writes) {
1126dispatch_writes:
1127                BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[BLK_RW_ASYNC]));
1128
1129                if (ad->batch_data_dir == BLK_RW_SYNC) {
1130                        ad->changed_batch = 1;
1131
1132                        /*
1133                         * new_batch might be 1 when the queue runs out of
1134                         * reads. A subsequent submission of a write might
1135                         * cause a change of batch before the read is finished.
1136                         */
1137                        ad->new_batch = 0;
1138                }
1139                ad->batch_data_dir = BLK_RW_ASYNC;
1140                ad->current_write_count = ad->write_batch_count;
1141                ad->write_batch_idled = 0;
1142                rq = rq_entry_fifo(ad->fifo_list[BLK_RW_ASYNC].next);
1143                ad->last_check_fifo[BLK_RW_ASYNC] = jiffies;
1144                goto dispatch_request;
1145        }
1146
1147        BUG();
1148        return 0;
1149
1150dispatch_request:
1151        /*
1152         * If a request has expired, service it.
1153         */
1154
1155        if (as_fifo_expired(ad, ad->batch_data_dir)) {
1156fifo_expired:
1157                rq = rq_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1158        }
1159
1160        if (ad->changed_batch) {
1161                WARN_ON(ad->new_batch);
1162
1163                if (ad->nr_dispatched)
1164                        return 0;
1165
1166                if (ad->batch_data_dir == BLK_RW_ASYNC)
1167                        ad->current_batch_expires = jiffies +
1168                                        ad->batch_expire[BLK_RW_ASYNC];
1169                else
1170                        ad->new_batch = 1;
1171
1172                ad->changed_batch = 0;
1173        }
1174
1175        /*
1176         * rq is the selected appropriate request.
1177         */
1178        as_move_to_dispatch(ad, rq);
1179
1180        return 1;
1181}
1182
1183/*
1184 * add rq to rbtree and fifo
1185 */
1186static void as_add_request(struct request_queue *q, struct request *rq)
1187{
1188        struct as_data *ad = q->elevator->elevator_data;
1189        int data_dir;
1190
1191        RQ_SET_STATE(rq, AS_RQ_NEW);
1192
1193        data_dir = rq_is_sync(rq);
1194
1195        rq->elevator_private = as_get_io_context(q->node);
1196
1197        if (RQ_IOC(rq)) {
1198                as_update_iohist(ad, RQ_IOC(rq)->aic, rq);
1199                atomic_inc(&RQ_IOC(rq)->aic->nr_queued);
1200        }
1201
1202        as_add_rq_rb(ad, rq);
1203
1204        /*
1205         * set expire time and add to fifo list
1206         */
1207        rq_set_fifo_time(rq, jiffies + ad->fifo_expire[data_dir]);
1208        list_add_tail(&rq->queuelist, &ad->fifo_list[data_dir]);
1209
1210        as_update_rq(ad, rq); /* keep state machine up to date */
1211        RQ_SET_STATE(rq, AS_RQ_QUEUED);
1212}
1213
1214static void as_activate_request(struct request_queue *q, struct request *rq)
1215{
1216        WARN_ON(RQ_STATE(rq) != AS_RQ_DISPATCHED);
1217        RQ_SET_STATE(rq, AS_RQ_REMOVED);
1218        if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1219                atomic_dec(&RQ_IOC(rq)->aic->nr_dispatched);
1220}
1221
1222static void as_deactivate_request(struct request_queue *q, struct request *rq)
1223{
1224        WARN_ON(RQ_STATE(rq) != AS_RQ_REMOVED);
1225        RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
1226        if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1227                atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
1228}
1229
1230/*
1231 * as_queue_empty tells us if there are requests left in the device. It may
1232 * not be the case that a driver can get the next request even if the queue
1233 * is not empty - it is used in the block layer to check for plugging and
1234 * merging opportunities
1235 */
1236static int as_queue_empty(struct request_queue *q)
1237{
1238        struct as_data *ad = q->elevator->elevator_data;
1239
1240        return list_empty(&ad->fifo_list[BLK_RW_ASYNC])
1241                && list_empty(&ad->fifo_list[BLK_RW_SYNC]);
1242}
1243
1244static int
1245as_merge(struct request_queue *q, struct request **req, struct bio *bio)
1246{
1247        struct as_data *ad = q->elevator->elevator_data;
1248        sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1249        struct request *__rq;
1250
1251        /*
1252         * check for front merge
1253         */
1254        __rq = elv_rb_find(&ad->sort_list[bio_data_dir(bio)], rb_key);
1255        if (__rq && elv_rq_merge_ok(__rq, bio)) {
1256                *req = __rq;
1257                return ELEVATOR_FRONT_MERGE;
1258        }
1259
1260        return ELEVATOR_NO_MERGE;
1261}
1262
1263static void as_merged_request(struct request_queue *q, struct request *req,
1264                              int type)
1265{
1266        struct as_data *ad = q->elevator->elevator_data;
1267
1268        /*
1269         * if the merge was a front merge, we need to reposition request
1270         */
1271        if (type == ELEVATOR_FRONT_MERGE) {
1272                as_del_rq_rb(ad, req);
1273                as_add_rq_rb(ad, req);
1274                /*
1275                 * Note! At this stage of this and the next function, our next
1276                 * request may not be optimal - eg the request may have "grown"
1277                 * behind the disk head. We currently don't bother adjusting.
