linux/drivers/ata/sata_mv.c
<<
>>
Prefs
   1/*
   2 * sata_mv.c - Marvell SATA support
   3 *
   4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
   5 * Copyright 2005: EMC Corporation, all rights reserved.
   6 * Copyright 2005 Red Hat, Inc.  All rights reserved.
   7 *
   8 * Originally written by Brett Russ.
   9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
  10 *
  11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; version 2 of the License.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  25 *
  26 */
  27
  28/*
  29 * sata_mv TODO list:
  30 *
  31 * --> Develop a low-power-consumption strategy, and implement it.
  32 *
  33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
  34 *
  35 * --> [Experiment, Marvell value added] Is it possible to use target
  36 *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
  37 *       creating LibATA target mode support would be very interesting.
  38 *
  39 *       Target mode, for those without docs, is the ability to directly
  40 *       connect two SATA ports.
  41 */
  42
  43/*
  44 * 80x1-B2 errata PCI#11:
  45 *
  46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
  47 * should be careful to insert those cards only onto PCI-X bus #0,
  48 * and only in device slots 0..7, not higher.  The chips may not
  49 * work correctly otherwise  (note: this is a pretty rare condition).
  50 */
  51
  52#include <linux/kernel.h>
  53#include <linux/module.h>
  54#include <linux/pci.h>
  55#include <linux/init.h>
  56#include <linux/blkdev.h>
  57#include <linux/delay.h>
  58#include <linux/interrupt.h>
  59#include <linux/dmapool.h>
  60#include <linux/dma-mapping.h>
  61#include <linux/device.h>
  62#include <linux/platform_device.h>
  63#include <linux/ata_platform.h>
  64#include <linux/mbus.h>
  65#include <linux/bitops.h>
  66#include <scsi/scsi_host.h>
  67#include <scsi/scsi_cmnd.h>
  68#include <scsi/scsi_device.h>
  69#include <linux/libata.h>
  70
  71#define DRV_NAME        "sata_mv"
  72#define DRV_VERSION     "1.28"
  73
  74/*
  75 * module options
  76 */
  77
  78static int msi;
  79#ifdef CONFIG_PCI
  80module_param(msi, int, S_IRUGO);
  81MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  82#endif
  83
  84static int irq_coalescing_io_count;
  85module_param(irq_coalescing_io_count, int, S_IRUGO);
  86MODULE_PARM_DESC(irq_coalescing_io_count,
  87                 "IRQ coalescing I/O count threshold (0..255)");
  88
  89static int irq_coalescing_usecs;
  90module_param(irq_coalescing_usecs, int, S_IRUGO);
  91MODULE_PARM_DESC(irq_coalescing_usecs,
  92                 "IRQ coalescing time threshold in usecs");
  93
  94enum {
  95        /* BAR's are enumerated in terms of pci_resource_start() terms */
  96        MV_PRIMARY_BAR          = 0,    /* offset 0x10: memory space */
  97        MV_IO_BAR               = 2,    /* offset 0x18: IO space */
  98        MV_MISC_BAR             = 3,    /* offset 0x1c: FLASH, NVRAM, SRAM */
  99
 100        MV_MAJOR_REG_AREA_SZ    = 0x10000,      /* 64KB */
 101        MV_MINOR_REG_AREA_SZ    = 0x2000,       /* 8KB */
 102
 103        /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
 104        COAL_CLOCKS_PER_USEC    = 150,          /* for calculating COAL_TIMEs */
 105        MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
 106        MAX_COAL_IO_COUNT       = 255,          /* completed I/O count */
 107
 108        MV_PCI_REG_BASE         = 0,
 109
 110        /*
 111         * Per-chip ("all ports") interrupt coalescing feature.
 112         * This is only for GEN_II / GEN_IIE hardware.
 113         *
 114         * Coalescing defers the interrupt until either the IO_THRESHOLD
 115         * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
 116         */
 117        COAL_REG_BASE           = 0x18000,
 118        IRQ_COAL_CAUSE          = (COAL_REG_BASE + 0x08),
 119        ALL_PORTS_COAL_IRQ      = (1 << 4),     /* all ports irq event */
 120
 121        IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
 122        IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
 123
 124        /*
 125         * Registers for the (unused here) transaction coalescing feature:
 126         */
 127        TRAN_COAL_CAUSE_LO      = (COAL_REG_BASE + 0x88),
 128        TRAN_COAL_CAUSE_HI      = (COAL_REG_BASE + 0x8c),
 129
 130        SATAHC0_REG_BASE        = 0x20000,
 131        FLASH_CTL               = 0x1046c,
 132        GPIO_PORT_CTL           = 0x104f0,
 133        RESET_CFG               = 0x180d8,
 134
 135        MV_PCI_REG_SZ           = MV_MAJOR_REG_AREA_SZ,
 136        MV_SATAHC_REG_SZ        = MV_MAJOR_REG_AREA_SZ,
 137        MV_SATAHC_ARBTR_REG_SZ  = MV_MINOR_REG_AREA_SZ,         /* arbiter */
 138        MV_PORT_REG_SZ          = MV_MINOR_REG_AREA_SZ,
 139
 140        MV_MAX_Q_DEPTH          = 32,
 141        MV_MAX_Q_DEPTH_MASK     = MV_MAX_Q_DEPTH - 1,
 142
 143        /* CRQB needs alignment on a 1KB boundary. Size == 1KB
 144         * CRPB needs alignment on a 256B boundary. Size == 256B
 145         * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
 146         */
 147        MV_CRQB_Q_SZ            = (32 * MV_MAX_Q_DEPTH),
 148        MV_CRPB_Q_SZ            = (8 * MV_MAX_Q_DEPTH),
 149        MV_MAX_SG_CT            = 256,
 150        MV_SG_TBL_SZ            = (16 * MV_MAX_SG_CT),
 151
 152        /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
 153        MV_PORT_HC_SHIFT        = 2,
 154        MV_PORTS_PER_HC         = (1 << MV_PORT_HC_SHIFT), /* 4 */
 155        /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
 156        MV_PORT_MASK            = (MV_PORTS_PER_HC - 1),   /* 3 */
 157
 158        /* Host Flags */
 159        MV_FLAG_DUAL_HC         = (1 << 30),  /* two SATA Host Controllers */
 160
 161        MV_COMMON_FLAGS         = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
 162                                  ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
 163
 164        MV_GEN_I_FLAGS          = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
 165
 166        MV_GEN_II_FLAGS         = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
 167                                  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
 168
 169        MV_GEN_IIE_FLAGS        = MV_GEN_II_FLAGS | ATA_FLAG_AN,
 170
 171        CRQB_FLAG_READ          = (1 << 0),
 172        CRQB_TAG_SHIFT          = 1,
 173        CRQB_IOID_SHIFT         = 6,    /* CRQB Gen-II/IIE IO Id shift */
 174        CRQB_PMP_SHIFT          = 12,   /* CRQB Gen-II/IIE PMP shift */
 175        CRQB_HOSTQ_SHIFT        = 17,   /* CRQB Gen-II/IIE HostQueTag shift */
 176        CRQB_CMD_ADDR_SHIFT     = 8,
 177        CRQB_CMD_CS             = (0x2 << 11),
 178        CRQB_CMD_LAST           = (1 << 15),
 179
 180        CRPB_FLAG_STATUS_SHIFT  = 8,
 181        CRPB_IOID_SHIFT_6       = 5,    /* CRPB Gen-II IO Id shift */
 182        CRPB_IOID_SHIFT_7       = 7,    /* CRPB Gen-IIE IO Id shift */
 183
 184        EPRD_FLAG_END_OF_TBL    = (1 << 31),
 185
 186        /* PCI interface registers */
 187
 188        MV_PCI_COMMAND          = 0xc00,
 189        MV_PCI_COMMAND_MWRCOM   = (1 << 4),     /* PCI Master Write Combining */
 190        MV_PCI_COMMAND_MRDTRIG  = (1 << 7),     /* PCI Master Read Trigger */
 191
 192        PCI_MAIN_CMD_STS        = 0xd30,
 193        STOP_PCI_MASTER         = (1 << 2),
 194        PCI_MASTER_EMPTY        = (1 << 3),
 195        GLOB_SFT_RST            = (1 << 4),
 196
 197        MV_PCI_MODE             = 0xd00,
 198        MV_PCI_MODE_MASK        = 0x30,
 199
 200        MV_PCI_EXP_ROM_BAR_CTL  = 0xd2c,
 201        MV_PCI_DISC_TIMER       = 0xd04,
 202        MV_PCI_MSI_TRIGGER      = 0xc38,
 203        MV_PCI_SERR_MASK        = 0xc28,
 204        MV_PCI_XBAR_TMOUT       = 0x1d04,
 205        MV_PCI_ERR_LOW_ADDRESS  = 0x1d40,
 206        MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
 207        MV_PCI_ERR_ATTRIBUTE    = 0x1d48,
 208        MV_PCI_ERR_COMMAND      = 0x1d50,
 209
 210        PCI_IRQ_CAUSE           = 0x1d58,
 211        PCI_IRQ_MASK            = 0x1d5c,
 212        PCI_UNMASK_ALL_IRQS     = 0x7fffff,     /* bits 22-0 */
 213
 214        PCIE_IRQ_CAUSE          = 0x1900,
 215        PCIE_IRQ_MASK           = 0x1910,
 216        PCIE_UNMASK_ALL_IRQS    = 0x40a,        /* assorted bits */
 217
 218        /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
 219        PCI_HC_MAIN_IRQ_CAUSE   = 0x1d60,
 220        PCI_HC_MAIN_IRQ_MASK    = 0x1d64,
 221        SOC_HC_MAIN_IRQ_CAUSE   = 0x20020,
 222        SOC_HC_MAIN_IRQ_MASK    = 0x20024,
 223        ERR_IRQ                 = (1 << 0),     /* shift by (2 * port #) */
 224        DONE_IRQ                = (1 << 1),     /* shift by (2 * port #) */
 225        HC0_IRQ_PEND            = 0x1ff,        /* bits 0-8 = HC0's ports */
 226        HC_SHIFT                = 9,            /* bits 9-17 = HC1's ports */
 227        DONE_IRQ_0_3            = 0x000000aa,   /* DONE_IRQ ports 0,1,2,3 */
 228        DONE_IRQ_4_7            = (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
 229        PCI_ERR                 = (1 << 18),
 230        TRAN_COAL_LO_DONE       = (1 << 19),    /* transaction coalescing */
 231        TRAN_COAL_HI_DONE       = (1 << 20),    /* transaction coalescing */
 232        PORTS_0_3_COAL_DONE     = (1 << 8),     /* HC0 IRQ coalescing */
 233        PORTS_4_7_COAL_DONE     = (1 << 17),    /* HC1 IRQ coalescing */
 234        ALL_PORTS_COAL_DONE     = (1 << 21),    /* GEN_II(E) IRQ coalescing */
 235        GPIO_INT                = (1 << 22),
 236        SELF_INT                = (1 << 23),
 237        TWSI_INT                = (1 << 24),
 238        HC_MAIN_RSVD            = (0x7f << 25), /* bits 31-25 */
 239        HC_MAIN_RSVD_5          = (0x1fff << 19), /* bits 31-19 */
 240        HC_MAIN_RSVD_SOC        = (0x3fffffb << 6),     /* bits 31-9, 7-6 */
 241
 242        /* SATAHC registers */
 243        HC_CFG                  = 0x00,
 244
 245        HC_IRQ_CAUSE            = 0x14,
 246        DMA_IRQ                 = (1 << 0),     /* shift by port # */
 247        HC_COAL_IRQ             = (1 << 4),     /* IRQ coalescing */
 248        DEV_IRQ                 = (1 << 8),     /* shift by port # */
 249
 250        /*
 251         * Per-HC (Host-Controller) interrupt coalescing feature.
 252         * This is present on all chip generations.
 253         *
 254         * Coalescing defers the interrupt until either the IO_THRESHOLD
 255         * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
 256         */
 257        HC_IRQ_COAL_IO_THRESHOLD        = 0x000c,
 258        HC_IRQ_COAL_TIME_THRESHOLD      = 0x0010,
 259
 260        SOC_LED_CTRL            = 0x2c,
 261        SOC_LED_CTRL_BLINK      = (1 << 0),     /* Active LED blink */
 262        SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),   /* Multiplex dev presence */
 263                                                /*  with dev activity LED */
 264
 265        /* Shadow block registers */
 266        SHD_BLK                 = 0x100,
 267        SHD_CTL_AST             = 0x20,         /* ofs from SHD_BLK */
 268
 269        /* SATA registers */
 270        SATA_STATUS             = 0x300,  /* ctrl, err regs follow status */
 271        SATA_ACTIVE             = 0x350,
 272        FIS_IRQ_CAUSE           = 0x364,
 273        FIS_IRQ_CAUSE_AN        = (1 << 9),     /* async notification */
 274
 275        LTMODE                  = 0x30c,        /* requires read-after-write */
 276        LTMODE_BIT8             = (1 << 8),     /* unknown, but necessary */
 277
 278        PHY_MODE2               = 0x330,
 279        PHY_MODE3               = 0x310,
 280
 281        PHY_MODE4               = 0x314,        /* requires read-after-write */
 282        PHY_MODE4_CFG_MASK      = 0x00000003,   /* phy internal config field */
 283        PHY_MODE4_CFG_VALUE     = 0x00000001,   /* phy internal config field */
 284        PHY_MODE4_RSVD_ZEROS    = 0x5de3fffa,   /* Gen2e always write zeros */
 285        PHY_MODE4_RSVD_ONES     = 0x00000005,   /* Gen2e always write ones */
 286
 287        SATA_IFCTL              = 0x344,
 288        SATA_TESTCTL            = 0x348,
 289        SATA_IFSTAT             = 0x34c,
 290        VENDOR_UNIQUE_FIS       = 0x35c,
 291
 292        FISCFG                  = 0x360,
 293        FISCFG_WAIT_DEV_ERR     = (1 << 8),     /* wait for host on DevErr */
 294        FISCFG_SINGLE_SYNC      = (1 << 16),    /* SYNC on DMA activation */
 295
 296        PHY_MODE9_GEN2          = 0x398,
 297        PHY_MODE9_GEN1          = 0x39c,
 298        PHYCFG_OFS              = 0x3a0,        /* only in 65n devices */
 299
 300        MV5_PHY_MODE            = 0x74,
 301        MV5_LTMODE              = 0x30,
 302        MV5_PHY_CTL             = 0x0C,
 303        SATA_IFCFG              = 0x050,
 304
 305        MV_M2_PREAMP_MASK       = 0x7e0,
 306
 307        /* Port registers */
 308        EDMA_CFG                = 0,
 309        EDMA_CFG_Q_DEPTH        = 0x1f,         /* max device queue depth */
 310        EDMA_CFG_NCQ            = (1 << 5),     /* for R/W FPDMA queued */
 311        EDMA_CFG_NCQ_GO_ON_ERR  = (1 << 14),    /* continue on error */
 312        EDMA_CFG_RD_BRST_EXT    = (1 << 11),    /* read burst 512B */
 313        EDMA_CFG_WR_BUFF_LEN    = (1 << 13),    /* write buffer 512B */
 314        EDMA_CFG_EDMA_FBS       = (1 << 16),    /* EDMA FIS-Based Switching */
 315        EDMA_CFG_FBS            = (1 << 26),    /* FIS-Based Switching */
 316
 317        EDMA_ERR_IRQ_CAUSE      = 0x8,
 318        EDMA_ERR_IRQ_MASK       = 0xc,
 319        EDMA_ERR_D_PAR          = (1 << 0),     /* UDMA data parity err */
 320        EDMA_ERR_PRD_PAR        = (1 << 1),     /* UDMA PRD parity err */
 321        EDMA_ERR_DEV            = (1 << 2),     /* device error */
 322        EDMA_ERR_DEV_DCON       = (1 << 3),     /* device disconnect */
 323        EDMA_ERR_DEV_CON        = (1 << 4),     /* device connected */
 324        EDMA_ERR_SERR           = (1 << 5),     /* SError bits [WBDST] raised */
 325        EDMA_ERR_SELF_DIS       = (1 << 7),     /* Gen II/IIE self-disable */
 326        EDMA_ERR_SELF_DIS_5     = (1 << 8),     /* Gen I self-disable */
 327        EDMA_ERR_BIST_ASYNC     = (1 << 8),     /* BIST FIS or Async Notify */
 328        EDMA_ERR_TRANS_IRQ_7    = (1 << 8),     /* Gen IIE transprt layer irq */
 329        EDMA_ERR_CRQB_PAR       = (1 << 9),     /* CRQB parity error */
 330        EDMA_ERR_CRPB_PAR       = (1 << 10),    /* CRPB parity error */
 331        EDMA_ERR_INTRL_PAR      = (1 << 11),    /* internal parity error */
 332        EDMA_ERR_IORDY          = (1 << 12),    /* IORdy timeout */
 333
 334        EDMA_ERR_LNK_CTRL_RX    = (0xf << 13),  /* link ctrl rx error */
 335        EDMA_ERR_LNK_CTRL_RX_0  = (1 << 13),    /* transient: CRC err */
 336        EDMA_ERR_LNK_CTRL_RX_1  = (1 << 14),    /* transient: FIFO err */
 337        EDMA_ERR_LNK_CTRL_RX_2  = (1 << 15),    /* fatal: caught SYNC */
 338        EDMA_ERR_LNK_CTRL_RX_3  = (1 << 16),    /* transient: FIS rx err */
 339
 340        EDMA_ERR_LNK_DATA_RX    = (0xf << 17),  /* link data rx error */
 341
 342        EDMA_ERR_LNK_CTRL_TX    = (0x1f << 21), /* link ctrl tx error */
 343        EDMA_ERR_LNK_CTRL_TX_0  = (1 << 21),    /* transient: CRC err */
 344        EDMA_ERR_LNK_CTRL_TX_1  = (1 << 22),    /* transient: FIFO err */
 345        EDMA_ERR_LNK_CTRL_TX_2  = (1 << 23),    /* transient: caught SYNC */
 346        EDMA_ERR_LNK_CTRL_TX_3  = (1 << 24),    /* transient: caught DMAT */
 347        EDMA_ERR_LNK_CTRL_TX_4  = (1 << 25),    /* transient: FIS collision */
 348
 349        EDMA_ERR_LNK_DATA_TX    = (0x1f << 26), /* link data tx error */
 350
 351        EDMA_ERR_TRANS_PROTO    = (1 << 31),    /* transport protocol error */
 352        EDMA_ERR_OVERRUN_5      = (1 << 5),
 353        EDMA_ERR_UNDERRUN_5     = (1 << 6),
 354
 355        EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
 356                                  EDMA_ERR_LNK_CTRL_RX_1 |
 357                                  EDMA_ERR_LNK_CTRL_RX_3 |
 358                                  EDMA_ERR_LNK_CTRL_TX,
 359
 360        EDMA_EH_FREEZE          = EDMA_ERR_D_PAR |
 361                                  EDMA_ERR_PRD_PAR |
 362                                  EDMA_ERR_DEV_DCON |
 363                                  EDMA_ERR_DEV_CON |
 364                                  EDMA_ERR_SERR |
 365                                  EDMA_ERR_SELF_DIS |
 366                                  EDMA_ERR_CRQB_PAR |
 367                                  EDMA_ERR_CRPB_PAR |
 368                                  EDMA_ERR_INTRL_PAR |
 369                                  EDMA_ERR_IORDY |
 370                                  EDMA_ERR_LNK_CTRL_RX_2 |
 371                                  EDMA_ERR_LNK_DATA_RX |
 372                                  EDMA_ERR_LNK_DATA_TX |
 373                                  EDMA_ERR_TRANS_PROTO,
 374
 375        EDMA_EH_FREEZE_5        = EDMA_ERR_D_PAR |
 376                                  EDMA_ERR_PRD_PAR |
 377                                  EDMA_ERR_DEV_DCON |
 378                                  EDMA_ERR_DEV_CON |
 379                                  EDMA_ERR_OVERRUN_5 |
 380                                  EDMA_ERR_UNDERRUN_5 |
 381                                  EDMA_ERR_SELF_DIS_5 |
 382                                  EDMA_ERR_CRQB_PAR |
 383                                  EDMA_ERR_CRPB_PAR |
 384                                  EDMA_ERR_INTRL_PAR |
 385                                  EDMA_ERR_IORDY,
 386
 387        EDMA_REQ_Q_BASE_HI      = 0x10,
 388        EDMA_REQ_Q_IN_PTR       = 0x14,         /* also contains BASE_LO */
 389
 390        EDMA_REQ_Q_OUT_PTR      = 0x18,
 391        EDMA_REQ_Q_PTR_SHIFT    = 5,
 392
 393        EDMA_RSP_Q_BASE_HI      = 0x1c,
 394        EDMA_RSP_Q_IN_PTR       = 0x20,
 395        EDMA_RSP_Q_OUT_PTR      = 0x24,         /* also contains BASE_LO */
 396        EDMA_RSP_Q_PTR_SHIFT    = 3,
 397
 398        EDMA_CMD                = 0x28,         /* EDMA command register */
 399        EDMA_EN                 = (1 << 0),     /* enable EDMA */
 400        EDMA_DS                 = (1 << 1),     /* disable EDMA; self-negated */
 401        EDMA_RESET              = (1 << 2),     /* reset eng/trans/link/phy */
 402
 403        EDMA_STATUS             = 0x30,         /* EDMA engine status */
 404        EDMA_STATUS_CACHE_EMPTY = (1 << 6),     /* GenIIe command cache empty */
 405        EDMA_STATUS_IDLE        = (1 << 7),     /* GenIIe EDMA enabled/idle */
 406
 407        EDMA_IORDY_TMOUT        = 0x34,
 408        EDMA_ARB_CFG            = 0x38,
 409
 410        EDMA_HALTCOND           = 0x60,         /* GenIIe halt conditions */
