linux/drivers/block/pktcdvd.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
   3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
   4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
   5 *
   6 * May be copied or modified under the terms of the GNU General Public
   7 * License.  See linux/COPYING for more information.
   8 *
   9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
  10 * DVD-RAM devices.
  11 *
  12 * Theory of operation:
  13 *
  14 * At the lowest level, there is the standard driver for the CD/DVD device,
  15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
  16 * but it doesn't know anything about the special restrictions that apply to
  17 * packet writing. One restriction is that write requests must be aligned to
  18 * packet boundaries on the physical media, and the size of a write request
  19 * must be equal to the packet size. Another restriction is that a
  20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
  21 * command, if the previous command was a write.
  22 *
  23 * The purpose of the packet writing driver is to hide these restrictions from
  24 * higher layers, such as file systems, and present a block device that can be
  25 * randomly read and written using 2kB-sized blocks.
  26 *
  27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
  28 * Its data is defined by the struct packet_iosched and includes two bio
  29 * queues with pending read and write requests. These queues are processed
  30 * by the pkt_iosched_process_queue() function. The write requests in this
  31 * queue are already properly aligned and sized. This layer is responsible for
  32 * issuing the flush cache commands and scheduling the I/O in a good order.
  33 *
  34 * The next layer transforms unaligned write requests to aligned writes. This
  35 * transformation requires reading missing pieces of data from the underlying
  36 * block device, assembling the pieces to full packets and queuing them to the
  37 * packet I/O scheduler.
  38 *
  39 * At the top layer there is a custom make_request_fn function that forwards
  40 * read requests directly to the iosched queue and puts write requests in the
  41 * unaligned write queue. A kernel thread performs the necessary read
  42 * gathering to convert the unaligned writes to aligned writes and then feeds
  43 * them to the packet I/O scheduler.
  44 *
  45 *************************************************************************/
  46
  47#include <linux/pktcdvd.h>
  48#include <linux/module.h>
  49#include <linux/types.h>
  50#include <linux/kernel.h>
  51#include <linux/kthread.h>
  52#include <linux/errno.h>
  53#include <linux/spinlock.h>
  54#include <linux/file.h>
  55#include <linux/proc_fs.h>
  56#include <linux/seq_file.h>
  57#include <linux/miscdevice.h>
  58#include <linux/freezer.h>
  59#include <linux/mutex.h>
  60#include <scsi/scsi_cmnd.h>
  61#include <scsi/scsi_ioctl.h>
  62#include <scsi/scsi.h>
  63#include <linux/debugfs.h>
  64#include <linux/device.h>
  65
  66#include <asm/uaccess.h>
  67
  68#define DRIVER_NAME     "pktcdvd"
  69
  70#if PACKET_DEBUG
  71#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
  72#else
  73#define DPRINTK(fmt, args...)
  74#endif
  75
  76#if PACKET_DEBUG > 1
  77#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
  78#else
  79#define VPRINTK(fmt, args...)
  80#endif
  81
  82#define MAX_SPEED 0xffff
  83
  84#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
  85
  86static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
  87static struct proc_dir_entry *pkt_proc;
  88static int pktdev_major;
  89static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
  90static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
  91static struct mutex ctl_mutex;  /* Serialize open/close/setup/teardown */
  92static mempool_t *psd_pool;
  93
  94static struct class     *class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
  95static struct dentry    *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
  96
  97/* forward declaration */
  98static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
  99static int pkt_remove_dev(dev_t pkt_dev);
 100static int pkt_seq_show(struct seq_file *m, void *p);
 101
 102
 103
 104/*
 105 * create and register a pktcdvd kernel object.
 106 */
 107static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
 108                                        const char* name,
 109                                        struct kobject* parent,
 110                                        struct kobj_type* ktype)
 111{
 112        struct pktcdvd_kobj *p;
 113        int error;
 114
 115        p = kzalloc(sizeof(*p), GFP_KERNEL);
 116        if (!p)
 117                return NULL;
 118        p->pd = pd;
 119        error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
 120        if (error) {
 121                kobject_put(&p->kobj);
 122                return NULL;
 123        }
 124        kobject_uevent(&p->kobj, KOBJ_ADD);
 125        return p;
 126}
 127/*
 128 * remove a pktcdvd kernel object.
 129 */
 130static void pkt_kobj_remove(struct pktcdvd_kobj *p)
 131{
 132        if (p)
 133                kobject_put(&p->kobj);
 134}
 135/*
 136 * default release function for pktcdvd kernel objects.