1278                 */
1279        }
1280}
1281
1282static void as_merged_requests(struct request_queue *q, struct request *req,
1283                                struct request *next)
1284{
1285        /*
1286         * if next expires before rq, assign its expire time to arq
1287         * and move into next position (next will be deleted) in fifo
1288         */
1289        if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
1290                if (time_before(rq_fifo_time(next), rq_fifo_time(req))) {
1291                        list_move(&req->queuelist, &next->queuelist);
1292                        rq_set_fifo_time(req, rq_fifo_time(next));
1293                }
1294        }
1295
1296        /*
1297         * kill knowledge of next, this one is a goner
1298         */
1299        as_remove_queued_request(q, next);
1300        as_put_io_context(next);
1301
1302        RQ_SET_STATE(next, AS_RQ_MERGED);
1303}
1304
1305/*
1306 * This is executed in a "deferred" process context, by kblockd. It calls the
1307 * driver's request_fn so the driver can submit that request.
1308 *
1309 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1310 * state before calling, and don't rely on any state over calls.
1311 *
1312 * FIXME! dispatch queue is not a queue at all!
1313 */
1314static void as_work_handler(struct work_struct *work)
1315{
1316        struct as_data *ad = container_of(work, struct as_data, antic_work);
1317
1318        blk_run_queue(ad->q);
1319}
1320
1321static int as_may_queue(struct request_queue *q, int rw)
1322{
1323        int ret = ELV_MQUEUE_MAY;
1324        struct as_data *ad = q->elevator->elevator_data;
1325        struct io_context *ioc;
1326        if (ad->antic_status == ANTIC_WAIT_REQ ||
1327                        ad->antic_status == ANTIC_WAIT_NEXT) {
1328                ioc = as_get_io_context(q->node);
1329                if (ad->io_context == ioc)
1330                        ret = ELV_MQUEUE_MUST;
1331                put_io_context(ioc);
1332        }
1333
1334        return ret;
1335}
1336
1337static void as_exit_queue(struct elevator_queue *e)
1338{
1339        struct as_data *ad = e->elevator_data;
1340
1341        del_timer_sync(&ad->antic_timer);
1342        cancel_work_sync(&ad->antic_work);
1343
1344        BUG_ON(!list_empty(&ad->fifo_list[BLK_RW_SYNC]));
1345        BUG_ON(!list_empty(&ad->fifo_list[BLK_RW_ASYNC]));
1346
1347        put_io_context(ad->io_context);
1348        kfree(ad);
1349}
1350
1351/*
1352 * initialize elevator private data (as_data).
1353 */
1354static void *as_init_queue(struct request_queue *q)
1355{
1356        struct as_data *ad;
1357
1358        ad = kmalloc_node(sizeof(*ad), GFP_KERNEL | __GFP_ZERO, q->node);
1359        if (!ad)
1360                return NULL;
1361
1362        ad->q = q; /* Identify what queue the data belongs to */
1363
1364        /* anticipatory scheduling helpers */
1365        ad->antic_timer.function = as_antic_timeout;
1366        ad->antic_timer.data = (unsigned long)q;
1367        init_timer(&ad->antic_timer);
1368        INIT_WORK(&ad->antic_work, as_work_handler);
1369
1370        INIT_LIST_HEAD(&ad->fifo_list[BLK_RW_SYNC]);
1371        INIT_LIST_HEAD(&ad->fifo_list[BLK_RW_ASYNC]);
1372        ad->sort_list[BLK_RW_SYNC] = RB_ROOT;
1373        ad->sort_list[BLK_RW_ASYNC] = RB_ROOT;
1374        ad->fifo_expire[BLK_RW_SYNC] = default_read_expire;
1375        ad->fifo_expire[BLK_RW_ASYNC] = default_write_expire;
1376        ad->antic_expire = default_antic_expire;
1377        ad->batch_expire[BLK_RW_SYNC] = default_read_batch_expire;
1378        ad->batch_expire[BLK_RW_ASYNC] = default_write_batch_expire;
1379
1380        ad->current_batch_expires = jiffies + ad->batch_expire[BLK_RW_SYNC];
1381        ad->write_batch_count = ad->batch_expire[BLK_RW_ASYNC] / 10;
1382        if (ad->write_batch_count < 2)
1383                ad->write_batch_count = 2;
1384
1385        return ad;
1386}
1387
1388/*
1389 * sysfs parts below
1390 */
1391
1392static ssize_t
1393as_var_show(unsigned int var, char *page)
1394{
1395        return sprintf(page, "%d\n", var);
1396}
1397
1398static ssize_t
1399as_var_store(unsigned long *var, const char *page, size_t count)
1400{
1401        char *p = (char *) page;
1402
1403        *var = simple_strtoul(p, &p, 10);
1404        return count;
1405}
1406
1407static ssize_t est_time_show(struct elevator_queue *e, char *page)
1408{
1409        struct as_data *ad = e->elevator_data;
1410        int pos = 0;
1411
1412        pos += sprintf(page+pos, "%lu %% exit probability\n",
1413                                100*ad->exit_prob/256);
1414        pos += sprintf(page+pos, "%lu %% probability of exiting without a "
1415                                "cooperating process submitting IO\n",