 411        EDMA_UNKNOWN_RSVD       = 0x6C,         /* GenIIe unknown/reserved */
 412
 413        BMDMA_CMD               = 0x224,        /* bmdma command register */
 414        BMDMA_STATUS            = 0x228,        /* bmdma status register */
 415        BMDMA_PRD_LOW           = 0x22c,        /* bmdma PRD addr 31:0 */
 416        BMDMA_PRD_HIGH          = 0x230,        /* bmdma PRD addr 63:32 */
 417
 418        /* Host private flags (hp_flags) */
 419        MV_HP_FLAG_MSI          = (1 << 0),
 420        MV_HP_ERRATA_50XXB0     = (1 << 1),
 421        MV_HP_ERRATA_50XXB2     = (1 << 2),
 422        MV_HP_ERRATA_60X1B2     = (1 << 3),
 423        MV_HP_ERRATA_60X1C0     = (1 << 4),
 424        MV_HP_GEN_I             = (1 << 6),     /* Generation I: 50xx */
 425        MV_HP_GEN_II            = (1 << 7),     /* Generation II: 60xx */
 426        MV_HP_GEN_IIE           = (1 << 8),     /* Generation IIE: 6042/7042 */
 427        MV_HP_PCIE              = (1 << 9),     /* PCIe bus/regs: 7042 */
 428        MV_HP_CUT_THROUGH       = (1 << 10),    /* can use EDMA cut-through */
 429        MV_HP_FLAG_SOC          = (1 << 11),    /* SystemOnChip, no PCI */
 430        MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),   /* is led blinking enabled? */
 431
 432        /* Port private flags (pp_flags) */
 433        MV_PP_FLAG_EDMA_EN      = (1 << 0),     /* is EDMA engine enabled? */
 434        MV_PP_FLAG_NCQ_EN       = (1 << 1),     /* is EDMA set up for NCQ? */
 435        MV_PP_FLAG_FBS_EN       = (1 << 2),     /* is EDMA set up for FBS? */
 436        MV_PP_FLAG_DELAYED_EH   = (1 << 3),     /* delayed dev err handling */
 437        MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),    /* ignore initial ATA_DRDY */
 438};
 439
 440#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
 441#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
 442#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
 443#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
 444#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
 445
 446#define WINDOW_CTRL(i)          (0x20030 + ((i) << 4))
 447#define WINDOW_BASE(i)          (0x20034 + ((i) << 4))
 448
 449enum {
 450        /* DMA boundary 0xffff is required by the s/g splitting
 451         * we need on /length/ in mv_fill-sg().
 452         */
 453        MV_DMA_BOUNDARY         = 0xffffU,
 454
 455        /* mask of register bits containing lower 32 bits
 456         * of EDMA request queue DMA address
 457         */
 458        EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
 459
 460        /* ditto, for response queue */
 461        EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
 462};
 463
 464enum chip_type {
 465        chip_504x,
 466        chip_508x,
 467        chip_5080,
 468        chip_604x,
 469        chip_608x,
 470        chip_6042,
 471        chip_7042,
 472        chip_soc,
 473};
 474
 475/* Command ReQuest Block: 32B */
 476struct mv_crqb {
 477        __le32                  sg_addr;
 478        __le32                  sg_addr_hi;
 479        __le16                  ctrl_flags;
 480        __le16                  ata_cmd[11];
 481};
 482
 483struct mv_crqb_iie {
 484        __le32                  addr;
 485        __le32                  addr_hi;
 486        __le32                  flags;
 487        __le32                  len;
 488        __le32                  ata_cmd[4];
 489};
 490
 491/* Command ResPonse Block: 8B */
 492struct mv_crpb {
 493        __le16                  id;
 494        __le16                  flags;
 495        __le32                  tmstmp;
 496};
 497
 498/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
 499struct mv_sg {
 500        __le32                  addr;
 501        __le32                  flags_size;
 502        __le32                  addr_hi;
 503        __le32                  reserved;
 504};
 505
 506/*
 507 * We keep a local cache of a few frequently accessed port
 508 * registers here, to avoid having to read them (very slow)
 509 * when switching between EDMA and non-EDMA modes.
 510 */
 511struct mv_cached_regs {
 512        u32                     fiscfg;
 513        u32                     ltmode;
 514        u32                     haltcond;
 515        u32                     unknown_rsvd;
 516};
 517
 518struct mv_port_priv {
 519        struct mv_crqb          *crqb;
 520        dma_addr_t              crqb_dma;
 521        struct mv_crpb          *crpb;
 522        dma_addr_t              crpb_dma;
 523        struct mv_sg            *sg_tbl[MV_MAX_Q_DEPTH];
 524        dma_addr_t              sg_tbl_dma[MV_MAX_Q_DEPTH];
 525
 526        unsigned int            req_idx;
 527        unsigned int            resp_idx;
 528
 529        u32                     pp_flags;
 530        struct mv_cached_regs   cached;
 531        unsigned int            delayed_eh_pmp_map;
 532};
 533
 534struct mv_port_signal {
 535        u32                     amps;
 536        u32                     pre;
 537};
 538
 539struct mv_host_priv {
 540        u32                     hp_flags;
 541        u32                     main_irq_mask;
 542        struct mv_port_signal   signal[8];
 543        const struct mv_hw_ops  *ops;
 544        int                     n_ports;
 545        void __iomem            *base;
 546        void __iomem            *main_irq_cause_addr;
 547        void __iomem            *main_irq_mask_addr;
 548        u32                     irq_cause_offset;
 549        u32                     irq_mask_offset;
 550        u32                     unmask_all_irqs;
 551        /*
 552         * These consistent DMA memory pools give us guaranteed
 553         * alignment for hardware-accessed data structures,
 554         * and less memory waste in accomplishing the alignment.
 555         */
 556        struct dma_pool         *crqb_pool;
 557        struct dma_pool         *crpb_pool;
 558        struct dma_pool         *sg_tbl_pool;
 559};
 560
 561struct mv_hw_ops {
 562        void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
 563                           unsigned int port);
 564        void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
 565        void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
 566                           void __iomem *mmio);
 567        int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
 568                        unsigned int n_hc);
 569        void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
 570        void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
 571};
 572
 573static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
 574static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
 575static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
 576static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
 577static int mv_port_start(struct ata_port *ap);
 578static void mv_port_stop(struct ata_port *ap);
 579static int mv_qc_defer(struct ata_queued_cmd *qc);
 580static void mv_qc_prep(struct ata_queued_cmd *qc);
 581static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
 582static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
 583static int mv_hardreset(struct ata_link *link, unsigned int *class,
 584                        unsigned long deadline);
 585static void mv_eh_freeze(struct ata_port *ap);
 586static void mv_eh_thaw(struct ata_port *ap);
 587static void mv6_dev_config(struct ata_device *dev);
 588
 589static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 590                           unsigned int port);
 591static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
 592static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
 593                           void __iomem *mmio);
 594static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 595                        unsigned int n_hc);
 596static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
 597static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
 598
 599static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 600                           unsigned int port);
 601static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
 602static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
 603                           void __iomem *mmio);
 604static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 605                        unsigned int n_hc);
 606static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
 607static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
 608                                      void __iomem *mmio);
 609static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
 610                                      void __iomem *mmio);
 611static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
 612                                  void __iomem *mmio, unsigned int n_hc);
 613static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
 614                                      void __iomem *mmio);
 615static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
 616static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
 617                                  void __iomem *mmio, unsigned int port);
 618static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
 619static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
 620                             unsigned int port_no);
 621static int mv_stop_edma(struct ata_port *ap);
 622static int mv_stop_edma_engine(void __iomem *port_mmio);
 623static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
 624
 625static void mv_pmp_select(struct ata_port *ap, int pmp);
 626static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
 627                                unsigned long deadline);
 628static int  mv_softreset(struct ata_link *link, unsigned int *class,
 629                                unsigned long deadline);
 630static void mv_pmp_error_handler(struct ata_port *ap);
 631static void mv_process_crpb_entries(struct ata_port *ap,
 632                                        struct mv_port_priv *pp);
 633
 634static void mv_sff_irq_clear(struct ata_port *ap);
 635static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
 636static void mv_bmdma_setup(struct ata_queued_cmd *qc);
 637static void mv_bmdma_start(struct ata_queued_cmd *qc);
 638static void mv_bmdma_stop(struct ata_queued_cmd *qc);
 639static u8   mv_bmdma_status(struct ata_port *ap);
 640static u8 mv_sff_check_status(struct ata_port *ap);
 641
 642/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
 643 * because we have to allow room for worst case splitting of
 644 * PRDs for 64K boundaries in mv_fill_sg().
 645 */
 646static struct scsi_host_template mv5_sht = {
 647        ATA_BASE_SHT(DRV_NAME),
 648        .sg_tablesize           = MV_MAX_SG_CT / 2,
 649        .dma_boundary           = MV_DMA_BOUNDARY,
 650};
 651
 652static struct scsi_host_template mv6_sht = {
 653        ATA_NCQ_SHT(DRV_NAME),
 654        .can_queue              = MV_MAX_Q_DEPTH - 1,
 655        .sg_tablesize           = MV_MAX_SG_CT / 2,
 656        .dma_boundary           = MV_DMA_BOUNDARY,
 657};
 658
 659static struct ata_port_operations mv5_ops = {
 660        .inherits               = &ata_sff_port_ops,
 661
 662        .lost_interrupt         = ATA_OP_NULL,
 663
 664        .qc_defer               = mv_qc_defer,
 665        .qc_prep                = mv_qc_prep,
 666        .qc_issue               = mv_qc_issue,
 667
 668        .freeze                 = mv_eh_freeze,
 669        .thaw                   = mv_eh_thaw,
 670        .hardreset              = mv_hardreset,
 671        .error_handler          = ata_std_error_handler, /* avoid SFF EH */
 672        .post_internal_cmd      = ATA_OP_NULL,
 673
 674        .scr_read               = mv5_scr_read,
 675        .scr_write              = mv5_scr_write,
 676
 677        .port_start             = mv_port_start,
 678        .port_stop              = mv_port_stop,
 679};
 680
 681static struct ata_port_operations mv6_ops = {
 682        .inherits               = &mv5_ops,
 683        .dev_config             = mv6_dev_config,
 684        .scr_read               = mv_scr_read,
 685        .scr_write              = mv_scr_write,
 686
 687        .pmp_hardreset          = mv_pmp_hardreset,
 688        .pmp_softreset          = mv_softreset,
 689        .softreset              = mv_softreset,
 690        .error_handler          = mv_pmp_error_handler,
 691
 692        .sff_check_status       = mv_sff_check_status,
 693        .sff_irq_clear          = mv_sff_irq_clear,
 694        .check_atapi_dma        = mv_check_atapi_dma,
 695        .bmdma_setup            = mv_bmdma_setup,
 696        .bmdma_start            = mv_bmdma_start,
 697        .bmdma_stop             = mv_bmdma_stop,
 698        .bmdma_status           = mv_bmdma_status,
 699};
 700
 701static struct ata_port_operations mv_iie_ops = {
 702        .inherits               = &mv6_ops,
 703        .dev_config             = ATA_OP_NULL,
 704        .qc_prep                = mv_qc_prep_iie,
 705};
 706
 707static const struct ata_port_info mv_port_info[] = {
 708        {  /* chip_504x */
 709                .flags          = MV_GEN_I_FLAGS,
 710                .pio_mask       = ATA_PIO4,
 711                .udma_mask      = ATA_UDMA6,
 712                .port_ops       = &mv5_ops,
 713        },
 714        {  /* chip_508x */
 715                .flags          = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
 716                .pio_mask       = ATA_PIO4,
 717                .udma_mask      = ATA_UDMA6,
 718                .port_ops       = &mv5_ops,
 719        },
 720        {  /* chip_5080 */
 721                .flags          = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
 722                .pio_mask       = ATA_PIO4,
 723                .udma_mask      = ATA_UDMA6,
 724                .port_ops       = &mv5_ops,
 725        },
 726        {  /* chip_604x */
 727                .flags          = MV_GEN_II_FLAGS,
 728                .pio_mask       = ATA_PIO4,
 729                .udma_mask      = ATA_UDMA6,
 730                .port_ops       = &mv6_ops,
 731        },
 732        {  /* chip_608x */
 733                .flags          = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
 734                .pio_mask       = ATA_PIO4,
 735                .udma_mask      = ATA_UDMA6,
 736                .port_ops       = &mv6_ops,
 737        },
 738        {  /* chip_6042 */
 739                .flags          = MV_GEN_IIE_FLAGS,
 740                .pio_mask       = ATA_PIO4,
 741                .udma_mask      = ATA_UDMA6,
 742                .port_ops       = &mv_iie_ops,
 743        },
 744        {  /* chip_7042 */
 745                .flags          = MV_GEN_IIE_FLAGS,
 746                .pio_mask       = ATA_PIO4,
 747                .udma_mask      = ATA_UDMA6,
 748                .port_ops       = &mv_iie_ops,
 749        },
 750        {  /* chip_soc */
 751                .flags          = MV_GEN_IIE_FLAGS,
 752                .pio_mask       = ATA_PIO4,
 753                .udma_mask      = ATA_UDMA6,
 754                .port_ops       = &mv_iie_ops,
 755        },
 756};
 757
 758static const struct pci_device_id mv_pci_tbl[] = {
 759        { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
 760        { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
 761        { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
 762        { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
 763        /* RocketRAID 1720/174x have different identifiers */
 764        { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
 765        { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
 766        { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
 767
 768        { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
 769        { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
 770        { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
 771        { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
 772        { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
 773
 774        { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
 775
 776        /* Adaptec 1430SA */
 777        { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
 778
 779        /* Marvell 7042 support */
 780        { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
 781
 782        /* Highpoint RocketRAID PCIe series */
 783        { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
 784        { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
 785
 786        { }                     /* terminate list */
 787};
 788
 789static const struct mv_hw_ops mv5xxx_ops = {
 790        .phy_errata             = mv5_phy_errata,
 791        .enable_leds            = mv5_enable_leds,
 792        .read_preamp            = mv5_read_preamp,
 793        .reset_hc               = mv5_reset_hc,
 794        .reset_flash            = mv5_reset_flash,
 795        .reset_bus              = mv5_reset_bus,
 796};
 797
 798static const struct mv_hw_ops mv6xxx_ops = {
 799        .phy_errata             = mv6_phy_errata,
 800        .enable_leds            = mv6_enable_leds,
 801        .read_preamp            = mv6_read_preamp,
 802        .reset_hc               = mv6_reset_hc,
 803        .reset_flash            = mv6_reset_flash,
 804        .reset_bus              = mv_reset_pci_bus,
 805};
 806
 807static const struct mv_hw_ops mv_soc_ops = {
 808        .phy_errata             = mv6_phy_errata,
 809        .enable_leds            = mv_soc_enable_leds,
 810        .read_preamp            = mv_soc_read_preamp,
 811        .reset_hc               = mv_soc_reset_hc,
 812        .reset_flash            = mv_soc_reset_flash,
 813        .reset_bus              = mv_soc_reset_bus,
 814};
 815
 816static const struct mv_hw_ops mv_soc_65n_ops = {
 817        .phy_errata             = mv_soc_65n_phy_errata,
 818        .enable_leds            = mv_soc_enable_leds,
 819        .reset_hc               = mv_soc_reset_hc,
 820        .reset_flash            = mv_soc_reset_flash,
 821        .reset_bus              = mv_soc_reset_bus,
 822};
 823
 824/*
 825 * Functions
 826 */
 827
 828static inline void writelfl(unsigned long data, void __iomem *addr)
 829{
 830        writel(data, addr);
 831        (void) readl(addr);     /* flush to avoid PCI posted write */
 832}
 833
 834static inline unsigned int mv_hc_from_port(unsigned int port)
 835{
 836        return port >> MV_PORT_HC_SHIFT;
 837}
 838
 839static inline unsigned int mv_hardport_from_port(unsigned int port)
 840{
 841        return port & MV_PORT_MASK;
 842}
 843
 844/*
 845 * Consolidate some rather tricky bit shift calculations.