 137 */
 138static void pkt_kobj_release(struct kobject *kobj)
 139{
 140        kfree(to_pktcdvdkobj(kobj));
 141}
 142
 143
 144/**********************************************************
 145 *
 146 * sysfs interface for pktcdvd
 147 * by (C) 2006  Thomas Maier <balagi@justmail.de>
 148 *
 149 **********************************************************/
 150
 151#define DEF_ATTR(_obj,_name,_mode) \
 152        static struct attribute _obj = { .name = _name, .mode = _mode }
 153
 154/**********************************************************
 155  /sys/class/pktcdvd/pktcdvd[0-7]/
 156                     stat/reset
 157                     stat/packets_started
 158                     stat/packets_finished
 159                     stat/kb_written
 160                     stat/kb_read
 161                     stat/kb_read_gather
 162                     write_queue/size
 163                     write_queue/congestion_off
 164                     write_queue/congestion_on
 165 **********************************************************/
 166
 167DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
 168DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
 169DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
 170DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
 171DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
 172DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
 173
 174static struct attribute *kobj_pkt_attrs_stat[] = {
 175        &kobj_pkt_attr_st1,
 176        &kobj_pkt_attr_st2,
 177        &kobj_pkt_attr_st3,
 178        &kobj_pkt_attr_st4,
 179        &kobj_pkt_attr_st5,
 180        &kobj_pkt_attr_st6,
 181        NULL
 182};
 183
 184DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
 185DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
 186DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
 187
 188static struct attribute *kobj_pkt_attrs_wqueue[] = {
 189        &kobj_pkt_attr_wq1,
 190        &kobj_pkt_attr_wq2,
 191        &kobj_pkt_attr_wq3,
 192        NULL
 193};
 194
 195static ssize_t kobj_pkt_show(struct kobject *kobj,
 196                        struct attribute *attr, char *data)
 197{
 198        struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
 199        int n = 0;
 200        int v;
 201        if (strcmp(attr->name, "packets_started") == 0) {
 202                n = sprintf(data, "%lu\n", pd->stats.pkt_started);
 203
 204        } else if (strcmp(attr->name, "packets_finished") == 0) {
 205                n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
 206
 207        } else if (strcmp(attr->name, "kb_written") == 0) {
 208                n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
 209
 210        } else if (strcmp(attr->name, "kb_read") == 0) {
 211                n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
 212
 213        } else if (strcmp(attr->name, "kb_read_gather") == 0) {
 214                n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
 215
 216        } else if (strcmp(attr->name, "size") == 0) {
 217                spin_lock(&pd->lock);
 218                v = pd->bio_queue_size;
 219                spin_unlock(&pd->lock);
 220                n = sprintf(data, "%d\n", v);
 221
 222        } else if (strcmp(attr->name, "congestion_off") == 0) {
 223                spin_lock(&pd->lock);
 224                v = pd->write_congestion_off;
 225                spin_unlock(&pd->lock);
 226                n = sprintf(data, "%d\n", v);
 227
 228        } else if (strcmp(attr->name, "congestion_on") == 0) {
 229                spin_lock(&pd->lock);
 230                v = pd->write_congestion_on;
 231                spin_unlock(&pd->lock);
 232                n = sprintf(data, "%d\n", v);
 233        }
 234        return n;
 235}
 236
 237static void init_write_congestion_marks(int* lo, int* hi)
 238{
 239        if (*hi > 0) {
 240                *hi = max(*hi, 500);
 241                *hi = min(*hi, 1000000);
 242                if (*lo <= 0)
 243                        *lo = *hi - 100;
 244                else {
 245                        *lo = min(*lo, *hi - 100);
 246                        *lo = max(*lo, 100);
 247                }
 248        } else {
 249                *hi = -1;
 250                *lo = -1;
 251        }
 252}
 253
 254static ssize_t kobj_pkt_store(struct kobject *kobj,
 255                        struct attribute *attr,
 256                        const char *data, size_t len)
 257{
 258        struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
 259        int val;
 260
 261        if (strcmp(attr->name, "reset") == 0 && len > 0) {
 262                pd->stats.pkt_started = 0;
 263                pd->stats.pkt_ended = 0;
 264                pd->stats.secs_w = 0;
 265                pd->stats.secs_rg = 0;
 266                pd->stats.secs_r = 0;
 267
 268        } else if (strcmp(attr->name, "congestion_off") == 0