1416                                100*ad->exit_no_coop/256);
1417        pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
1418        pos += sprintf(page+pos, "%llu sectors new seek distance\n",
1419                                (unsigned long long)ad->new_seek_mean);
1420
1421        return pos;
1422}
1423
1424#define SHOW_FUNCTION(__FUNC, __VAR)                            \
1425static ssize_t __FUNC(struct elevator_queue *e, char *page)     \
1426{                                                               \
1427        struct as_data *ad = e->elevator_data;                  \
1428        return as_var_show(jiffies_to_msecs((__VAR)), (page));  \
1429}
1430SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[BLK_RW_SYNC]);
1431SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[BLK_RW_ASYNC]);
1432SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
1433SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[BLK_RW_SYNC]);
1434SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[BLK_RW_ASYNC]);
1435#undef SHOW_FUNCTION
1436
1437#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)                         \
1438static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1439{                                                                       \
1440        struct as_data *ad = e->elevator_data;                          \
1441        int ret = as_var_store(__PTR, (page), count);                   \
1442        if (*(__PTR) < (MIN))                                           \
1443                *(__PTR) = (MIN);                                       \
1444        else if (*(__PTR) > (MAX))                                      \
1445                *(__PTR) = (MAX);                                       \
1446        *(__PTR) = msecs_to_jiffies(*(__PTR));                          \
1447        return ret;                                                     \
1448}
1449STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[BLK_RW_SYNC], 0, INT_MAX);
1450STORE_FUNCTION(as_write_expire_store,
1451                        &ad->fifo_expire[BLK_RW_ASYNC], 0, INT_MAX);
1452STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
1453STORE_FUNCTION(as_read_batch_expire_store,
1454                        &ad->batch_expire[BLK_RW_SYNC], 0, INT_MAX);
1455STORE_FUNCTION(as_write_batch_expire_store,
1456                        &ad->batch_expire[BLK_RW_ASYNC], 0, INT_MAX);
1457#undef STORE_FUNCTION
1458
1459#define AS_ATTR(name) \
1460        __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1461
1462static struct elv_fs_entry as_attrs[] = {
1463        __ATTR_RO(est_time),
1464        AS_ATTR(read_expire),
1465        AS_ATTR(write_expire),
1466        AS_ATTR(antic_expire),
1467        AS_ATTR(read_batch_expire),
1468        AS_ATTR(write_batch_expire),
1469        __ATTR_NULL
1470};
1471
1472static struct elevator_type iosched_as = {
1473        .ops = {
1474                .elevator_merge_fn =            as_merge,
1475                .elevator_merged_fn =           as_merged_request,
1476                .elevator_merge_req_fn =        as_merged_requests,
1477                .elevator_dispatch_fn =         as_dispatch_request,
1478                .elevator_add_req_fn =          as_add_request,
1479                .elevator_activate_req_fn =     as_activate_request,
1480                .elevator_deactivate_req_fn =   as_deactivate_request,
1481                .elevator_queue_empty_fn =      as_queue_empty,
1482                .elevator_completed_req_fn =    as_completed_request,
1483                .elevator_former_req_fn =       elv_rb_former_request,
1484                .elevator_latter_req_fn =       elv_rb_latter_request,
1485                .elevator_may_queue_fn =        as_may_queue,
1486                .elevator_init_fn =             as_init_queue,
1487                .elevator_exit_fn =             as_exit_queue,
1488                .trim =                         as_trim,
1489        },
1490
1491        .elevator_attrs = as_attrs,
1492        .elevator_name = "anticipatory",
1493        .elevator_owner = THIS_MODULE,
1494};
1495
1496static int __init as_init(void)
1497{
1498        elv_register(&iosched_as);
1499
1500        return 0;
1501}
1502
1503static void __exit as_exit(void)
1504{
1505        DECLARE_COMPLETION_ONSTACK(all_gone);
1506        elv_unregister(&iosched_as);
1507        ioc_gone = &all_gone;
1508        /* ioc_gone's update must be visible before reading ioc_count */
1509        smp_wmb();
1510        if (elv_ioc_count_read(as_ioc_count))
1511                wait_for_completion(&all_gone);
1512        synchronize_rcu();
1513}
1514
1515module_init(as_init);
1516module_exit(as_exit);
1517
1518MODULE_AUTHOR("Nick Piggin");
1519MODULE_LICENSE("GPL");
1520MODULE_DESCRIPTION("anticipatory IO scheduler");
1521