 846 * This is hot-path stuff, so not a function.
 847 * Simple code, with two return values, so macro rather than inline.
 848 *
 849 * port is the sole input, in range 0..7.
 850 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
 851 * hardport is the other output, in range 0..3.
 852 *
 853 * Note that port and hardport may be the same variable in some cases.
 854 */
 855#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)    \
 856{                                                               \
 857        shift    = mv_hc_from_port(port) * HC_SHIFT;            \
 858        hardport = mv_hardport_from_port(port);                 \
 859        shift   += hardport * 2;                                \
 860}
 861
 862static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
 863{
 864        return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
 865}
 866
 867static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
 868                                                 unsigned int port)
 869{
 870        return mv_hc_base(base, mv_hc_from_port(port));
 871}
 872
 873static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
 874{
 875        return  mv_hc_base_from_port(base, port) +
 876                MV_SATAHC_ARBTR_REG_SZ +
 877                (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
 878}
 879
 880static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
 881{
 882        void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
 883        unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
 884
 885        return hc_mmio + ofs;
 886}
 887
 888static inline void __iomem *mv_host_base(struct ata_host *host)
 889{
 890        struct mv_host_priv *hpriv = host->private_data;
 891        return hpriv->base;
 892}
 893
 894static inline void __iomem *mv_ap_base(struct ata_port *ap)
 895{
 896        return mv_port_base(mv_host_base(ap->host), ap->port_no);
 897}
 898
 899static inline int mv_get_hc_count(unsigned long port_flags)
 900{
 901        return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
 902}
 903
 904/**
 905 *      mv_save_cached_regs - (re-)initialize cached port registers
 906 *      @ap: the port whose registers we are caching
 907 *
 908 *      Initialize the local cache of port registers,
 909 *      so that reading them over and over again can
 910 *      be avoided on the hotter paths of this driver.
 911 *      This saves a few microseconds each time we switch
 912 *      to/from EDMA mode to perform (eg.) a drive cache flush.
 913 */
 914static void mv_save_cached_regs(struct ata_port *ap)
 915{
 916        void __iomem *port_mmio = mv_ap_base(ap);
 917        struct mv_port_priv *pp = ap->private_data;
 918
 919        pp->cached.fiscfg = readl(port_mmio + FISCFG);
 920        pp->cached.ltmode = readl(port_mmio + LTMODE);
 921        pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
 922        pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
 923}
 924
 925/**
 926 *      mv_write_cached_reg - write to a cached port register
 927 *      @addr: hardware address of the register
 928 *      @old: pointer to cached value of the register
 929 *      @new: new value for the register
 930 *
 931 *      Write a new value to a cached register,
 932 *      but only if the value is different from before.
 933 */
 934static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
 935{
 936        if (new != *old) {
 937                unsigned long laddr;
 938                *old = new;
 939                /*
 940                 * Workaround for 88SX60x1-B2 FEr SATA#13:
 941                 * Read-after-write is needed to prevent generating 64-bit
 942                 * write cycles on the PCI bus for SATA interface registers
 943                 * at offsets ending in 0x4 or 0xc.
 944                 *
 945                 * Looks like a lot of fuss, but it avoids an unnecessary
 946                 * +1 usec read-after-write delay for unaffected registers.
 947                 */
 948                laddr = (long)addr & 0xffff;
 949                if (laddr >= 0x300 && laddr <= 0x33c) {
 950                        laddr &= 0x000f;
 951                        if (laddr == 0x4 || laddr == 0xc) {
 952                                writelfl(new, addr); /* read after write */
 953                                return;
 954                        }
 955                }
 956                writel(new, addr); /* unaffected by the errata */
 957        }
 958}
 959
 960static void mv_set_edma_ptrs(void __iomem *port_mmio,
 961                             struct mv_host_priv *hpriv,
 962                             struct mv_port_priv *pp)
 963{
 964        u32 index;
 965
 966        /*
 967         * initialize request queue
 968         */
 969        pp->req_idx &= MV_MAX_Q_DEPTH_MASK;     /* paranoia */
 970        index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
 971
 972        WARN_ON(pp->crqb_dma & 0x3ff);
 973        writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
 974        writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
 975                 port_mmio + EDMA_REQ_Q_IN_PTR);
 976        writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
 977
 978        /*
 979         * initialize response queue
 980         */
 981        pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;    /* paranoia */
 982        index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
 983
 984        WARN_ON(pp->crpb_dma & 0xff);
 985        writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
 986        writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
 987        writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
 988                 port_mmio + EDMA_RSP_Q_OUT_PTR);
 989}
 990
 991static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
 992{
 993        /*
 994         * When writing to the main_irq_mask in hardware,
 995         * we must ensure exclusivity between the interrupt coalescing bits
 996         * and the corresponding individual port DONE_IRQ bits.
 997         *
 998         * Note that this register is really an "IRQ enable" register,
 999         * not an "IRQ mask" register as Marvell's naming might suggest.
1000         */
1001        if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1002                mask &= ~DONE_IRQ_0_3;
1003        if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1004                mask &= ~DONE_IRQ_4_7;
1005        writelfl(mask, hpriv->main_irq_mask_addr);
1006}
1007
1008static void mv_set_main_irq_mask(struct ata_host *host,
1009                                 u32 disable_bits, u32 enable_bits)
1010{
1011        struct mv_host_priv *hpriv = host->private_data;
1012        u32 old_mask, new_mask;
1013
1014        old_mask = hpriv->main_irq_mask;
1015        new_mask = (old_mask & ~disable_bits) | enable_bits;
1016        if (new_mask != old_mask) {
1017                hpriv->main_irq_mask = new_mask;
1018                mv_write_main_irq_mask(new_mask, hpriv);
1019        }
1020}
1021
1022static void mv_enable_port_irqs(struct ata_port *ap,
1023                                     unsigned int port_bits)
1024{
1025        unsigned int shift, hardport, port = ap->port_no;
1026        u32 disable_bits, enable_bits;
1027
1028        MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1029
1030        disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1031        enable_bits  = port_bits << shift;
1032        mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1033}
1034
1035static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1036                                          void __iomem *port_mmio,
1037                                          unsigned int port_irqs)
1038{
1039        struct mv_host_priv *hpriv = ap->host->private_data;
1040        int hardport = mv_hardport_from_port(ap->port_no);
1041        void __iomem *hc_mmio = mv_hc_base_from_port(
1042                                mv_host_base(ap->host), ap->port_no);
1043        u32 hc_irq_cause;
1044
1045        /* clear EDMA event indicators, if any */
1046        writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1047
1048        /* clear pending irq events */
1049        hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1050        writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1051
1052        /* clear FIS IRQ Cause */
1053        if (IS_GEN_IIE(hpriv))
1054                writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1055
1056        mv_enable_port_irqs(ap, port_irqs);
1057}
1058
1059static void mv_set_irq_coalescing(struct ata_host *host,
1060                                  unsigned int count, unsigned int usecs)
1061{
1062        struct mv_host_priv *hpriv = host->private_data;
1063        void __iomem *mmio = hpriv->base, *hc_mmio;
1064        u32 coal_enable = 0;
1065        unsigned long flags;
1066        unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1067        const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1068                                                        ALL_PORTS_COAL_DONE;
1069
1070        /* Disable IRQ coalescing if either threshold is zero */
1071        if (!usecs || !count) {
1072                clks = count = 0;
1073        } else {
1074                /* Respect maximum limits of the hardware */
1075                clks = usecs * COAL_CLOCKS_PER_USEC;
1076                if (clks > MAX_COAL_TIME_THRESHOLD)
1077                        clks = MAX_COAL_TIME_THRESHOLD;
1078                if (count > MAX_COAL_IO_COUNT)
1079                        count = MAX_COAL_IO_COUNT;
1080        }
1081
1082        spin_lock_irqsave(&host->lock, flags);
1083        mv_set_main_irq_mask(host, coal_disable, 0);
1084
1085        if (is_dual_hc && !IS_GEN_I(hpriv)) {
1086                /*
1087                 * GEN_II/GEN_IIE with dual host controllers:
1088                 * one set of global thresholds for the entire chip.
1089                 */
1090                writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1091                writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1092                /* clear leftover coal IRQ bit */
1093                writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1094                if (count)
1095                        coal_enable = ALL_PORTS_COAL_DONE;
1096                clks = count = 0; /* force clearing of regular regs below */
1097        }
1098
1099        /*
1100         * All chips: independent thresholds for each HC on the chip.
1101         */
1102        hc_mmio = mv_hc_base_from_port(mmio, 0);
1103        writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1104        writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1105        writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1106        if (count)
1107                coal_enable |= PORTS_0_3_COAL_DONE;
1108        if (is_dual_hc) {
1109                hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1110                writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1111                writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1112                writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1113                if (count)
1114                        coal_enable |= PORTS_4_7_COAL_DONE;
1115        }
1116
1117        mv_set_main_irq_mask(host, 0, coal_enable);
1118        spin_unlock_irqrestore(&host->lock, flags);
1119}
1120
1121/**
1122 *      mv_start_edma - Enable eDMA engine
1123 *      @base: port base address
1124 *      @pp: port private data
1125 *
1126 *      Verify the local cache of the eDMA state is accurate with a
1127 *      WARN_ON.
1128 *
1129 *      LOCKING:
1130 *      Inherited from caller.
1131 */
1132static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1133                         struct mv_port_priv *pp, u8 protocol)
1134{
1135        int want_ncq = (protocol == ATA_PROT_NCQ);
1136
1137        if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1138                int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1139                if (want_ncq != using_ncq)
1140                        mv_stop_edma(ap);
1141        }
1142        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1143                struct mv_host_priv *hpriv = ap->host->private_data;
1144
1145                mv_edma_cfg(ap, want_ncq, 1);
1146
1147                mv_set_edma_ptrs(port_mmio, hpriv, pp);
1148                mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1149
1150                writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1151                pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1152        }
1153}
1154
1155static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1156{
1157        void __iomem *port_mmio = mv_ap_base(ap);
1158        const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1159        const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1160        int i;
1161
1162        /*
1163         * Wait for the EDMA engine to finish transactions in progress.
1164         * No idea what a good "timeout" value might be, but measurements
1165         * indicate that it often requires hundreds of microseconds
1166         * with two drives in-use.  So we use the 15msec value above
1167         * as a rough guess at what even more drives might require.
1168         */
1169        for (i = 0; i < timeout; ++i) {
1170                u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1171                if ((edma_stat & empty_idle) == empty_idle)
1172                        break;
1173                udelay(per_loop);
1174        }
1175        /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1176}
1177
1178/**
1179 *      mv_stop_edma_engine - Disable eDMA engine
1180 *      @port_mmio: io base address
1181 *
1182 *      LOCKING:
1183 *      Inherited from caller.
1184 */
1185static int mv_stop_edma_engine(void __iomem *port_mmio)
1186{
1187        int i;
1188
1189        /* Disable eDMA.  The disable bit auto clears. */
1190        writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1191
1192        /* Wait for the chip to confirm eDMA is off. */
1193        for (i = 10000; i > 0; i--) {
1194                u32 reg = readl(port_mmio + EDMA_CMD);
1195                if (!(reg & EDMA_EN))
1196                        return 0;
1197                udelay(10);
1198        }
1199        return -EIO;
1200}
1201
1202static int mv_stop_edma(struct ata_port *ap)
1203{
1204        void __iomem *port_mmio = mv_ap_base(ap);
1205        struct mv_port_priv *pp = ap->private_data;
1206        int err = 0;
1207
1208        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1209                return 0;
1210        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1211        mv_wait_for_edma_empty_idle(ap);
1212        if (mv_stop_edma_engine(port_mmio)) {
1213                ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
1214                err = -EIO;
1215        }
1216        mv_edma_cfg(ap, 0, 0);
1217        return err;
1218}
1219
1220#ifdef ATA_DEBUG
1221static void mv_dump_mem(void __iomem *start, unsigned bytes)
1222{
1223        int b, w;
1224        for (b = 0; b < bytes; ) {
1225                DPRINTK("%p: ", start + b);
1226                for (w = 0; b < bytes && w < 4; w++) {
1227                        printk("%08x ", readl(start + b));
1228                        b += sizeof(u32);
1229                }
1230                printk("\n");
1231        }
1232}
1233#endif
1234
1235static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1236{
1237#ifdef ATA_DEBUG
1238        int b, w;
1239        u32 dw;
1240        for (b = 0; b < bytes; ) {
1241                DPRINTK("%02x: ", b);
1242                for (w = 0; b < bytes && w < 4; w++) {
1243                        (void) pci_read_config_dword(pdev, b, &dw);
1244                        printk("%08x ", dw);
1245                        b += sizeof(u32);
1246                }
1247                printk("\n");
1248        }
1249#endif
1250}
1251static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1252                             struct pci_dev *pdev)
1253{
1254#ifdef ATA_DEBUG
1255        void __iomem *hc_base = mv_hc_base(mmio_base,
1256                                           port >> MV_PORT_HC_SHIFT);
1257        void __iomem *port_base;
1258        int start_port, num_ports, p, start_hc, num_hcs, hc;
1259
1260        if (0 > port) {
1261                start_hc = start_port = 0;
1262                num_ports = 8;          /* shld be benign for 4 port devs */
1263                num_hcs = 2;
1264        } else {
1265                start_hc = port >> MV_PORT_HC_SHIFT;
1266                start_port = port;
1267                num_ports = num_hcs = 1;
1268        }
1269        DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1270                num_ports > 1 ? num_ports - 1 : start_port);
1271
1272        if (NULL != pdev) {
1273                DPRINTK("PCI config space regs:\n");
1274                mv_dump_pci_cfg(pdev, 0x68);
1275        }
1276        DPRINTK("PCI regs:\n");
1277        mv_dump_mem(mmio_base+0xc00, 0x3c);
1278        mv_dump_mem(mmio_base+0xd00, 0x34);
1279        mv_dump_mem(mmio_base+0xf00, 0x4);
1280        mv_dump_mem(mmio_base+0x1d00, 0x6c);
1281        for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1282                hc_base = mv_hc_base(mmio_base, hc);
1283                DPRINTK("HC regs (HC %i):\n", hc);
1284                mv_dump_mem(hc_base, 0x1c);
1285        }
1286        for (p = start_port; p < start_port + num_ports; p++) {
1287                port_base = mv_port_base(mmio_base, p);
1288                DPRINTK("EDMA regs (port %i):\n", p);
1289                mv_dump_mem(port_base, 0x54);
1290                DPRINTK("SATA regs (port %i):\n", p);
1291                mv_dump_mem(port_base+0x300, 0x60);
1292        }
1293#endif
1294}
1295
1296static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1297{
1298        unsigned int ofs;
1299
1300        switch (sc_reg_in) {
1301        case SCR_STATUS:
1302        case SCR_CONTROL:
1303        case SCR_ERROR:
1304                ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1305                break;
1306        case SCR_ACTIVE:
1307                ofs = SATA_ACTIVE;   /* active is not with the others */
1308                break;
1309        default:
1310                ofs = 0xffffffffU;
1311                break;
1312        }
1313        return ofs;
1314}
1315
1316static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1317{
1318        unsigned int ofs = mv_scr_offset(sc_reg_in);
1319
1320        if (ofs != 0xffffffffU) {
1321                *val = readl(mv_ap_base(link->ap) + ofs);
1322                return 0;
1323        } else
1324                return -EINVAL;
1325}
1326
1327static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1328{
1329        unsigned int ofs = mv_scr_offset(sc_reg_in);
1330
1331        if (ofs != 0xffffffffU) {
1332                void __iomem *addr = mv_ap_base(link->ap) + ofs;
1333                if (sc_reg_in == SCR_CONTROL) {
1334                        /*
1335                         * Workaround for 88SX60x1 FEr SATA#26:
1336                         *
1337                         * COMRESETs have to take care not to accidently
1338                         * put the drive to sleep when writing SCR_CONTROL.
1339                         * Setting bits 12..15 prevents this problem.
1340                         *
1341                         * So if we see an outbound COMMRESET, set those bits.
1342                         * Ditto for the followup write that clears the reset.
1343                         *
1344                         * The proprietary driver does this for
1345                         * all chip versions, and so do we.
1346                         */
1347                        if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1348                                val |= 0xf000;
1349                }
1350                writelfl(val, addr);
1351                return 0;
1352        } else
1353                return -EINVAL;
1354}
1355
1356static void mv6_dev_config(struct ata_device *adev)
1357{
1358        /*
1359         * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1360         *
1361         * Gen-II does not support NCQ over a port multiplier
1362         *  (no FIS-based switching).
1363         */
1364        if (adev->flags & ATA_DFLAG_NCQ) {
1365                if (sata_pmp_attached(adev->link->ap)) {
1366                        adev->flags &= ~ATA_DFLAG_NCQ;
1367                        ata_dev_printk(adev, KERN_INFO,
1368                                "NCQ disabled for command-based switching\n");
1369                }
1370        }
1371}
1372
1373static int mv_qc_defer(struct ata_queued_cmd *qc)
1374{
1375        struct ata_link *link = qc->dev->link;
1376        struct ata_port *ap = link->ap;
1377        struct mv_port_priv *pp = ap->private_data;
1378
1379        /*
1380         * Don't allow new commands if we're in a delayed EH state
1381         * for NCQ and/or FIS-based switching.
1382         */
1383        if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1384                return ATA_DEFER_PORT;
1385
1386        /* PIO commands need exclusive link: no other commands [DMA or PIO]
1387         * can run concurrently.
1388         * set excl_link when we want to send a PIO command in DMA mode
1389         * or a non-NCQ command in NCQ mode.