 269                   && sscanf(data, "%d", &val) == 1) {
 270                spin_lock(&pd->lock);
 271                pd->write_congestion_off = val;
 272                init_write_congestion_marks(&pd->write_congestion_off,
 273                                        &pd->write_congestion_on);
 274                spin_unlock(&pd->lock);
 275
 276        } else if (strcmp(attr->name, "congestion_on") == 0
 277                   && sscanf(data, "%d", &val) == 1) {
 278                spin_lock(&pd->lock);
 279                pd->write_congestion_on = val;
 280                init_write_congestion_marks(&pd->write_congestion_off,
 281                                        &pd->write_congestion_on);
 282                spin_unlock(&pd->lock);
 283        }
 284        return len;
 285}
 286
 287static struct sysfs_ops kobj_pkt_ops = {
 288        .show = kobj_pkt_show,
 289        .store = kobj_pkt_store
 290};
 291static struct kobj_type kobj_pkt_type_stat = {
 292        .release = pkt_kobj_release,
 293        .sysfs_ops = &kobj_pkt_ops,
 294        .default_attrs = kobj_pkt_attrs_stat
 295};
 296static struct kobj_type kobj_pkt_type_wqueue = {
 297        .release = pkt_kobj_release,
 298        .sysfs_ops = &kobj_pkt_ops,
 299        .default_attrs = kobj_pkt_attrs_wqueue
 300};
 301
 302static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
 303{
 304        if (class_pktcdvd) {
 305                pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
 306                                        "%s", pd->name);
 307                if (IS_ERR(pd->dev))
 308                        pd->dev = NULL;
 309        }
 310        if (pd->dev) {
 311                pd->kobj_stat = pkt_kobj_create(pd, "stat",
 312                                        &pd->dev->kobj,
 313                                        &kobj_pkt_type_stat);
 314                pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
 315                                        &pd->dev->kobj,
 316                                        &kobj_pkt_type_wqueue);
 317        }
 318}
 319
 320static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
 321{
 322        pkt_kobj_remove(pd->kobj_stat);
 323        pkt_kobj_remove(pd->kobj_wqueue);
 324        if (class_pktcdvd)
 325                device_destroy(class_pktcdvd, pd->pkt_dev);
 326}
 327
 328
 329/********************************************************************
 330  /sys/class/pktcdvd/
 331                     add            map block device
 332                     remove         unmap packet dev
 333                     device_map     show mappings
 334 *******************************************************************/
 335
 336static void class_pktcdvd_release(struct class *cls)
 337{
 338        kfree(cls);
 339}
 340static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
 341{
 342        int n = 0;
 343        int idx;
 344        mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
 345        for (idx = 0; idx < MAX_WRITERS; idx++) {
 346                struct pktcdvd_device *pd = pkt_devs[idx];
 347                if (!pd)
 348                        continue;
 349                n += sprintf(data+n, "%s %u:%u %u:%u\n",
 350                        pd->name,
 351                        MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
 352                        MAJOR(pd->bdev->bd_dev),
 353                        MINOR(pd->bdev->bd_dev));
 354        }
 355        mutex_unlock(&ctl_mutex);
 356        return n;
 357}
 358
 359static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
 360                                        size_t count)
 361{
 362        unsigned int major, minor;
 363
 364        if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
 365                /* pkt_setup_dev() expects caller to hold reference to self */
 366                if (!try_module_get(THIS_MODULE))
 367                        return -ENODEV;
 368
 369                pkt_setup_dev(MKDEV(major, minor), NULL);
 370
 371                module_put(THIS_MODULE);
 372
 373                return count;
 374        }
 375
 376        return -EINVAL;
 377}
 378
 379static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
 380                                        size_t count)
 381{
 382        unsigned int major, minor;
 383        if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
 384                pkt_remove_dev(MKDEV(major, minor));
 385                return count;
 386        }
 387        return -EINVAL;
 388}
 389
 390static struct class_attribute class_pktcdvd_attrs[] = {
 391 __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
 392 __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
 393 __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
 394 __ATTR_NULL
 395};
 396
 397
 398static int pkt_sysfs_init(void)
 399{
 400        int ret = 0;
 401
 402        /*
 403         * create control files in sysfs
 404         * /sys/class/pktcdvd/...
 405         */
 406        class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
 407        if (!class_pktcdvd)
 408                return -ENOMEM;
 409        class_pktcdvd->name = DRIVER_NAME;
 410        class_pktcdvd->owner = THIS_MODULE;
 411        class_pktcdvd->class_release = class_pktcdvd_release;
 412        class_pktcdvd->class_attrs = class_pktcdvd_attrs;
 413        ret = class_register(class_pktcdvd);
 414        if (ret) {
 415                kfree(class_pktcdvd);
 416                class_pktcdvd = NULL;
 417                printk(DRIVER_NAME": failed to create class pktcdvd\n");
 418                return ret;
 419        }
 420        return 0;
 421}
 422
 423static void pkt_sysfs_cleanup(void)
 424{
 425        if (class_pktcdvd)
 426                class_destroy(class_pktcdvd);
 427        class_pktcdvd = NULL;
 428}
 429
 430/********************************************************************
 431  entries in debugfs
 432
 433  /sys/kernel/debug/pktcdvd[0-7]/
 434                        info
 435
 436 *******************************************************************/
 437
 438static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
 439{
 440        return pkt_seq_show(m, p);
 441}
 442
 443static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
 444{
 445        return single_open(file, pkt_debugfs_seq_show, inode->i_private);
 446}
 447
 448static const struct file_operations debug_fops = {
 449        .open           = pkt_debugfs_fops_open,
 450        .read           = seq_read,
 451        .llseek         = seq_lseek,
 452        .release        = single_release,
 453        .owner          = THIS_MODULE,
 454};
 455
 456static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
 457{
 458        if (!pkt_debugfs_root)
 459                return;
 460        pd->dfs_f_info = NULL;
 461        pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
 462        if (IS_ERR(pd->dfs_d_root)) {
 463                pd->dfs_d_root = NULL;
 464                return;
 465        }
 466        pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
 467                                pd->dfs_d_root, pd, &debug_fops);
 468        if (IS_ERR(pd->dfs_f_info)) {
 469                pd->dfs_f_info = NULL;
 470                return;
 471        }
 472}
 473
 474static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
 475{
 476        if (!pkt_debugfs_root)
 477                return;
 478        if (pd->dfs_f_info)
 479                debugfs_remove(pd->dfs_f_info);
 480        pd->dfs_f_info = NULL;
 481        if (pd->dfs_d_root)
 482                debugfs_remove(pd->dfs_d_root);
 483        pd->dfs_d_root = NULL;
 484}
 485
 486static void pkt_debugfs_init(void)
 487{
 488        pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
 489        if (IS_ERR(pkt_debugfs_root)) {
 490                pkt_debugfs_root = NULL;
 491                return;
 492        }
 493}
 494
 495static void pkt_debugfs_cleanup(void)
 496{
 497        if (!pkt_debugfs_root)
 498                return;
 499        debugfs_remove(pkt_debugfs_root);
 500        pkt_debugfs_root = NULL;
 501}
 502
 503/* ----------------------------------------------------------*/
 504
 505
 506static void pkt_bio_finished(struct pktcdvd_device *pd)
 507{
 508        BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
 509        if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
 510                VPRINTK(DRIVER_NAME": queue empty\n");
 511                atomic_set(&pd->iosched.attention, 1);
 512                wake_up(&pd->wqueue);
 513        }
 514}
 515
 516static void pkt_bio_destructor(struct bio *bio)
 517{
 518        kfree(bio->bi_io_vec);
 519        kfree(bio);
 520}
 521
 522static struct bio *pkt_bio_alloc(int nr_iovecs)
 523{
 524        struct bio_vec *bvl = NULL;
 525        struct bio *bio;
 526
 527        bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
 528        if (!bio)
 529                goto no_bio;
 530        bio_init(bio);
 531
 532        bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
 533        if (!bvl)
 534                goto no_bvl;
 535
 536        bio->bi_max_vecs = nr_iovecs;
 537        bio->bi_io_vec = bvl;
 538        bio->bi_destructor = pkt_bio_destructor;
 539
 540        return bio;
 541
 542 no_bvl:
 543        kfree(bio);
 544 no_bio:
 545        return NULL;
 546}
 547
 548/*
 549 * Allocate a packet_data struct
 550 */
 551static struct packet_data *pkt_alloc_packet_data(int frames)
 552{
 553        int i;
 554        struct packet_data *pkt;
 555
 556        pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
 557        if (!pkt)
 558                goto no_pkt;
 559
 560        pkt->frames = frames;
 561        pkt->w_bio = pkt_bio_alloc(frames);
 562        if (!pkt->w_bio)
 563                goto no_bio;
 564
 565        for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