1390         * When we receive a command from that link, and there are no
1391         * outstanding commands, mark a flag to clear excl_link and let
1392         * the command go through.
1393         */
1394        if (unlikely(ap->excl_link)) {
1395                if (link == ap->excl_link) {
1396                        if (ap->nr_active_links)
1397                                return ATA_DEFER_PORT;
1398                        qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1399                        return 0;
1400                } else
1401                        return ATA_DEFER_PORT;
1402        }
1403
1404        /*
1405         * If the port is completely idle, then allow the new qc.
1406         */
1407        if (ap->nr_active_links == 0)
1408                return 0;
1409
1410        /*
1411         * The port is operating in host queuing mode (EDMA) with NCQ
1412         * enabled, allow multiple NCQ commands.  EDMA also allows
1413         * queueing multiple DMA commands but libata core currently
1414         * doesn't allow it.
1415         */
1416        if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1417            (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1418                if (ata_is_ncq(qc->tf.protocol))
1419                        return 0;
1420                else {
1421                        ap->excl_link = link;
1422                        return ATA_DEFER_PORT;
1423                }
1424        }
1425
1426        return ATA_DEFER_PORT;
1427}
1428
1429static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1430{
1431        struct mv_port_priv *pp = ap->private_data;
1432        void __iomem *port_mmio;
1433
1434        u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1435        u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1436        u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1437
1438        ltmode   = *old_ltmode & ~LTMODE_BIT8;
1439        haltcond = *old_haltcond | EDMA_ERR_DEV;
1440
1441        if (want_fbs) {
1442                fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1443                ltmode = *old_ltmode | LTMODE_BIT8;
1444                if (want_ncq)
1445                        haltcond &= ~EDMA_ERR_DEV;
1446                else
1447                        fiscfg |=  FISCFG_WAIT_DEV_ERR;
1448        } else {
1449                fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1450        }
1451
1452        port_mmio = mv_ap_base(ap);
1453        mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1454        mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1455        mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1456}
1457
1458static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1459{
1460        struct mv_host_priv *hpriv = ap->host->private_data;
1461        u32 old, new;
1462
1463        /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1464        old = readl(hpriv->base + GPIO_PORT_CTL);
1465        if (want_ncq)
1466                new = old | (1 << 22);
1467        else
1468                new = old & ~(1 << 22);
1469        if (new != old)
1470                writel(new, hpriv->base + GPIO_PORT_CTL);
1471}
1472
1473/**
1474 *      mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1475 *      @ap: Port being initialized
1476 *
1477 *      There are two DMA modes on these chips:  basic DMA, and EDMA.
1478 *
1479 *      Bit-0 of the "EDMA RESERVED" register enables/disables use
1480 *      of basic DMA on the GEN_IIE versions of the chips.
1481 *
1482 *      This bit survives EDMA resets, and must be set for basic DMA
1483 *      to function, and should be cleared when EDMA is active.
1484 */
1485static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1486{
1487        struct mv_port_priv *pp = ap->private_data;
1488        u32 new, *old = &pp->cached.unknown_rsvd;
1489
1490        if (enable_bmdma)
1491                new = *old | 1;
1492        else
1493                new = *old & ~1;
1494        mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1495}
1496
1497/*
1498 * SOC chips have an issue whereby the HDD LEDs don't always blink
1499 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1500 * of the SOC takes care of it, generating a steady blink rate when
1501 * any drive on the chip is active.
1502 *
1503 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1504 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1505 *
1506 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1507 * LED operation works then, and provides better (more accurate) feedback.
1508 *
1509 * Note that this code assumes that an SOC never has more than one HC onboard.
1510 */
1511static void mv_soc_led_blink_enable(struct ata_port *ap)
1512{
1513        struct ata_host *host = ap->host;
1514        struct mv_host_priv *hpriv = host->private_data;
1515        void __iomem *hc_mmio;
1516        u32 led_ctrl;
1517
1518        if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1519                return;
1520        hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1521        hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1522        led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1523        writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1524}
1525
1526static void mv_soc_led_blink_disable(struct ata_port *ap)
1527{
1528        struct ata_host *host = ap->host;
1529        struct mv_host_priv *hpriv = host->private_data;
1530        void __iomem *hc_mmio;
1531        u32 led_ctrl;
1532        unsigned int port;
1533
1534        if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1535                return;
1536
1537        /* disable led-blink only if no ports are using NCQ */
1538        for (port = 0; port < hpriv->n_ports; port++) {
1539                struct ata_port *this_ap = host->ports[port];
1540                struct mv_port_priv *pp = this_ap->private_data;
1541
1542                if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1543                        return;
1544        }
1545
1546        hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1547        hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1548        led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1549        writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1550}
1551
1552static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1553{
1554        u32 cfg;
1555        struct mv_port_priv *pp    = ap->private_data;
1556        struct mv_host_priv *hpriv = ap->host->private_data;
1557        void __iomem *port_mmio    = mv_ap_base(ap);
1558
1559        /* set up non-NCQ EDMA configuration */
1560        cfg = EDMA_CFG_Q_DEPTH;         /* always 0x1f for *all* chips */
1561        pp->pp_flags &=
1562          ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1563
1564        if (IS_GEN_I(hpriv))
1565                cfg |= (1 << 8);        /* enab config burst size mask */
1566
1567        else if (IS_GEN_II(hpriv)) {
1568                cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1569                mv_60x1_errata_sata25(ap, want_ncq);
1570
1571        } else if (IS_GEN_IIE(hpriv)) {
1572                int want_fbs = sata_pmp_attached(ap);
1573                /*
1574                 * Possible future enhancement:
1575                 *
1576                 * The chip can use FBS with non-NCQ, if we allow it,
1577                 * But first we need to have the error handling in place
1578                 * for this mode (datasheet section 7.3.15.4.2.3).
1579                 * So disallow non-NCQ FBS for now.
1580                 */
1581                want_fbs &= want_ncq;
1582
1583                mv_config_fbs(ap, want_ncq, want_fbs);
1584
1585                if (want_fbs) {
1586                        pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1587                        cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1588                }
1589
1590                cfg |= (1 << 23);       /* do not mask PM field in rx'd FIS */
1591                if (want_edma) {
1592                        cfg |= (1 << 22); /* enab 4-entry host queue cache */
1593                        if (!IS_SOC(hpriv))
1594                                cfg |= (1 << 18); /* enab early completion */
1595                }
1596                if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1597                        cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1598                mv_bmdma_enable_iie(ap, !want_edma);
1599
1600                if (IS_SOC(hpriv)) {
1601                        if (want_ncq)
1602                                mv_soc_led_blink_enable(ap);
1603                        else
1604                                mv_soc_led_blink_disable(ap);
1605                }
1606        }
1607
1608        if (want_ncq) {
1609                cfg |= EDMA_CFG_NCQ;
1610                pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1611        }
1612
1613        writelfl(cfg, port_mmio + EDMA_CFG);
1614}
1615
1616static void mv_port_free_dma_mem(struct ata_port *ap)
1617{
1618        struct mv_host_priv *hpriv = ap->host->private_data;
1619        struct mv_port_priv *pp = ap->private_data;
1620        int tag;
1621
1622        if (pp->crqb) {
1623                dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1624                pp->crqb = NULL;
1625        }
1626        if (pp->crpb) {
1627                dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1628                pp->crpb = NULL;
1629        }
1630        /*
1631         * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1632         * For later hardware, we have one unique sg_tbl per NCQ tag.
1633         */
1634        for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1635                if (pp->sg_tbl[tag]) {
1636                        if (tag == 0 || !IS_GEN_I(hpriv))
1637                                dma_pool_free(hpriv->sg_tbl_pool,
1638                                              pp->sg_tbl[tag],
1639                                              pp->sg_tbl_dma[tag]);
1640                        pp->sg_tbl[tag] = NULL;
1641                }
1642        }
1643}
1644
1645/**
1646 *      mv_port_start - Port specific init/start routine.
1647 *      @ap: ATA channel to manipulate
1648 *
1649 *      Allocate and point to DMA memory, init port private memory,
1650 *      zero indices.
1651 *
1652 *      LOCKING:
1653 *      Inherited from caller.
1654 */
1655static int mv_port_start(struct ata_port *ap)
1656{
1657        struct device *dev = ap->host->dev;
1658        struct mv_host_priv *hpriv = ap->host->private_data;
1659        struct mv_port_priv *pp;
1660        unsigned long flags;
1661        int tag;
1662
1663        pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1664        if (!pp)
1665                return -ENOMEM;
1666        ap->private_data = pp;
1667
1668        pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1669        if (!pp->crqb)
1670                return -ENOMEM;
1671        memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1672
1673        pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1674        if (!pp->crpb)
1675                goto out_port_free_dma_mem;
1676        memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1677
1678        /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1679        if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1680                ap->flags |= ATA_FLAG_AN;
1681        /*
1682         * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1683         * For later hardware, we need one unique sg_tbl per NCQ tag.
1684         */
1685        for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1686                if (tag == 0 || !IS_GEN_I(hpriv)) {
1687                        pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1688                                              GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1689                        if (!pp->sg_tbl[tag])
1690                                goto out_port_free_dma_mem;
1691                } else {
1692                        pp->sg_tbl[tag]     = pp->sg_tbl[0];
1693                        pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1694                }
1695        }
1696
1697        spin_lock_irqsave(ap->lock, flags);
1698        mv_save_cached_regs(ap);
1699        mv_edma_cfg(ap, 0, 0);
1700        spin_unlock_irqrestore(ap->lock, flags);
1701
1702        return 0;
1703
1704out_port_free_dma_mem:
1705        mv_port_free_dma_mem(ap);
1706        return -ENOMEM;
1707}
1708
1709/**
1710 *      mv_port_stop - Port specific cleanup/stop routine.
1711 *      @ap: ATA channel to manipulate
1712 *
1713 *      Stop DMA, cleanup port memory.
1714 *
1715 *      LOCKING:
1716 *      This routine uses the host lock to protect the DMA stop.
1717 */
1718static void mv_port_stop(struct ata_port *ap)
1719{
1720        unsigned long flags;
1721
1722        spin_lock_irqsave(ap->lock, flags);
1723        mv_stop_edma(ap);
1724        mv_enable_port_irqs(ap, 0);
1725        spin_unlock_irqrestore(ap->lock, flags);
1726        mv_port_free_dma_mem(ap);
1727}
1728
1729/**
1730 *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1731 *      @qc: queued command whose SG list to source from
1732 *
1733 *      Populate the SG list and mark the last entry.
1734 *
1735 *      LOCKING:
1736 *      Inherited from caller.
1737 */
1738static void mv_fill_sg(struct ata_queued_cmd *qc)
1739{
1740        struct mv_port_priv *pp = qc->ap->private_data;
1741        struct scatterlist *sg;
1742        struct mv_sg *mv_sg, *last_sg = NULL;
1743        unsigned int si;
1744
1745        mv_sg = pp->sg_tbl[qc->tag];
1746        for_each_sg(qc->sg, sg, qc->n_elem, si) {
1747                dma_addr_t addr = sg_dma_address(sg);
1748                u32 sg_len = sg_dma_len(sg);
1749
1750                while (sg_len) {
1751                        u32 offset = addr & 0xffff;
1752                        u32 len = sg_len;
1753
1754                        if (offset + len > 0x10000)
1755                                len = 0x10000 - offset;
1756
1757                        mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1758                        mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1759                        mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1760                        mv_sg->reserved = 0;
1761
1762                        sg_len -= len;
1763                        addr += len;
1764
1765                        last_sg = mv_sg;
1766                        mv_sg++;
1767                }
1768        }
1769
1770        if (likely(last_sg))
1771                last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1772        mb(); /* ensure data structure is visible to the chipset */
1773}
1774
1775static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1776{
1777        u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1778                (last ? CRQB_CMD_LAST : 0);
1779        *cmdw = cpu_to_le16(tmp);
1780}
1781
1782/**
1783 *      mv_sff_irq_clear - Clear hardware interrupt after DMA.
1784 *      @ap: Port associated with this ATA transaction.
1785 *
1786 *      We need this only for ATAPI bmdma transactions,
1787 *      as otherwise we experience spurious interrupts
1788 *      after libata-sff handles the bmdma interrupts.
1789 */
1790static void mv_sff_irq_clear(struct ata_port *ap)
1791{
1792        mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1793}
1794
1795/**
1796 *      mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1797 *      @qc: queued command to check for chipset/DMA compatibility.
1798 *
1799 *      The bmdma engines cannot handle speculative data sizes
1800 *      (bytecount under/over flow).  So only allow DMA for
1801 *      data transfer commands with known data sizes.
1802 *
1803 *      LOCKING:
1804 *      Inherited from caller.
1805 */
1806static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1807{
1808        struct scsi_cmnd *scmd = qc->scsicmd;
1809
1810        if (scmd) {
1811                switch (scmd->cmnd[0]) {
1812                case READ_6:
1813                case READ_10:
1814                case READ_12:
1815                case WRITE_6:
1816                case WRITE_10:
1817                case WRITE_12:
1818                case GPCMD_READ_CD:
1819                case GPCMD_SEND_DVD_STRUCTURE:
1820                case GPCMD_SEND_CUE_SHEET:
1821                        return 0; /* DMA is safe */
1822                }
1823        }
1824        return -EOPNOTSUPP; /* use PIO instead */
1825}
1826
1827/**
1828 *      mv_bmdma_setup - Set up BMDMA transaction
1829 *      @qc: queued command to prepare DMA for.
1830 *
1831 *      LOCKING:
1832 *      Inherited from caller.
1833 */
1834static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1835{
1836        struct ata_port *ap = qc->ap;
1837        void __iomem *port_mmio = mv_ap_base(ap);
1838        struct mv_port_priv *pp = ap->private_data;
1839
1840        mv_fill_sg(qc);
1841
1842        /* clear all DMA cmd bits */
1843        writel(0, port_mmio + BMDMA_CMD);
1844
1845        /* load PRD table addr. */
1846        writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1847                port_mmio + BMDMA_PRD_HIGH);
1848        writelfl(pp->sg_tbl_dma[qc->tag],
1849                port_mmio + BMDMA_PRD_LOW);
1850
1851        /* issue r/w command */
1852        ap->ops->sff_exec_command(ap, &qc->tf);
1853}
1854
1855/**
1856 *      mv_bmdma_start - Start a BMDMA transaction
1857 *      @qc: queued command to start DMA on.
1858 *
1859 *      LOCKING:
1860 *      Inherited from caller.
1861 */
1862static void mv_bmdma_start(struct ata_queued_cmd *qc)
1863{
1864        struct ata_port *ap = qc->ap;
1865        void __iomem *port_mmio = mv_ap_base(ap);
1866        unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1867        u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1868
1869        /* start host DMA transaction */
1870        writelfl(cmd, port_mmio + BMDMA_CMD);
1871}
1872
1873/**
1874 *      mv_bmdma_stop - Stop BMDMA transfer
1875 *      @qc: queued command to stop DMA on.
1876 *
1877 *      Clears the ATA_DMA_START flag in the bmdma control register
1878 *
1879 *      LOCKING:
1880 *      Inherited from caller.
1881 */
1882static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1883{
1884        struct ata_port *ap = qc->ap;
1885        void __iomem *port_mmio = mv_ap_base(ap);
1886        u32 cmd;
1887
1888        /* clear start/stop bit */
1889        cmd = readl(port_mmio + BMDMA_CMD);
1890        cmd &= ~ATA_DMA_START;
1891        writelfl(cmd, port_mmio + BMDMA_CMD);
1892
1893        /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1894        ata_sff_dma_pause(ap);
1895}
1896
1897/**
1898 *      mv_bmdma_status - Read BMDMA status
1899 *      @ap: port for which to retrieve DMA status.
1900 *
1901 *      Read and return equivalent of the sff BMDMA status register.
1902 *
1903 *      LOCKING:
1904 *      Inherited from caller.
1905 */
1906static u8 mv_bmdma_status(struct ata_port *ap)
1907{
1908        void __iomem *port_mmio = mv_ap_base(ap);
1909        u32 reg, status;
1910
1911        /*
1912         * Other bits are valid only if ATA_DMA_ACTIVE==0,
1913         * and the ATA_DMA_INTR bit doesn't exist.
1914         */
1915        reg = readl(port_mmio + BMDMA_STATUS);
1916        if (reg & ATA_DMA_ACTIVE)
1917                status = ATA_DMA_ACTIVE;
1918        else
1919                status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1920        return status;
1921}
1922
1923static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1924{
1925        struct ata_taskfile *tf = &qc->tf;
1926        /*
1927         * Workaround for 88SX60x1 FEr SATA#24.
1928         *
1929         * Chip may corrupt WRITEs if multi_count >= 4kB.
1930         * Note that READs are unaffected.
1931         *
1932         * It's not clear if this errata really means "4K bytes",
1933         * or if it always happens for multi_count > 7
1934         * regardless of device sector_size.
1935         *
1936         * So, for safety, any write with multi_count > 7
1937         * gets converted here into a regular PIO write instead:
1938         */
1939        if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1940                if (qc->dev->multi_count > 7) {
1941                        switch (tf->command) {
1942                        case ATA_CMD_WRITE_MULTI:
1943                                tf->command = ATA_CMD_PIO_WRITE;
1944                                break;
1945                        case ATA_CMD_WRITE_MULTI_FUA_EXT:
1946                                tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1947                                /* fall through */
1948                        case ATA_CMD_WRITE_MULTI_EXT:
1949                                tf->command = ATA_CMD_PIO_WRITE_EXT;
1950                                break;
1951                        }
1952                }
1953        }
1954}
1955
1956/**
1957 *      mv_qc_prep - Host specific command preparation.
1958 *      @qc: queued command to prepare
1959 *
1960 *      This routine simply redirects to the general purpose routine
1961 *      if command is not DMA.  Else, it handles prep of the CRQB
1962 *      (command request block), does some sanity checking, and calls
1963 *      the SG load routine.
1964 *
1965 *      LOCKING:
1966 *      Inherited from caller.
1967 */
1968static void mv_qc_prep(struct ata_queued_cmd *qc)
1969{
1970        struct ata_port *ap = qc->ap;
1971        struct mv_port_priv *pp = ap->private_data;
1972        __le16 *cw;
1973        struct ata_taskfile *tf = &qc->tf;
1974        u16 flags = 0;
1975        unsigned in_index;
1976
1977        switch (tf->protocol) {
1978        case ATA_PROT_DMA:
1979        case ATA_PROT_NCQ:
1980                break;  /* continue below */
1981        case ATA_PROT_PIO:
1982                mv_rw_multi_errata_sata24(qc);
1983                return;
1984        default:
1985                return;
1986        }
1987
1988        /* Fill in command request block
1989         */
1990        if (!(tf->flags & ATA_TFLAG_WRITE))
1991                flags |= CRQB_FLAG_READ;
1992        WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1993        flags |= qc->tag << CRQB_TAG_SHIFT;
1994        flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1995
1996        /* get current queue index from software */
1997        in_index = pp->req_idx;
1998
1999        pp->crqb[in_index].sg_addr =
2000                cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2001        pp->crqb[in_index].sg_addr_hi =
2002                cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2003        pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2004
2005        cw = &pp->crqb[in_index].ata_cmd[0];
2006
2007        /* Sadly, the CRQB cannot accomodate all registers--there are
2008         * only 11 bytes...so we must pick and choose required
2009         * registers based on the command.  So, we drop feature and
2010         * hob_feature for [RW] DMA commands, but they are needed for
2011         * NCQ.  NCQ will drop hob_nsect, which is not needed there
2012         * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2013         */
2014        switch (tf->command) {
2015        case ATA_CMD_READ:
2016        case ATA_CMD_READ_EXT:
2017        case ATA_CMD_WRITE:
2018        case ATA_CMD_WRITE_EXT:
2019        case ATA_CMD_WRITE_FUA_EXT:
2020                mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2021                break;
2022        case ATA_CMD_FPDMA_READ:
2023        case ATA_CMD_FPDMA_WRITE:
2024                mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2025                mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2026                break;
2027        default:
2028                /* The only other commands EDMA supports in non-queued and
2029                 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2030                 * of which are defined/used by Linux.  If we get here, this
2031                 * driver needs work.
2032                 *
2033                 * FIXME: modify libata to give qc_prep a return value and
2034                 * return error here.
2035                 */
2036                BUG_ON(tf->command);
2037                break;
2038        }
2039        mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2040        mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2041        mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2042        mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2043        mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2044        mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2045        mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2046        mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2047        mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);    /* last */
2048
2049        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2050                return;
2051        mv_fill_sg(qc);
2052}
2053
2054/**
2055 *      mv_qc_prep_iie - Host specific command preparation.
2056 *      @qc: queued command to prepare
2057 *
2058 *      This routine simply redirects to the general purpose routine
2059 *      if command is not DMA.  Else, it handles prep of the CRQB
2060 *      (command request block), does some sanity checking, and calls
2061 *      the SG load routine.
2062 *
2063 *      LOCKING:
2064 *      Inherited from caller.
2065 */
2066static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2067{
2068        struct ata_port *ap = qc->ap;
2069        struct mv_port_priv *pp = ap->private_data;
2070        struct mv_crqb_iie *crqb;
2071        struct ata_taskfile *tf = &qc->tf;
2072        unsigned in_index;
2073        u32 flags = 0;
2074
2075        if ((tf->protocol != ATA_PROT_DMA) &&
2076            (tf->protocol != ATA_PROT_NCQ))
2077                return;
2078
2079        /* Fill in Gen IIE command request block */
2080        if (!(tf->flags & ATA_TFLAG_WRITE))
2081                flags |= CRQB_FLAG_READ;
2082
2083        WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2084        flags |= qc->tag << CRQB_TAG_SHIFT;
2085        flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2086        flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2087
2088        /* get current queue index from software */
2089        in_index = pp->req_idx;
2090
2091        crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2092        crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2093        crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2094        crqb->flags = cpu_to_le32(flags);
2095
2096        crqb->ata_cmd[0] = cpu_to_le32(
2097                        (tf->command << 16) |
2098                        (tf->feature << 24)
2099                );
2100        crqb->ata_cmd[1] = cpu_to_le32(
2101                        (tf->lbal << 0) |
2102                        (tf->lbam << 8) |
2103                        (tf->lbah << 16) |
2104                        (tf->device << 24)
2105                );
2106        crqb->ata_cmd[2] = cpu_to_le32(
2107                        (tf->hob_lbal << 0) |
2108                        (tf->hob_lbam << 8) |
2109                        (tf->hob_lbah << 16) |
2110                        (tf->hob_feature << 24)
2111                );
2112        crqb->ata_cmd[3] = cpu_to_le32(
2113                        (tf->nsect << 0) |
2114                        (tf->hob_nsect << 8)
2115                );
2116
2117        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2118                return;
2119        mv_fill_sg(qc);
2120}
2121
2122/**
2123 *      mv_sff_check_status - fetch device status, if valid
2124 *      @ap: ATA port to fetch status from
2125 *
2126 *      When using command issue via mv_qc_issue_fis(),
2127 *      the initial ATA_BUSY state does not show up in the
2128 *      ATA status (shadow) register.  This can confuse libata!
2129 *
2130 *      So we have a hook here to fake ATA_BUSY for that situation,
2131 *      until the first time a BUSY, DRQ, or ERR bit is seen.
2132 *
2133 *      The rest of the time, it simply returns the ATA status register.
2134 */
2135static u8 mv_sff_check_status(struct ata_port *ap)
2136{
2137        u8 stat = ioread8(ap->ioaddr.status_addr);
2138        struct mv_port_priv *pp = ap->private_data;
2139
2140        if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2141                if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2142                        pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2143                else
2144                        stat = ATA_BUSY;
2145        }
2146        return stat;
2147}
2148
2149/**
2150 *      mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2151 *      @fis: fis to be sent
2152 *      @nwords: number of 32-bit words in the fis
2153 */
2154static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2155{
2156        void __iomem *port_mmio = mv_ap_base(ap);
2157        u32 ifctl, old_ifctl, ifstat;
2158        int i, timeout = 200, final_word = nwords - 1;
2159
2160        /* Initiate FIS transmission mode */
2161        old_ifctl = readl(port_mmio + SATA_IFCTL);
2162        ifctl = 0x100 | (old_ifctl & 0xf);
2163        writelfl(ifctl, port_mmio + SATA_IFCTL);
2164
2165        /* Send all words of the FIS except for the final word */
2166        for (i = 0; i < final_word; ++i)
2167                writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2168
2169        /* Flag end-of-transmission, and then send the final word */
2170        writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2171        writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2172
2173        /*
2174         * Wait for FIS transmission to complete.
2175         * This typically takes just a single iteration.
2176         */
2177        do {
2178                ifstat = readl(port_mmio + SATA_IFSTAT);
2179        } while (!(ifstat & 0x1000) && --timeout);
2180
2181        /* Restore original port configuration */
2182        writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2183
2184        /* See if it worked */
2185        if ((ifstat & 0x3000) != 0x1000) {
2186                ata_port_printk(ap, KERN_WARNING,
2187                                "%s transmission error, ifstat=%08x\n",
2188                                __func__, ifstat);
2189                return AC_ERR_OTHER;
2190        }
2191        return 0;
2192}
2193
2194/**
2195 *      mv_qc_issue_fis - Issue a command directly as a FIS
2196 *      @qc: queued command to start
2197 *
2198 *      Note that the ATA shadow registers are not updated
2199 *      after command issue, so the device will appear "READY"
2200 *      if polled, even while it is BUSY processing the command.
2201 *
2202 *      So we use a status hook to fake ATA_BUSY until the drive changes state.
2203 *
2204 *      Note: we don't get updated shadow regs on *completion*
2205 *      of non-data commands. So avoid sending them via this function,
2206 *      as they will appear to have completed immediately.
2207 *
2208 *      GEN_IIE has special registers that we could get the result tf from,
2209 *      but earlier chipsets do not.  For now, we ignore those registers.
2210 */
2211static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2212{
2213        struct ata_port *ap = qc->ap;
2214        struct mv_port_priv *pp = ap->private_data;
2215        struct ata_link *link = qc->dev->link;
2216        u32 fis[5];
2217        int err = 0;
2218
2219        ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2220        err = mv_send_fis(ap, fis, sizeof(fis) / sizeof(fis[0]));
2221        if (err)
2222                return err;
2223
2224        switch (qc->tf.protocol) {
2225        case ATAPI_PROT_PIO:
2226                pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2227                /* fall through */
2228        case ATAPI_PROT_NODATA:
2229                ap->hsm_task_state = HSM_ST_FIRST;
2230                break;
2231        case ATA_PROT_PIO:
2232                pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2233                if (qc->tf.flags & ATA_TFLAG_WRITE)
2234                        ap->hsm_task_state = HSM_ST_FIRST;
2235                else
2236                        ap->hsm_task_state = HSM_ST;
2237                break;
2238        default:
2239                ap->hsm_task_state = HSM_ST_LAST;
2240                break;
2241        }
2242
2243        if (qc->tf.flags & ATA_TFLAG_POLLING)
2244                ata_pio_queue_task(ap, qc, 0);
2245        return 0;
2246}
2247
2248/**
2249 *      mv_qc_issue - Initiate a command to the host
2250 *      @qc: queued command to start
2251 *
2252 *      This routine simply redirects to the general purpose routine
2253 *      if command is not DMA.  Else, it sanity checks our local
2254 *      caches of the request producer/consumer indices then enables
2255 *      DMA and bumps the request producer index.
2256 *
2257 *      LOCKING:
2258 *      Inherited from caller.
2259 */
2260static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2261{
2262        static int limit_warnings = 10;
2263        struct ata_port *ap = qc->ap;
2264        void __iomem *port_mmio = mv_ap_base(ap);
2265        struct mv_port_priv *pp = ap->private_data;
2266        u32 in_index;
2267        unsigned int port_irqs;
2268
2269        pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2270
2271        switch (qc->tf.protocol) {
2272        case ATA_PROT_DMA:
2273        case ATA_PROT_NCQ:
2274                mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2275                pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2276                in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2277
2278                /* Write the request in pointer to kick the EDMA to life */
2279                writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2280                                        port_mmio + EDMA_REQ_Q_IN_PTR);
2281                return 0;
2282
2283        case ATA_PROT_PIO:
2284                /*
2285                 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2286                 *
2287                 * Someday, we might implement special polling workarounds
2288                 * for these, but it all seems rather unnecessary since we
2289                 * normally use only DMA for commands which transfer more
2290                 * than a single block of data.
2291                 *
2292                 * Much of the time, this could just work regardless.
2293                 * So for now, just log the incident, and allow the attempt.
2294                 */
2295                if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2296                        --limit_warnings;
2297                        ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2298                                        ": attempting PIO w/multiple DRQ: "
2299                                        "this may fail due to h/w errata\n");
2300                }
2301                /* drop through */
2302        case ATA_PROT_NODATA:
2303        case ATAPI_PROT_PIO:
2304        case ATAPI_PROT_NODATA:
2305                if (ap->flags & ATA_FLAG_PIO_POLLING)
2306                        qc->tf.flags |= ATA_TFLAG_POLLING;
2307                break;
2308        }
2309
2310        if (qc->tf.flags & ATA_TFLAG_POLLING)
2311                port_irqs = ERR_IRQ;    /* mask device interrupt when polling */
2312        else
2313                port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2314
2315        /*
2316         * We're about to send a non-EDMA capable command to the
2317         * port.  Turn off EDMA so there won't be problems accessing
2318         * shadow block, etc registers.
2319         */
2320        mv_stop_edma(ap);
2321        mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2322        mv_pmp_select(ap, qc->dev->link->pmp);
2323
2324        if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2325                struct mv_host_priv *hpriv = ap->host->private_data;
2326                /*
2327                 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2328                 *
2329                 * After any NCQ error, the READ_LOG_EXT command
2330                 * from libata-eh *must* use mv_qc_issue_fis().
2331                 * Otherwise it might fail, due to chip errata.
2332                 *
2333                 * Rather than special-case it, we'll just *always*
2334                 * use this method here for READ_LOG_EXT, making for
2335                 * easier testing.
2336                 */
2337                if (IS_GEN_II(hpriv))
2338                        return mv_qc_issue_fis(qc);
2339        }
2340        return ata_sff_qc_issue(qc);
2341}
2342
2343static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2344{
2345        struct mv_port_priv *pp = ap->private_data;
2346        struct ata_queued_cmd *qc;
2347
2348        if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2349                return NULL;
2350        qc = ata_qc_from_tag(ap, ap->link.active_tag);
2351        if (qc) {
2352                if (qc->tf.flags & ATA_TFLAG_POLLING)
2353                        qc = NULL;
2354                else if (!(qc->flags & ATA_QCFLAG_ACTIVE))
2355                        qc = NULL;
2356        }
2357        return qc;
2358}
2359
2360static void mv_pmp_error_handler(struct ata_port *ap)
2361{
2362        unsigned int pmp, pmp_map;
2363        struct mv_port_priv *pp = ap->private_data;
2364
2365        if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2366                /*
2367                 * Perform NCQ error analysis on failed PMPs
2368                 * before we freeze the port entirely.
2369                 *
2370                 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2371                 */
2372                pmp_map = pp->delayed_eh_pmp_map;
2373                pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2374                for (pmp = 0; pmp_map != 0; pmp++) {
2375                        unsigned int this_pmp = (1 << pmp);
2376                        if (pmp_map & this_pmp) {
2377                                struct ata_link *link = &ap->pmp_link[pmp];
2378                                pmp_map &= ~this_pmp;
2379                                ata_eh_analyze_ncq_error(link);
2380                        }
2381                }
2382                ata_port_freeze(ap);
2383        }
2384        sata_pmp_error_handler(ap);
2385}
2386
2387static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2388{
2389        void __iomem *port_mmio = mv_ap_base(ap);
2390
2391        return readl(port_mmio + SATA_TESTCTL) >> 16;
2392}
2393
2394static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2395{
2396        struct ata_eh_info *ehi;
2397        unsigned int pmp;
2398
2399        /*
2400         * Initialize EH info for PMPs which saw device errors
2401         */
2402        ehi = &ap->link.eh_info;
2403        for (pmp = 0; pmp_map != 0; pmp++) {
2404                unsigned int this_pmp = (1 << pmp);
2405                if (pmp_map & this_pmp) {
2406                        struct ata_link *link = &ap->pmp_link[pmp];
2407
2408                        pmp_map &= ~this_pmp;
2409                        ehi = &link->eh_info;
2410                        ata_ehi_clear_desc(ehi);
2411                        ata_ehi_push_desc(ehi, "dev err");
2412                        ehi->err_mask |= AC_ERR_DEV;
2413                        ehi->action |= ATA_EH_RESET;
2414                        ata_link_abort(link);
2415                }
2416        }
2417}
2418
2419static int mv_req_q_empty(struct ata_port *ap)
2420{
2421        void __iomem *port_mmio = mv_ap_base(ap);
2422        u32 in_ptr, out_ptr;
2423
2424        in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2425                        >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2426        out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2427                        >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2428        return (in_ptr == out_ptr);     /* 1 == queue_is_empty */
2429}
2430
2431static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2432{
2433        struct mv_port_priv *pp = ap->private_data;
2434        int failed_links;
2435        unsigned int old_map, new_map;
2436
2437        /*
2438         * Device error during FBS+NCQ operation:
2439         *
2440         * Set a port flag to prevent further I/O being enqueued.
2441         * Leave the EDMA running to drain outstanding commands from this port.
2442         * Perform the post-mortem/EH only when all responses are complete.
2443         * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2444         */
2445        if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2446                pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2447                pp->delayed_eh_pmp_map = 0;
2448        }
2449        old_map = pp->delayed_eh_pmp_map;
2450        new_map = old_map | mv_get_err_pmp_map(ap);
2451
2452        if (old_map != new_map) {
2453                pp->delayed_eh_pmp_map = new_map;
2454                mv_pmp_eh_prep(ap, new_map & ~old_map);
2455        }
2456        failed_links = hweight16(new_map);
2457
2458        ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2459                        "failed_links=%d nr_active_links=%d\n",
2460                        __func__, pp->delayed_eh_pmp_map,
2461                        ap->qc_active, failed_links,
2462                        ap->nr_active_links);
2463
2464        if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2465                mv_process_crpb_entries(ap, pp);
2466                mv_stop_edma(ap);
2467                mv_eh_freeze(ap);
2468                ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2469                return 1;       /* handled */
2470        }
2471        ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2472        return 1;       /* handled */
2473}
2474
2475static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2476{
2477        /*
2478         * Possible future enhancement:
2479         *
2480         * FBS+non-NCQ operation is not yet implemented.
2481         * See related notes in mv_edma_cfg().
2482         *
2483         * Device error during FBS+non-NCQ operation:
2484         *
2485         * We need to snapshot the shadow registers for each failed command.
2486         * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2487         */
2488        return 0;       /* not handled */
2489}
2490
2491static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2492{
2493        struct mv_port_priv *pp = ap->private_data;
2494
2495        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2496                return 0;       /* EDMA was not active: not handled */
2497        if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2498                return 0;       /* FBS was not active: not handled */
2499
2500        if (!(edma_err_cause & EDMA_ERR_DEV))
2501                return 0;       /* non DEV error: not handled */
2502        edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2503        if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2504                return 0;       /* other problems: not handled */
2505
2506        if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2507                /*
2508                 * EDMA should NOT have self-disabled for this case.
2509                 * If it did, then something is wrong elsewhere,
2510                 * and we cannot handle it here.
2511                 */
2512                if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2513                        ata_port_printk(ap, KERN_WARNING,
2514                                "%s: err_cause=0x%x pp_flags=0x%x\n",
2515                                __func__, edma_err_cause, pp->pp_flags);
2516                        return 0; /* not handled */
2517                }
2518                return mv_handle_fbs_ncq_dev_err(ap);
2519        } else {
2520                /*
2521                 * EDMA should have self-disabled for this case.
2522                 * If it did not, then something is wrong elsewhere,
2523                 * and we cannot handle it here.
2524                 */
2525                if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2526                        ata_port_printk(ap, KERN_WARNING,
2527                                "%s: err_cause=0x%x pp_flags=0x%x\n",
2528                                __func__, edma_err_cause, pp->pp_flags);
2529                        return 0; /* not handled */
2530                }
2531                return mv_handle_fbs_non_ncq_dev_err(ap);
2532        }
2533        return 0;       /* not handled */
2534}
2535
2536static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2537{
2538        struct ata_eh_info *ehi = &ap->link.eh_info;
2539        char *when = "idle";
2540
2541        ata_ehi_clear_desc(ehi);
2542        if (ap->flags & ATA_FLAG_DISABLED) {
2543                when = "disabled";
2544        } else if (edma_was_enabled) {
2545                when = "EDMA enabled";
2546        } else {
2547                struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2548                if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2549                        when = "polling";
2550        }
2551        ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2552        ehi->err_mask |= AC_ERR_OTHER;
2553        ehi->action   |= ATA_EH_RESET;
2554        ata_port_freeze(ap);
2555}
2556
2557/**
2558 *      mv_err_intr - Handle error interrupts on the port
2559 *      @ap: ATA channel to manipulate
2560 *
2561 *      Most cases require a full reset of the chip's state machine,
2562 *      which also performs a COMRESET.