 566                pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
 567                if (!pkt->pages[i])
 568                        goto no_page;
 569        }
 570
 571        spin_lock_init(&pkt->lock);
 572
 573        for (i = 0; i < frames; i++) {
 574                struct bio *bio = pkt_bio_alloc(1);
 575                if (!bio)
 576                        goto no_rd_bio;
 577                pkt->r_bios[i] = bio;
 578        }
 579
 580        return pkt;
 581
 582no_rd_bio:
 583        for (i = 0; i < frames; i++) {
 584                struct bio *bio = pkt->r_bios[i];
 585                if (bio)
 586                        bio_put(bio);
 587        }
 588
 589no_page:
 590        for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
 591                if (pkt->pages[i])
 592                        __free_page(pkt->pages[i]);
 593        bio_put(pkt->w_bio);
 594no_bio:
 595        kfree(pkt);
 596no_pkt:
 597        return NULL;
 598}
 599
 600/*
 601 * Free a packet_data struct
 602 */
 603static void pkt_free_packet_data(struct packet_data *pkt)
 604{
 605        int i;
 606
 607        for (i = 0; i < pkt->frames; i++) {
 608                struct bio *bio = pkt->r_bios[i];
 609                if (bio)
 610                        bio_put(bio);
 611        }
 612        for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
 613                __free_page(pkt->pages[i]);
 614        bio_put(pkt->w_bio);
 615        kfree(pkt);
 616}
 617
 618static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
 619{
 620        struct packet_data *pkt, *next;
 621
 622        BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
 623
 624        list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
 625                pkt_free_packet_data(pkt);
 626        }
 627        INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
 628}
 629
 630static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
 631{
 632        struct packet_data *pkt;
 633
 634        BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
 635
 636        while (nr_packets > 0) {
 637                pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
 638                if (!pkt) {
 639                        pkt_shrink_pktlist(pd);
 640                        return 0;
 641                }
 642                pkt->id = nr_packets;
 643                pkt->pd = pd;
 644                list_add(&pkt->list, &pd->cdrw.pkt_free_list);
 645                nr_packets--;
 646        }
 647        return 1;
 648}
 649
 650static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
 651{
 652        struct rb_node *n = rb_next(&node->rb_node);
 653        if (!n)
 654                return NULL;
 655        return rb_entry(n, struct pkt_rb_node, rb_node);
 656}
 657
 658static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
 659{
 660        rb_erase(&node->rb_node, &pd->bio_queue);
 661        mempool_free(node, pd->rb_pool);
 662        pd->bio_queue_size--;
 663        BUG_ON(pd->bio_queue_size < 0);
 664}
 665
 666/*
 667 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
 668 */
 669static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
 670{
 671        struct rb_node *n = pd->bio_queue.rb_node;
 672        struct rb_node *next;
 673        struct pkt_rb_node *tmp;
 674
 675        if (!n) {
 676                BUG_ON(pd->bio_queue_size > 0);
 677                return NULL;
 678        }
 679
 680        for (;;) {
 681                tmp = rb_entry(n, struct pkt_rb_node, rb_node);
 682                if (s <= tmp->bio->bi_sector)
 683                        next = n->rb_left;
 684                else
 685                        next = n->rb_right;
 686                if (!next)
 687                        break;
 688                n = next;
 689        }
 690
 691        if (s > tmp->bio->bi_sector) {
 692                tmp = pkt_rbtree_next(tmp);
 693                if (!tmp)
 694                        return NULL;
 695        }
 696        BUG_ON(s > tmp->bio->bi_sector);
 697        return tmp;
 698}
 699
 700/*
 701 * Insert a node into the pd->bio_queue rb tree.
 702 */
 703static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
 704{
 705        struct rb_node **p = &pd->bio_queue.rb_node;
 706        struct rb_node *parent = NULL;
 707        sector_t s = node->bio->bi_sector;
 708        struct pkt_rb_node *tmp;
 709
 710        while (*p) {
 711                parent = *p;
 712                tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
 713                if (s < tmp->bio->bi_sector)
 714                        p = &(*p)->rb_left;
 715                else
 716                        p = &(*p)->rb_right;
 717        }
 718        rb_link_node(&node->rb_node, parent, p);
 719        rb_insert_color(&node->rb_node, &pd->bio_queue);
 720        pd->bio_queue_size++;
 721}
 722
 723/*
 724 * Add a bio to a single linked list defined by its head and tail pointers.