2563 *      Also, if the port disabled DMA, update our cached copy to match.
2564 *
2565 *      LOCKING:
2566 *      Inherited from caller.
2567 */
2568static void mv_err_intr(struct ata_port *ap)
2569{
2570        void __iomem *port_mmio = mv_ap_base(ap);
2571        u32 edma_err_cause, eh_freeze_mask, serr = 0;
2572        u32 fis_cause = 0;
2573        struct mv_port_priv *pp = ap->private_data;
2574        struct mv_host_priv *hpriv = ap->host->private_data;
2575        unsigned int action = 0, err_mask = 0;
2576        struct ata_eh_info *ehi = &ap->link.eh_info;
2577        struct ata_queued_cmd *qc;
2578        int abort = 0;
2579
2580        /*
2581         * Read and clear the SError and err_cause bits.
2582         * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2583         * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2584         */
2585        sata_scr_read(&ap->link, SCR_ERROR, &serr);
2586        sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2587
2588        edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2589        if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2590                fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2591                writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2592        }
2593        writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2594
2595        if (edma_err_cause & EDMA_ERR_DEV) {
2596                /*
2597                 * Device errors during FIS-based switching operation
2598                 * require special handling.
2599                 */
2600                if (mv_handle_dev_err(ap, edma_err_cause))
2601                        return;
2602        }
2603
2604        qc = mv_get_active_qc(ap);
2605        ata_ehi_clear_desc(ehi);
2606        ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2607                          edma_err_cause, pp->pp_flags);
2608
2609        if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2610                ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2611                if (fis_cause & FIS_IRQ_CAUSE_AN) {
2612                        u32 ec = edma_err_cause &
2613                               ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2614                        sata_async_notification(ap);
2615                        if (!ec)
2616                                return; /* Just an AN; no need for the nukes */
2617                        ata_ehi_push_desc(ehi, "SDB notify");
2618                }
2619        }
2620        /*
2621         * All generations share these EDMA error cause bits:
2622         */
2623        if (edma_err_cause & EDMA_ERR_DEV) {
2624                err_mask |= AC_ERR_DEV;
2625                action |= ATA_EH_RESET;
2626                ata_ehi_push_desc(ehi, "dev error");
2627        }
2628        if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2629                        EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2630                        EDMA_ERR_INTRL_PAR)) {
2631                err_mask |= AC_ERR_ATA_BUS;
2632                action |= ATA_EH_RESET;
2633                ata_ehi_push_desc(ehi, "parity error");
2634        }
2635        if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2636                ata_ehi_hotplugged(ehi);
2637                ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2638                        "dev disconnect" : "dev connect");
2639                action |= ATA_EH_RESET;
2640        }
2641
2642        /*
2643         * Gen-I has a different SELF_DIS bit,
2644         * different FREEZE bits, and no SERR bit:
2645         */
2646        if (IS_GEN_I(hpriv)) {
2647                eh_freeze_mask = EDMA_EH_FREEZE_5;
2648                if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2649                        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2650                        ata_ehi_push_desc(ehi, "EDMA self-disable");
2651                }
2652        } else {
2653                eh_freeze_mask = EDMA_EH_FREEZE;
2654                if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2655                        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2656                        ata_ehi_push_desc(ehi, "EDMA self-disable");
2657                }
2658                if (edma_err_cause & EDMA_ERR_SERR) {
2659                        ata_ehi_push_desc(ehi, "SError=%08x", serr);
2660                        err_mask |= AC_ERR_ATA_BUS;
2661                        action |= ATA_EH_RESET;
2662                }
2663        }
2664
2665        if (!err_mask) {
2666                err_mask = AC_ERR_OTHER;
2667                action |= ATA_EH_RESET;
2668        }
2669
2670        ehi->serror |= serr;
2671        ehi->action |= action;
2672
2673        if (qc)
2674                qc->err_mask |= err_mask;
2675        else
2676                ehi->err_mask |= err_mask;
2677
2678        if (err_mask == AC_ERR_DEV) {
2679                /*
2680                 * Cannot do ata_port_freeze() here,
2681                 * because it would kill PIO access,
2682                 * which is needed for further diagnosis.
2683                 */
2684                mv_eh_freeze(ap);
2685                abort = 1;
2686        } else if (edma_err_cause & eh_freeze_mask) {
2687                /*
2688                 * Note to self: ata_port_freeze() calls ata_port_abort()
2689                 */
2690                ata_port_freeze(ap);
2691        } else {
2692                abort = 1;
2693        }
2694
2695        if (abort) {
2696                if (qc)
2697                        ata_link_abort(qc->dev->link);
2698                else
2699                        ata_port_abort(ap);
2700        }
2701}
2702
2703static void mv_process_crpb_response(struct ata_port *ap,
2704                struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2705{
2706        struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2707
2708        if (qc) {
2709                u8 ata_status;
2710                u16 edma_status = le16_to_cpu(response->flags);
2711                /*
2712                 * edma_status from a response queue entry:
2713                 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2714                 *   MSB is saved ATA status from command completion.
2715                 */
2716                if (!ncq_enabled) {
2717                        u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2718                        if (err_cause) {
2719                                /*
2720                                 * Error will be seen/handled by mv_err_intr().
2721                                 * So do nothing at all here.
2722                                 */
2723                                return;
2724                        }
2725                }
2726                ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2727                if (!ac_err_mask(ata_status))
2728                        ata_qc_complete(qc);
2729                /* else: leave it for mv_err_intr() */
2730        } else {
2731                ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2732                                __func__, tag);
2733        }
2734}
2735
2736static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2737{
2738        void __iomem *port_mmio = mv_ap_base(ap);
2739        struct mv_host_priv *hpriv = ap->host->private_data;
2740        u32 in_index;
2741        bool work_done = false;
2742        int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2743
2744        /* Get the hardware queue position index */
2745        in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2746                        >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2747
2748        /* Process new responses from since the last time we looked */
2749        while (in_index != pp->resp_idx) {
2750                unsigned int tag;
2751                struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2752
2753                pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2754
2755                if (IS_GEN_I(hpriv)) {
2756                        /* 50xx: no NCQ, only one command active at a time */
2757                        tag = ap->link.active_tag;
2758                } else {
2759                        /* Gen II/IIE: get command tag from CRPB entry */
2760                        tag = le16_to_cpu(response->id) & 0x1f;
2761                }
2762                mv_process_crpb_response(ap, response, tag, ncq_enabled);
2763                work_done = true;
2764        }
2765
2766        /* Update the software queue position index in hardware */
2767        if (work_done)
2768                writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2769                         (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2770                         port_mmio + EDMA_RSP_Q_OUT_PTR);
2771}
2772
2773static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2774{
2775        struct mv_port_priv *pp;
2776        int edma_was_enabled;
2777
2778        if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2779                mv_unexpected_intr(ap, 0);
2780                return;
2781        }
2782        /*
2783         * Grab a snapshot of the EDMA_EN flag setting,
2784         * so that we have a consistent view for this port,
2785         * even if something we call of our routines changes it.
2786         */
2787        pp = ap->private_data;
2788        edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2789        /*
2790         * Process completed CRPB response(s) before other events.
2791         */
2792        if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2793                mv_process_crpb_entries(ap, pp);
2794                if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2795                        mv_handle_fbs_ncq_dev_err(ap);
2796        }
2797        /*
2798         * Handle chip-reported errors, or continue on to handle PIO.
2799         */
2800        if (unlikely(port_cause & ERR_IRQ)) {
2801                mv_err_intr(ap);
2802        } else if (!edma_was_enabled) {
2803                struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2804                if (qc)
2805                        ata_sff_host_intr(ap, qc);
2806                else
2807                        mv_unexpected_intr(ap, edma_was_enabled);
2808        }
2809}
2810
2811/**
2812 *      mv_host_intr - Handle all interrupts on the given host controller
2813 *      @host: host specific structure
2814 *      @main_irq_cause: Main interrupt cause register for the chip.
2815 *
2816 *      LOCKING:
2817 *      Inherited from caller.
2818 */
2819static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2820{
2821        struct mv_host_priv *hpriv = host->private_data;
2822        void __iomem *mmio = hpriv->base, *hc_mmio;
2823        unsigned int handled = 0, port;
2824
2825        /* If asserted, clear the "all ports" IRQ coalescing bit */
2826        if (main_irq_cause & ALL_PORTS_COAL_DONE)
2827                writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2828
2829        for (port = 0; port < hpriv->n_ports; port++) {
2830                struct ata_port *ap = host->ports[port];
2831                unsigned int p, shift, hardport, port_cause;
2832
2833                MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2834                /*
2835                 * Each hc within the host has its own hc_irq_cause register,
2836                 * where the interrupting ports bits get ack'd.
2837                 */
2838                if (hardport == 0) {    /* first port on this hc ? */
2839                        u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2840                        u32 port_mask, ack_irqs;
2841                        /*
2842                         * Skip this entire hc if nothing pending for any ports
2843                         */
2844                        if (!hc_cause) {
2845                                port += MV_PORTS_PER_HC - 1;
2846                                continue;
2847                        }
2848                        /*
2849                         * We don't need/want to read the hc_irq_cause register,
2850                         * because doing so hurts performance, and
2851                         * main_irq_cause already gives us everything we need.
2852                         *
2853                         * But we do have to *write* to the hc_irq_cause to ack
2854                         * the ports that we are handling this time through.
2855                         *
2856                         * This requires that we create a bitmap for those
2857                         * ports which interrupted us, and use that bitmap
2858                         * to ack (only) those ports via hc_irq_cause.
2859                         */
2860                        ack_irqs = 0;
2861                        if (hc_cause & PORTS_0_3_COAL_DONE)
2862                                ack_irqs = HC_COAL_IRQ;
2863                        for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2864                                if ((port + p) >= hpriv->n_ports)
2865                                        break;
2866                                port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2867                                if (hc_cause & port_mask)
2868                                        ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2869                        }
2870                        hc_mmio = mv_hc_base_from_port(mmio, port);
2871                        writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2872                        handled = 1;
2873                }
2874                /*
2875                 * Handle interrupts signalled for this port:
2876                 */
2877                port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2878                if (port_cause)
2879                        mv_port_intr(ap, port_cause);
2880        }
2881        return handled;
2882}
2883
2884static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2885{
2886        struct mv_host_priv *hpriv = host->private_data;
2887        struct ata_port *ap;
2888        struct ata_queued_cmd *qc;
2889        struct ata_eh_info *ehi;
2890        unsigned int i, err_mask, printed = 0;
2891        u32 err_cause;
2892
2893        err_cause = readl(mmio + hpriv->irq_cause_offset);
2894
2895        dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2896                   err_cause);
2897
2898        DPRINTK("All regs @ PCI error\n");
2899        mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2900
2901        writelfl(0, mmio + hpriv->irq_cause_offset);
2902
2903        for (i = 0; i < host->n_ports; i++) {
2904                ap = host->ports[i];
2905                if (!ata_link_offline(&ap->link)) {
2906                        ehi = &ap->link.eh_info;
2907                        ata_ehi_clear_desc(ehi);
2908                        if (!printed++)
2909                                ata_ehi_push_desc(ehi,
2910                                        "PCI err cause 0x%08x", err_cause);
2911                        err_mask = AC_ERR_HOST_BUS;
2912                        ehi->action = ATA_EH_RESET;
2913                        qc = ata_qc_from_tag(ap, ap->link.active_tag);
2914                        if (qc)
2915                                qc->err_mask |= err_mask;
2916                        else
2917                                ehi->err_mask |= err_mask;
2918
2919                        ata_port_freeze(ap);
2920                }
2921        }
2922        return 1;       /* handled */
2923}
2924
2925/**
2926 *      mv_interrupt - Main interrupt event handler
2927 *      @irq: unused
2928 *      @dev_instance: private data; in this case the host structure
2929 *
2930 *      Read the read only register to determine if any host
2931 *      controllers have pending interrupts.  If so, call lower level
2932 *      routine to handle.  Also check for PCI errors which are only
2933 *      reported here.
2934 *
2935 *      LOCKING:
2936 *      This routine holds the host lock while processing pending
2937 *      interrupts.
2938 */
2939static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2940{
2941        struct ata_host *host = dev_instance;
2942        struct mv_host_priv *hpriv = host->private_data;
2943        unsigned int handled = 0;
2944        int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2945        u32 main_irq_cause, pending_irqs;
2946
2947        spin_lock(&host->lock);
2948
2949        /* for MSI:  block new interrupts while in here */
2950        if (using_msi)
2951                mv_write_main_irq_mask(0, hpriv);
2952
2953        main_irq_cause = readl(hpriv->main_irq_cause_addr);
2954        pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2955        /*
2956         * Deal with cases where we either have nothing pending, or have read
2957         * a bogus register value which can indicate HW removal or PCI fault.
2958         */
2959        if (pending_irqs && main_irq_cause != 0xffffffffU) {
2960                if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2961                        handled = mv_pci_error(host, hpriv->base);
2962                else
2963                        handled = mv_host_intr(host, pending_irqs);
2964        }
2965
2966        /* for MSI: unmask; interrupt cause bits will retrigger now */
2967        if (using_msi)
2968                mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
2969
2970        spin_unlock(&host->lock);
2971
2972        return IRQ_RETVAL(handled);
2973}
2974
2975static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2976{
2977        unsigned int ofs;
2978
2979        switch (sc_reg_in) {
2980        case SCR_STATUS:
2981        case SCR_ERROR:
2982        case SCR_CONTROL:
2983                ofs = sc_reg_in * sizeof(u32);
2984                break;
2985        default:
2986                ofs = 0xffffffffU;
2987                break;
2988        }
2989        return ofs;
2990}
2991
2992static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
2993{
2994        struct mv_host_priv *hpriv = link->ap->host->private_data;
2995        void __iomem *mmio = hpriv->base;
2996        void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2997        unsigned int ofs = mv5_scr_offset(sc_reg_in);
2998
2999        if (ofs != 0xffffffffU) {
3000                *val = readl(addr + ofs);
3001                return 0;
3002        } else
3003                return -EINVAL;
3004}
3005
3006static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3007{
3008        struct mv_host_priv *hpriv = link->ap->host->private_data;
3009        void __iomem *mmio = hpriv->base;
3010        void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3011        unsigned int ofs = mv5_scr_offset(sc_reg_in);
3012
3013        if (ofs != 0xffffffffU) {
3014                writelfl(val, addr + ofs);
3015                return 0;
3016        } else
3017                return -EINVAL;
3018}
3019
3020static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3021{
3022        struct pci_dev *pdev = to_pci_dev(host->dev);
3023        int early_5080;
3024
3025        early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3026
3027        if (!early_5080) {
3028                u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3029                tmp |= (1 << 0);
3030                writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3031        }
3032
3033        mv_reset_pci_bus(host, mmio);
3034}
3035
3036static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3037{
3038        writel(0x0fcfffff, mmio + FLASH_CTL);
3039}
3040
3041static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3042                           void __iomem *mmio)
3043{
3044        void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3045        u32 tmp;
3046
3047        tmp = readl(phy_mmio + MV5_PHY_MODE);
3048
3049        hpriv->signal[idx].pre = tmp & 0x1800;  /* bits 12:11 */
3050        hpriv->signal[idx].amps = tmp & 0xe0;   /* bits 7:5 */
3051}
3052
3053static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3054{
3055        u32 tmp;
3056
3057        writel(0, mmio + GPIO_PORT_CTL);
3058
3059        /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3060
3061        tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3062        tmp |= ~(1 << 0);
3063        writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3064}
3065
3066static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3067                           unsigned int port)
3068{
3069        void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3070        const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3071        u32 tmp;
3072        int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3073
3074        if (fix_apm_sq) {
3075                tmp = readl(phy_mmio + MV5_LTMODE);
3076                tmp |= (1 << 19);
3077                writel(tmp, phy_mmio + MV5_LTMODE);
3078
3079                tmp = readl(phy_mmio + MV5_PHY_CTL);
3080                tmp &= ~0x3;
3081                tmp |= 0x1;
3082                writel(tmp, phy_mmio + MV5_PHY_CTL);
3083        }
3084
3085        tmp = readl(phy_mmio + MV5_PHY_MODE);
3086        tmp &= ~mask;
3087        tmp |= hpriv->signal[port].pre;
3088        tmp |= hpriv->signal[port].amps;
3089        writel(tmp, phy_mmio + MV5_PHY_MODE);
3090}
3091
3092
3093#undef ZERO
3094#define ZERO(reg) writel(0, port_mmio + (reg))
3095static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3096                             unsigned int port)
3097{
3098        void __iomem *port_mmio = mv_port_base(mmio, port);
3099
3100        mv_reset_channel(hpriv, mmio, port);
3101
3102        ZERO(0x028);    /* command */
3103        writel(0x11f, port_mmio + EDMA_CFG);
3104        ZERO(0x004);    /* timer */
3105        ZERO(0x008);    /* irq err cause */
3106        ZERO(0x00c);    /* irq err mask */
3107        ZERO(0x010);    /* rq bah */
3108        ZERO(0x014);    /* rq inp */
3109        ZERO(0x018);    /* rq outp */
3110        ZERO(0x01c);    /* respq bah */
3111        ZERO(0x024);    /* respq outp */
3112        ZERO(0x020);    /* respq inp */
3113        ZERO(0x02c);    /* test control */
3114        writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3115}
3116#undef ZERO
3117
3118#define ZERO(reg) writel(0, hc_mmio + (reg))
3119static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3120                        unsigned int hc)
3121{
3122        void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3123        u32 tmp;
3124
3125        ZERO(0x00c);
3126        ZERO(0x010);
3127        ZERO(0x014);
3128        ZERO(0x018);
3129
3130        tmp = readl(hc_mmio + 0x20);
3131        tmp &= 0x1c1c1c1c;
3132        tmp |= 0x03030303;
3133        writel(tmp, hc_mmio + 0x20);
3134}
3135#undef ZERO
3136
3137static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3138                        unsigned int n_hc)
3139{
3140        unsigned int hc, port;
3141
3142        for (hc = 0; hc < n_hc; hc++) {
3143                for (port = 0; port < MV_PORTS_PER_HC; port++)
3144                        mv5_reset_hc_port(hpriv, mmio,
3145                                          (hc * MV_PORTS_PER_HC) + port);
3146
3147                mv5_reset_one_hc(hpriv, mmio, hc);
3148        }
3149
3150        return 0;
3151}
3152
3153#undef ZERO
3154#define ZERO(reg) writel(0, mmio + (reg))
3155static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3156{
3157        struct mv_host_priv *hpriv = host->private_data;
3158        u32 tmp;
3159
3160        tmp = readl(mmio + MV_PCI_MODE);
3161        tmp &= 0xff00ffff;
3162        writel(tmp, mmio + MV_PCI_MODE);
3163
3164        ZERO(MV_PCI_DISC_TIMER);
3165        ZERO(MV_PCI_MSI_TRIGGER);
3166        writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3167        ZERO(MV_PCI_SERR_MASK);
3168        ZERO(hpriv->irq_cause_offset);
3169        ZERO(hpriv->irq_mask_offset);
3170        ZERO(MV_PCI_ERR_LOW_ADDRESS);
3171        ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3172        ZERO(MV_PCI_ERR_ATTRIBUTE);
3173        ZERO(MV_PCI_ERR_COMMAND);
3174}
3175#undef ZERO
3176
3177static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3178{
3179        u32 tmp;
3180
3181        mv5_reset_flash(hpriv, mmio);
3182
3183        tmp = readl(mmio + GPIO_PORT_CTL);
3184        tmp &= 0x3;
3185        tmp |= (1 << 5) | (1 << 6);
3186        writel(tmp, mmio + GPIO_PORT_CTL);
3187}
3188
3189/**
3190 *      mv6_reset_hc - Perform the 6xxx global soft reset
3191 *      @mmio: base address of the HBA
3192 *
3193 *      This routine only applies to 6xxx parts.
3194 *
3195 *      LOCKING:
3196 *      Inherited from caller.
3197 */
3198static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3199                        unsigned int n_hc)
3200{
3201        void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3202        int i, rc = 0;
3203        u32 t;
3204
3205        /* Following procedure defined in PCI "main command and status
3206         * register" table.
3207         */
3208        t = readl(reg);
3209        writel(t | STOP_PCI_MASTER, reg);
3210
3211        for (i = 0; i < 1000; i++) {
3212                udelay(1);
3213                t = readl(reg);
3214                if (PCI_MASTER_EMPTY & t)
3215                        break;
3216        }
3217        if (!(PCI_MASTER_EMPTY & t)) {
3218                printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3219                rc = 1;
3220                goto done;
3221        }
3222
3223        /* set reset */
3224        i = 5;
3225        do {
3226                writel(t | GLOB_SFT_RST, reg);
3227                t = readl(reg);
3228                udelay(1);
3229        } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3230
3231        if (!(GLOB_SFT_RST & t)) {
3232                printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3233                rc = 1;
3234                goto done;
3235        }
3236
3237        /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3238        i = 5;
3239        do {
3240                writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3241                t = readl(reg);
3242                udelay(1);
3243        } while ((GLOB_SFT_RST & t) && (i-- > 0));
3244
3245        if (GLOB_SFT_RST & t) {
3246                printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3247                rc = 1;
3248        }
3249done:
3250        return rc;
3251}
3252
3253static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3254                           void __iomem *mmio)
3255{
3256        void __iomem *port_mmio;
3257        u32 tmp;
3258
3259        tmp = readl(mmio + RESET_CFG);
3260        if ((tmp & (1 << 0)) == 0) {
3261                hpriv->signal[idx].amps = 0x7 << 8;
3262                hpriv->signal[idx].pre = 0x1 << 5;
3263                return;
3264        }
3265
3266        port_mmio = mv_port_base(mmio, idx);
3267        tmp = readl(port_mmio + PHY_MODE2);
3268
3269        hpriv->signal[idx].amps = tmp & 0x700;  /* bits 10:8 */
3270        hpriv->signal[idx].pre = tmp & 0xe0;    /* bits 7:5 */
3271}
3272
3273static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3274{
3275        writel(0x00000060, mmio + GPIO_PORT_CTL);
3276}
3277
3278static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3279                           unsigned int port)
3280{
3281        void __iomem *port_mmio = mv_port_base(mmio, port);
3282
3283        u32 hp_flags = hpriv->hp_flags;
3284        int fix_phy_mode2 =
3285                hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3286        int fix_phy_mode4 =
3287                hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3288        u32 m2, m3;
3289
3290        if (fix_phy_mode2) {
3291                m2 = readl(port_mmio + PHY_MODE2);
3292                m2 &= ~(1 << 16);
3293                m2 |= (1 << 31);
3294                writel(m2, port_mmio + PHY_MODE2);
3295
3296                udelay(200);
3297
3298                m2 = readl(port_mmio + PHY_MODE2);
3299                m2 &= ~((1 << 16) | (1 << 31));
3300                writel(m2, port_mmio + PHY_MODE2);
3301
3302                udelay(200);
3303        }
3304
3305        /*
3306         * Gen-II/IIe PHY_MODE3 errata RM#2:
3307         * Achieves better receiver noise performance than the h/w default:
3308         */
3309        m3 = readl(port_mmio + PHY_MODE3);
3310        m3 = (m3 & 0x1f) | (0x5555601 << 5);
3311
3312        /* Guideline 88F5182 (GL# SATA-S11) */
3313        if (IS_SOC(hpriv))
3314                m3 &= ~0x1c;
3315
3316        if (fix_phy_mode4) {
3317                u32 m4 = readl(port_mmio + PHY_MODE4);
3318                /*
3319                 * Enforce reserved-bit restrictions on GenIIe devices only.
3320                 * For earlier chipsets, force only the internal config field
3321                 *  (workaround for errata FEr SATA#10 part 1).
3322                 */
3323                if (IS_GEN_IIE(hpriv))
3324                        m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3325                else
3326                        m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3327                writel(m4, port_mmio + PHY_MODE4);
3328        }
3329        /*
3330         * Workaround for 60x1-B2 errata SATA#13:
3331         * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3332         * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3333         * Or ensure we use writelfl() when writing PHY_MODE4.
3334         */
3335        writel(m3, port_mmio + PHY_MODE3);
3336
3337        /* Revert values of pre-emphasis and signal amps to the saved ones */
3338        m2 = readl(port_mmio + PHY_MODE2);
3339
3340        m2 &= ~MV_M2_PREAMP_MASK;
3341        m2 |= hpriv->signal[port].amps;
3342        m2 |= hpriv->signal[port].pre;
3343        m2 &= ~(1 << 16);
3344
3345        /* according to mvSata 3.6.1, some IIE values are fixed */
3346        if (IS_GEN_IIE(hpriv)) {
3347                m2 &= ~0xC30FF01F;
3348                m2 |= 0x0000900F;
3349        }
3350
3351        writel(m2, port_mmio + PHY_MODE2);
3352}
3353
3354/* TODO: use the generic LED interface to configure the SATA Presence */
3355/* & Acitivy LEDs on the board */
3356static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3357                                      void __iomem *mmio)
3358{
3359        return;
3360}
3361
3362static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3363                           void __iomem *mmio)
3364{
3365        void __iomem *port_mmio;
3366        u32 tmp;
3367
3368        port_mmio = mv_port_base(mmio, idx);
3369        tmp = readl(port_mmio + PHY_MODE2);
3370
3371        hpriv->signal[idx].amps = tmp & 0x700;  /* bits 10:8 */
3372        hpriv->signal[idx].pre = tmp & 0xe0;    /* bits 7:5 */
3373}
3374
3375#undef ZERO
3376#define ZERO(reg) writel(0, port_mmio + (reg))
3377static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3378                                        void __iomem *mmio, unsigned int port)
3379{
3380        void __iomem *port_mmio = mv_port_base(mmio, port);
3381
3382        mv_reset_channel(hpriv, mmio, port);
3383
3384        ZERO(0x028);            /* command */
3385        writel(0x101f, port_mmio + EDMA_CFG);
3386        ZERO(0x004);            /* timer */
3387        ZERO(0x008);            /* irq err cause */
3388        ZERO(0x00c);            /* irq err mask */
3389        ZERO(0x010);            /* rq bah */
3390        ZERO(0x014);            /* rq inp */
3391        ZERO(0x018);            /* rq outp */
3392        ZERO(0x01c);            /* respq bah */
3393        ZERO(0x024);            /* respq outp */
3394        ZERO(0x020);            /* respq inp */
3395        ZERO(0x02c);            /* test control */
3396        writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3397}
3398
3399#undef ZERO
3400
3401#define ZERO(reg) writel(0, hc_mmio + (reg))
3402static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3403                                       void __iomem *mmio)
3404{
3405        void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3406
3407        ZERO(0x00c);
3408        ZERO(0x010);
3409        ZERO(0x014);
3410
3411}
3412
3413#undef ZERO
3414
3415static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3416                                  void __iomem *mmio, unsigned int n_hc)
3417{
3418        unsigned int port;
3419
3420        for (port = 0; port < hpriv->n_ports; port++)
3421                mv_soc_reset_hc_port(hpriv, mmio, port);
3422
3423        mv_soc_reset_one_hc(hpriv, mmio);
3424
3425        return 0;
3426}
3427
3428static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3429                                      void __iomem *mmio)
3430{
3431        return;
3432}
3433
3434static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3435{
3436        return;
3437}
3438
3439static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3440                                  void __iomem *mmio, unsigned int port)
3441{
3442        void __iomem *port_mmio = mv_port_base(mmio, port);
3443        u32     reg;
3444
3445        reg = readl(port_mmio + PHY_MODE3);
3446        reg &= ~(0x3 << 27);    /* SELMUPF (bits 28:27) to 1 */
3447        reg |= (0x1 << 27);
3448        reg &= ~(0x3 << 29);    /* SELMUPI (bits 30:29) to 1 */
3449        reg |= (0x1 << 29);
3450        writel(reg, port_mmio + PHY_MODE3);
3451
3452        reg = readl(port_mmio + PHY_MODE4);
3453        reg &= ~0x1;    /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3454        reg |= (0x1 << 16);
3455        writel(reg, port_mmio + PHY_MODE4);
3456
3457        reg = readl(port_mmio + PHY_MODE9_GEN2);
3458        reg &= ~0xf;    /* TXAMP[3:0] (bits 3:0) to 8 */
3459        reg |= 0x8;
3460        reg &= ~(0x1 << 14);    /* TXAMP[4] (bit 14) to 0 */
3461        writel(reg, port_mmio + PHY_MODE9_GEN2);
3462
3463        reg = readl(port_mmio + PHY_MODE9_GEN1);
3464        reg &= ~0xf;    /* TXAMP[3:0] (bits 3:0) to 8 */
3465        reg |= 0x8;
3466        reg &= ~(0x1 << 14);    /* TXAMP[4] (bit 14) to 0 */
3467        writel(reg, port_mmio + PHY_MODE9_GEN1);
3468}
3469
3470/**
3471 *      soc_is_65 - check if the soc is 65 nano device
3472 *
3473 *      Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3474 *      register, this register should contain non-zero value and it exists only
3475 *      in the 65 nano devices, when reading it from older devices we get 0.
3476 */
3477static bool soc_is_65n(struct mv_host_priv *hpriv)
3478{
3479        void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3480
3481        if (readl(port0_mmio + PHYCFG_OFS))
3482                return true;
3483        return false;
3484}
3485
3486static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3487{
3488        u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3489
3490        ifcfg = (ifcfg & 0xf7f) | 0x9b1000;     /* from chip spec */
3491        if (want_gen2i)
3492                ifcfg |= (1 << 7);              /* enable gen2i speed */
3493        writelfl(ifcfg, port_mmio + SATA_IFCFG);
3494}
3495
3496static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3497                             unsigned int port_no)
3498{
3499        void __iomem *port_mmio = mv_port_base(mmio, port_no);
3500
3501        /*
3502         * The datasheet warns against setting EDMA_RESET when EDMA is active
3503         * (but doesn't say what the problem might be).  So we first try
3504         * to disable the EDMA engine before doing the EDMA_RESET operation.
3505         */
3506        mv_stop_edma_engine(port_mmio);
3507        writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3508
3509        if (!IS_GEN_I(hpriv)) {
3510                /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3511                mv_setup_ifcfg(port_mmio, 1);
3512        }
3513        /*
3514         * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3515         * link, and physical layers.  It resets all SATA interface registers
3516         * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3517         */
3518        writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3519        udelay(25);     /* allow reset propagation */
3520        writelfl(0, port_mmio + EDMA_CMD);
3521
3522        hpriv->ops->phy_errata(hpriv, mmio, port_no);
3523
3524        if (IS_GEN_I(hpriv))
3525                mdelay(1);
3526}
3527
3528static void mv_pmp_select(struct ata_port *ap, int pmp)
3529{
3530        if (sata_pmp_supported(ap)) {
3531                void __iomem *port_mmio = mv_ap_base(ap);
3532                u32 reg = readl(port_mmio + SATA_IFCTL);
3533                int old = reg & 0xf;
3534
3535                if (old != pmp) {
3536                        reg = (reg & ~0xf) | pmp;
3537                        writelfl(reg, port_mmio + SATA_IFCTL);
3538                }
3539        }
3540}
3541
3542static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3543                                unsigned long deadline)
3544{
3545        mv_pmp_select(link->ap, sata_srst_pmp(link));
3546        return sata_std_hardreset(link, class, deadline);
3547}
3548
3549static int mv_softreset(struct ata_link *link, unsigned int *class,
3550                                unsigned long deadline)
3551{
3552        mv_pmp_select(link->ap, sata_srst_pmp(link));
3553        return ata_sff_softreset(link, class, deadline);
3554}
3555
3556static int mv_hardreset(struct ata_link *link, unsigned int *class,
3557                        unsigned long deadline)
3558{
3559        struct ata_port *ap = link->ap;
3560        struct mv_host_priv *hpriv = ap->host->private_data;
3561        struct mv_port_priv *pp = ap->private_data;
3562        void __iomem *mmio = hpriv->base;
3563        int rc, attempts = 0, extra = 0;
3564        u32 sstatus;
3565        bool online;
3566
3567        mv_reset_channel(hpriv, mmio, ap->port_no);
3568        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3569        pp->pp_flags &=
3570          ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3571
3572        /* Workaround for errata FEr SATA#10 (part 2) */
3573        do {
3574                const unsigned long *timing =
3575                                sata_ehc_deb_timing(&link->eh_context);
3576
3577                rc = sata_link_hardreset(link, timing, deadline + extra,
3578                                         &online, NULL);
3579                rc = online ? -EAGAIN : rc;
3580                if (rc)
3581                        return rc;
3582                sata_scr_read(link, SCR_STATUS, &sstatus);
3583                if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3584                        /* Force 1.5gb/s link speed and try again */
3585                        mv_setup_ifcfg(mv_ap_base(ap), 0);
3586                        if (time_after(jiffies + HZ, deadline))
3587                                extra = HZ; /* only extend it once, max */
3588                }
3589        } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3590        mv_save_cached_regs(ap);
3591        mv_edma_cfg(ap, 0, 0);
3592
3593        return rc;
3594}
3595
3596static void mv_eh_freeze(struct ata_port *ap)
3597{
3598        mv_stop_edma(ap);
3599        mv_enable_port_irqs(ap, 0);
3600}
3601
3602static void mv_eh_thaw(struct ata_port *ap)
3603{
3604        struct mv_host_priv *hpriv = ap->host->private_data;
3605        unsigned int port = ap->port_no;
3606        unsigned int hardport = mv_hardport_from_port(port);
3607        void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3608        void __iomem *port_mmio = mv_ap_base(ap);
3609        u32 hc_irq_cause;
3610
3611        /* clear EDMA errors on this port */
3612        writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3613
3614        /* clear pending irq events */
3615        hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3616        writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3617
3618        mv_enable_port_irqs(ap, ERR_IRQ);
3619}
3620
3621/**
3622 *      mv_port_init - Perform some early initialization on a single port.
3623 *      @port: libata data structure storing shadow register addresses
3624 *      @port_mmio: base address of the port
3625 *
3626 *      Initialize shadow register mmio addresses, clear outstanding
3627 *      interrupts on the port, and unmask interrupts for the future
3628 *      start of the port.
3629 *
3630 *      LOCKING:
3631 *      Inherited from caller.
3632 */
3633static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3634{
3635        void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3636
3637        /* PIO related setup
3638         */
3639        port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3640        port->error_addr =
3641                port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3642        port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3643        port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3644        port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3645        port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3646        port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3647        port->status_addr =
3648                port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3649        /* special case: control/altstatus doesn't have ATA_REG_ address */
3650        port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3651
3652        /* unused: */
3653        port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
3654
3655        /* Clear any currently outstanding port interrupt conditions */
3656        serr = port_mmio + mv_scr_offset(SCR_ERROR);
3657        writelfl(readl(serr), serr);
3658        writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3659
3660        /* unmask all non-transient EDMA error interrupts */
3661        writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3662
3663        VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3664                readl(port_mmio + EDMA_CFG),
3665                readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3666                readl(port_mmio + EDMA_ERR_IRQ_MASK));
3667}
3668
3669static unsigned int mv_in_pcix_mode(struct ata_host *host)
3670{
3671        struct mv_host_priv *hpriv = host->private_data;
3672        void __iomem *mmio = hpriv->base;
3673        u32 reg;
3674
3675        if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3676                return 0;       /* not PCI-X capable */
3677        reg = readl(mmio + MV_PCI_MODE);
3678        if ((reg & MV_PCI_MODE_MASK) == 0)
3679                return 0;       /* conventional PCI mode */
3680        return 1;       /* chip is in PCI-X mode */
3681}
3682
3683static int mv_pci_cut_through_okay(struct ata_host *host)
3684{
3685        struct mv_host_priv *hpriv = host->private_data;
3686        void __iomem *mmio = hpriv->base;
3687        u32 reg;
3688
3689        if (!mv_in_pcix_mode(host)) {
3690                reg = readl(mmio + MV_PCI_COMMAND);
3691                if (reg & MV_PCI_COMMAND_MRDTRIG)
3692                        return 0; /* not okay */
3693        }
3694        return 1; /* okay */
3695}
3696
3697static void mv_60x1b2_errata_pci7(struct ata_host *host)
3698{
3699        struct mv_host_priv *hpriv = host->private_data;
3700        void __iomem *mmio = hpriv->base;
3701
3702        /* workaround for 60x1-B2 errata PCI#7 */
3703        if (mv_in_pcix_mode(host)) {
3704                u32 reg = readl(mmio + MV_PCI_COMMAND);
3705                writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3706        }
3707}
3708
3709static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3710{
3711        struct pci_dev *pdev = to_pci_dev(host->dev);
3712        struct mv_host_priv *hpriv = host->private_data;
3713        u32 hp_flags = hpriv->hp_flags;
3714
3715        switch (board_idx) {
3716        case chip_5080:
3717                hpriv->ops = &mv5xxx_ops;
3718                hp_flags |= MV_HP_GEN_I;
3719
3720                switch (pdev->revision) {
3721                case 0x1:
3722                        hp_flags |= MV_HP_ERRATA_50XXB0;
3723                        break;
3724                case 0x3:
3725                        hp_flags |= MV_HP_ERRATA_50XXB2;
3726                        break;
3727                default:
3728                        dev_printk(KERN_WARNING, &pdev->dev,
3729                           "Applying 50XXB2 workarounds to unknown rev\n");
3730                        hp_flags |= MV_HP_ERRATA_50XXB2;
3731                        break;
3732                }
3733                break;
3734
3735        case chip_504x:
3736        case chip_508x:
3737                hpriv->ops = &mv5xxx_ops;
3738                hp_flags |= MV_HP_GEN_I;
3739
3740                switch (pdev->revision) {
3741                case 0x0:
3742                        hp_flags |= MV_HP_ERRATA_50XXB0;
3743                        break;
3744                case 0x3:
3745                        hp_flags |= MV_HP_ERRATA_50XXB2;
3746                        break;
3747                default:
3748                        dev_printk(KERN_WARNING, &pdev->dev,
3749                           "Applying B2 workarounds to unknown rev\n");
3750                        hp_flags |= MV_HP_ERRATA_50XXB2;
3751                        break;
3752                }
3753                break;
3754
3755        case chip_604x:
3756        case chip_608x:
3757                hpriv->ops = &mv6xxx_ops;
3758                hp_flags |= MV_HP_GEN_II;
3759
3760                switch (pdev->revision) {
3761                case 0x7:
3762                        mv_60x1b2_errata_pci7(host);
3763                        hp_flags |= MV_HP_ERRATA_60X1B2;
3764                        break;
3765                case 0x9:
3766                        hp_flags |= MV_HP_ERRATA_60X1C0;
3767                        break;
3768                default:
3769                        dev_printk(KERN_WARNING, &pdev->dev,
3770                                   "Applying B2 workarounds to unknown rev\n");
3771                        hp_flags |= MV_HP_ERRATA_60X1B2;
3772                        break;
3773                }
3774                break;
3775
3776        case chip_7042:
3777                hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3778                if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3779                    (pdev->device == 0x2300 || pdev->device == 0x2310))
3780                {
3781                        /*
3782                         * Highpoint RocketRAID PCIe 23xx series cards:
3783                         *
3784                         * Unconfigured drives are treated as "Legacy"
3785                         * by the BIOS, and it overwrites sector 8 with
3786                         * a "Lgcy" metadata block prior to Linux boot.
3787                         *
3788                         * Configured drives (RAID or JBOD) leave sector 8
3789                         * alone, but instead overwrite a high numbered
3790                         * sector for the RAID metadata.  This sector can
3791                         * be determined exactly, by truncating the physical
3792                         * drive capacity to a nice even GB value.
3793                         *
3794                         * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3795                         *
3796                         * Warn the user, lest they think we're just buggy.
3797                         */
3798                        printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3799                                " BIOS CORRUPTS DATA on all attached drives,"
3800                                " regardless of if/how they are configured."
3801                                " BEWARE!\n");
3802                        printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3803                                " use sectors 8-9 on \"Legacy\" drives,"
3804                                " and avoid the final two gigabytes on"
3805                                " all RocketRAID BIOS initialized drives.\n");
3806                }
3807                /* drop through */
3808        case chip_6042:
3809                hpriv->ops = &mv6xxx_ops;
3810                hp_flags |= MV_HP_GEN_IIE;
3811                if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3812                        hp_flags |= MV_HP_CUT_THROUGH;
3813
3814                switch (pdev->revision) {
3815                case 0x2: /* Rev.B0: the first/only public release */
3816                        hp_flags |= MV_HP_ERRATA_60X1C0;
3817                        break;
3818                default:
3819                        dev_printk(KERN_WARNING, &pdev->dev,
3820                           "Applying 60X1C0 workarounds to unknown rev\n");
3821                        hp_flags |= MV_HP_ERRATA_60X1C0;
3822                        break;
3823                }
3824                break;
3825        case chip_soc:
3826                if (soc_is_65n(hpriv))
3827                        hpriv->ops = &mv_soc_65n_ops;
3828                else
3829                        hpriv->ops = &mv_soc_ops;
3830                hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3831                        MV_HP_ERRATA_60X1C0;
3832                break;
3833
3834        default:
3835                dev_printk(KERN_ERR, host->dev,
3836                           "BUG: invalid board index %u\n", board_idx);
3837                return 1;
3838        }
3839
3840        hpriv->hp_flags = hp_flags;
3841        if (hp_flags & MV_HP_PCIE) {
3842                hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3843                hpriv->irq_mask_offset  = PCIE_IRQ_MASK;
3844                hpriv->unmask_all_irqs  = PCIE_UNMASK_ALL_IRQS;
3845        } else {
3846                hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3847                hpriv->irq_mask_offset  = PCI_IRQ_MASK;
3848                hpriv->unmask_all_irqs  = PCI_UNMASK_ALL_IRQS;
3849        }
3850
3851        return 0;
3852}
3853
3854/**
3855 *      mv_init_host - Perform some early initialization of the host.
3856 *      @host: ATA host to initialize
3857 *      @board_idx: controller index
3858 *
3859 *      If possible, do an early global reset of the host.  Then do
3860 *      our port init and clear/unmask all/relevant host interrupts.
3861 *
3862 *      LOCKING:
3863 *      Inherited from caller.
3864 */
3865static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3866{
3867        int rc = 0, n_hc, port, hc;
3868        struct mv_host_priv *hpriv = host->private_data;
3869        void __iomem *mmio = hpriv->base;
3870
3871        rc = mv_chip_id(host, board_idx);
3872        if (rc)
3873                goto done;
3874
3875        if (IS_SOC(hpriv)) {
3876                hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3877                hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3878        } else {
3879                hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3880                hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3881        }
3882
3883        /* initialize shadow irq mask with register's value */
3884        hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3885
3886        /* global interrupt mask: 0 == mask everything */
3887        mv_set_main_irq_mask(host, ~0, 0);
3888
3889        n_hc = mv_get_hc_count(host->ports[0]->flags);
3890
3891        for (port = 0; port < host->n_ports; port++)
3892                if (hpriv->ops->read_preamp)
3893                        hpriv->ops->read_preamp(hpriv, port, mmio);
3894
3895        rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3896        if (rc)
3897                goto done;
3898
3899        hpriv->ops->reset_flash(hpriv, mmio);
3900        hpriv->ops->reset_bus(host, mmio);
3901        hpriv->ops->enable_leds(hpriv, mmio);
3902
3903        for (port = 0; port < host->n_ports; port++) {
3904                struct ata_port *ap = host->ports[port];
3905                void __iomem *port_mmio = mv_port_base(mmio, port);
3906
3907                mv_port_init(&ap->ioaddr, port_mmio);
3908
3909#ifdef CONFIG_PCI
3910                if (!IS_SOC(hpriv)) {
3911                        unsigned int offset = port_mmio - mmio;
3912                        ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3913                        ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3914                }
3915#endif
3916        }
3917
3918        for (hc = 0; hc < n_hc; hc++) {
3919                void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3920
3921                VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3922                        "(before clear)=0x%08x\n", hc,
3923                        readl(hc_mmio + HC_CFG),
3924                        readl(hc_mmio + HC_IRQ_CAUSE));
3925
3926                /* Clear any currently outstanding hc interrupt conditions */
3927                writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3928        }
3929
3930        if (!IS_SOC(hpriv)) {
3931                /* Clear any currently outstanding host interrupt conditions */
3932                writelfl(0, mmio + hpriv->irq_cause_offset);
3933
3934                /* and unmask interrupt generation for host regs */
3935                writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3936        }
3937
3938        /*
3939         * enable only global host interrupts for now.
3940         * The per-port interrupts get done later as ports are set up.
3941         */
3942        mv_set_main_irq_mask(host, 0, PCI_ERR);
3943        mv_set_irq_coalescing(host, irq_coalescing_io_count,
3944                                    irq_coalescing_usecs);
3945done:
3946        return rc;
3947}
3948
3949static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3950{
3951        hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3952                                                             MV_CRQB_Q_SZ, 0);
3953        if (!hpriv->crqb_pool)
3954                return -ENOMEM;
3955
3956        hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3957                                                             MV_CRPB_Q_SZ, 0);
3958        if (!hpriv->crpb_pool)
3959                return -ENOMEM;
3960
3961        hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3962                                                             MV_SG_TBL_SZ, 0);
3963        if (!hpriv->sg_tbl_pool)
3964                return -ENOMEM;
3965
3966        return 0;
3967}
3968
3969static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3970                                 struct mbus_dram_target_info *dram)
3971{
3972        int i;
3973
3974        for (i = 0; i < 4; i++) {
3975                writel(0, hpriv->base + WINDOW_CTRL(i));
3976                writel(0, hpriv->base + WINDOW_BASE(i));
3977        }
3978
3979        for (i = 0; i < dram->num_cs; i++) {
3980                struct mbus_dram_window *cs = dram->cs + i;
3981
3982                writel(((cs->size - 1) & 0xffff0000) |
3983                        (cs->mbus_attr << 8) |
3984                        (dram->mbus_dram_target_id << 4) | 1,
3985                        hpriv->base + WINDOW_CTRL(i));
3986                writel(cs->base, hpriv->base + WINDOW_BASE(i));
3987        }
3988}
3989
3990/**
3991 *      mv_platform_probe - handle a positive probe of an soc Marvell
3992 *      host
3993 *      @pdev: platform device found
3994 *
3995 *      LOCKING:
3996 *      Inherited from caller.
3997 */
3998static int mv_platform_probe(struct platform_device *pdev)
3999{
4000        static int printed_version;
4001        const struct mv_sata_platform_data *mv_platform_data;
4002        const struct ata_port_info *ppi[] =
4003            { &mv_port_info[chip_soc], NULL };
4004        struct ata_host *host;
4005        struct mv_host_priv *hpriv;
4006        struct resource *res;
4007        int n_ports, rc;
4008
4009        if (!printed_version++)
4010                dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4011
4012        /*
4013         * Simple resource validation ..
4014         */
4015        if (unlikely(pdev->num_resources != 2)) {
4016                dev_err(&pdev->dev, "invalid number of resources\n");
4017                return -EINVAL;
4018        }
4019
4020        /*
4021         * Get the register base first
4022         */
4023        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4024        if (res == NULL)
4025                return -EINVAL;
4026
4027        /* allocate host */
4028        mv_platform_data = pdev->dev.platform_data;
4029        n_ports = mv_platform_data->n_ports;
4030
4031        host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4032        hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4033
4034        if (!host || !hpriv)
4035                return -ENOMEM;
4036        host->private_data = hpriv;
4037        hpriv->n_ports = n_ports;
4038
4039        host->iomap = NULL;
4040        hpriv->base = devm_ioremap(&pdev->dev, res->start,
4041                                   resource_size(res));
4042        hpriv->base -= SATAHC0_REG_BASE;
4043
4044        /*
4045         * (Re-)program MBUS remapping windows if we are asked to.
4046         */
4047        if (mv_platform_data->dram != NULL)
4048                mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4049
4050        rc = mv_create_dma_pools(hpriv, &pdev->dev);
4051        if (rc)
4052                return rc;
4053
4054        /* initialize adapter */
4055        rc = mv_init_host(host, chip_soc);
4056        if (rc)
4057                return rc;
4058
4059        dev_printk(KERN_INFO, &pdev->dev,
4060                   "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
4061                   host->n_ports);
4062
4063        return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
4064                                 IRQF_SHARED, &mv6_sht);
4065}
4066
4067/*
4068 *
4069 *      mv_platform_remove    -       unplug a platform interface
4070 *      @pdev: platform device
4071 *
4072 *      A platform bus SATA device has been unplugged. Perform the needed
4073 *      cleanup. Also called on module unload for any active devices.
4074 */
4075static int __devexit mv_platform_remove(struct platform_device *pdev)
4076{
4077        struct device *dev = &pdev->dev;
4078        struct ata_host *host = dev_get_drvdata(dev);
4079
4080        ata_host_detach(host);
4081        return 0;
4082}
4083
4084static struct platform_driver mv_platform_driver = {
4085        .probe                  = mv_platform_probe,
4086        .remove                 = __devexit_p(mv_platform_remove),
4087        .driver                 = {
4088                                   .name = DRV_NAME,
4089                                   .owner = THIS_MODULE,
4090                                  },
4091};
4092
4093
4094#ifdef CONFIG_PCI
4095static int mv_pci_init_one(struct pci_dev *pdev,
4096                           const struct pci_device_id *ent);
4097
4098
4099static struct pci_driver mv_pci_driver = {
4100        .name                   = DRV_NAME,
4101        .id_table               = mv_pci_tbl,
4102        .probe                  = mv_pci_init_one,
4103        .remove                 = ata_pci_remove_one,
4104};
4105
4106/* move to PCI layer or libata core? */
4107static int pci_go_64(struct pci_dev *pdev)
4108{
4109        int rc;
4110
4111        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4112                rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4113                if (rc) {
4114                        rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4115                        if (rc) {
4116                                dev_printk(KERN_ERR, &pdev->dev,
4117                                           "64-bit DMA enable failed\n");
4118                                return rc;
4119                        }
4120                }
4121        } else {
4122                rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4123                if (rc) {
4124                        dev_printk(KERN_ERR, &pdev->dev,
4125                                   "32-bit DMA enable failed\n");
4126                        return rc;
4127                }
4128                rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4129                if (rc) {
4130                        dev_printk(KERN_ERR, &pdev->dev,
4131                                   "32-bit consistent DMA enable failed\n");
4132                        return rc;
4133                }
4134        }
4135
4136        return rc;
4137}
4138
4139/**
4140 *      mv_print_info - Dump key info to kernel log for perusal.
4141 *      @host: ATA host to print info about
4142 *
4143 *      FIXME: complete this.
4144 *
4145 *      LOCKING:
4146 *      Inherited from caller.
4147 */
4148static void mv_print_info(struct ata_host *host)
4149{
4150        struct pci_dev *pdev = to_pci_dev(host->dev);
4151        struct mv_host_priv *hpriv = host->private_data;
4152        u8 scc;
4153        const char *scc_s, *gen;
4154
4155        /* Use this to determine the HW stepping of the chip so we know
4156         * what errata to workaround
4157         */
4158        pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4159        if (scc == 0)
4160                scc_s = "SCSI";
4161        else if (scc == 0x01)
4162                scc_s = "RAID";
4163        else
4164                scc_s = "?";
4165
4166        if (IS_GEN_I(hpriv))
4167                gen = "I";
4168        else if (IS_GEN_II(hpriv))
4169                gen = "II";
4170        else if (IS_GEN_IIE(hpriv))
4171                gen = "IIE";
4172        else
4173                gen = "?";
4174
4175        dev_printk(KERN_INFO, &pdev->dev,
4176               "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4177               gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4178               scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4179}
4180
4181/**
4182 *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4183 *      @pdev: PCI device found
4184 *      @ent: PCI device ID entry for the matched host
4185 *
4186 *      LOCKING:
4187 *      Inherited from caller.
4188 */
4189static int mv_pci_init_one(struct pci_dev *pdev,
4190                           const struct pci_device_id *ent)
4191{
4192        static int printed_version;
4193        unsigned int board_idx = (unsigned int)ent->driver_data;
4194        const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4195        struct ata_host *host;
4196        struct mv_host_priv *hpriv;
4197        int n_ports, rc;
4198
4199        if (!printed_version++)
4200                dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4201
4202        /* allocate host */
4203        n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4204
4205        host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4206        hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4207        if (!host || !hpriv)
4208                return -ENOMEM;
4209        host->private_data = hpriv;
4210        hpriv->n_ports = n_ports;
4211
4212        /* acquire resources */
4213        rc = pcim_enable_device(pdev);
4214        if (rc)
4215                return rc;
4216
4217        rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4218        if (rc == -EBUSY)
4219                pcim_pin_device(pdev);
4220        if (rc)
4221                return rc;
4222        host->iomap = pcim_iomap_table(pdev);
4223        hpriv->base = host->iomap[MV_PRIMARY_BAR];
4224
4225        rc = pci_go_64(pdev);
4226        if (rc)
4227                return rc;
4228
4229        rc = mv_create_dma_pools(hpriv, &pdev->dev);
4230        if (rc)
4231                return rc;
4232
4233        /* initialize adapter */
4234        rc = mv_init_host(host, board_idx);
4235        if (rc)
4236                return rc;
4237
4238        /* Enable message-switched interrupts, if requested */
4239        if (msi && pci_enable_msi(pdev) == 0)
4240                hpriv->hp_flags |= MV_HP_FLAG_MSI;
4241
4242        mv_dump_pci_cfg(pdev, 0x68);
4243        mv_print_info(host);
4244
4245        pci_set_master(pdev);
4246        pci_try_set_mwi(pdev);
4247        return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4248                                 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4249}
4250#endif
4251
4252static int mv_platform_probe(struct platform_device *pdev);
4253static int __devexit mv_platform_remove(struct platform_device *pdev);
4254
4255static int __init mv_init(void)
4256{
4257        int rc = -ENODEV;
4258#ifdef CONFIG_PCI
4259        rc = pci_register_driver(&mv_pci_driver);
4260        if (rc < 0)
4261                return rc;
4262#endif
4263        rc = platform_driver_register(&mv_platform_driver);
4264
4265#ifdef CONFIG_PCI
4266        if (rc < 0)
4267                pci_unregister_driver(&mv_pci_driver);
4268#endif
4269        return rc;
4270}
4271
4272static void __exit mv_exit(void)
4273{
4274#ifdef CONFIG_PCI
4275        pci_unregister_driver(&mv_pci_driver);
4276#endif
4277        platform_driver_unregister(&mv_platform_driver);
4278}
4279
4280MODULE_AUTHOR("Brett Russ");
4281MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4282MODULE_LICENSE("GPL");
4283MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4284MODULE_VERSION(DRV_VERSION);
4285MODULE_ALIAS("platform:" DRV_NAME);
4286
4287module_init(mv_init);
4288module_exit(mv_exit);
4289