 725 */
 726static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
 727{
 728        bio->bi_next = NULL;
 729        if (*list_tail) {
 730                BUG_ON((*list_head) == NULL);
 731                (*list_tail)->bi_next = bio;
 732                (*list_tail) = bio;
 733        } else {
 734                BUG_ON((*list_head) != NULL);
 735                (*list_head) = bio;
 736                (*list_tail) = bio;
 737        }
 738}
 739
 740/*
 741 * Remove and return the first bio from a single linked list defined by its
 742 * head and tail pointers.
 743 */
 744static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
 745{
 746        struct bio *bio;
 747
 748        if (*list_head == NULL)
 749                return NULL;
 750
 751        bio = *list_head;
 752        *list_head = bio->bi_next;
 753        if (*list_head == NULL)
 754                *list_tail = NULL;
 755
 756        bio->bi_next = NULL;
 757        return bio;
 758}
 759
 760/*
 761 * Send a packet_command to the underlying block device and
 762 * wait for completion.
 763 */
 764static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
 765{
 766        struct request_queue *q = bdev_get_queue(pd->bdev);
 767        struct request *rq;
 768        int ret = 0;
 769
 770        rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
 771                             WRITE : READ, __GFP_WAIT);
 772
 773        if (cgc->buflen) {
 774                if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
 775                        goto out;
 776        }
 777
 778        rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
 779        memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
 780
 781        rq->timeout = 60*HZ;
 782        rq->cmd_type = REQ_TYPE_BLOCK_PC;
 783        rq->cmd_flags |= REQ_HARDBARRIER;
 784        if (cgc->quiet)
 785                rq->cmd_flags |= REQ_QUIET;
 786
 787        blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
 788        if (rq->errors)
 789                ret = -EIO;
 790out:
 791        blk_put_request(rq);
 792        return ret;
 793}
 794
 795/*
 796 * A generic sense dump / resolve mechanism should be implemented across
 797 * all ATAPI + SCSI devices.
 798 */
 799static void pkt_dump_sense(struct packet_command *cgc)
 800{
 801        static char *info[9] = { "No sense", "Recovered error", "Not ready",
 802                                 "Medium error", "Hardware error", "Illegal request",
 803                                 "Unit attention", "Data protect", "Blank check" };
 804        int i;
 805        struct request_sense *sense = cgc->sense;
 806
 807        printk(DRIVER_NAME":");
 808        for (i = 0; i < CDROM_PACKET_SIZE; i++)
 809                printk(" %02x", cgc->cmd[i]);
 810        printk(" - ");
 811
 812        if (sense == NULL) {
 813                printk("no sense\n");
 814                return;
 815        }
 816
 817        printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
 818
 819        if (sense->sense_key > 8) {
 820                printk(" (INVALID)\n");
 821                return;
 822        }
 823
 824        printk(" (%s)\n", info[sense->sense_key]);
 825}
 826
 827/*
 828 * flush the drive cache to media
 829 */
 830static int pkt_flush_cache(struct pktcdvd_device *pd)
 831{
 832        struct packet_command cgc;
 833
 834        init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
 835        cgc.cmd[0] = GPCMD_FLUSH_CACHE;
 836        cgc.quiet = 1;
 837
 838        /*
 839         * the IMMED bit -- we default to not setting it, although that
 840         * would allow a much faster close, this is safer
 841         */
 842#if 0
 843        cgc.cmd[1] = 1 << 1;
 844#endif
 845        return pkt_generic_packet(pd, &cgc);
 846}
 847
 848/*
 849 * speed is given as the normal factor, e.g. 4 for 4x
 850 */
 851static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
 852                                unsigned write_speed, unsigned read_speed)
 853{
 854        struct packet_command cgc;
 855        struct request_sense sense;
 856        int ret;
 857
 858        init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
 859        cgc.sense = &sense;
 860        cgc.cmd[0] = GPCMD_SET_SPEED;
 861        cgc.cmd[2] = (read_speed >> 8) & 0xff;
 862        cgc.cmd[3] = read_speed & 0xff;
 863        cgc.cmd[4] = (write_speed >> 8) & 0xff;
 864        cgc.cmd[5] = write_speed & 0xff;
 865
 866        if ((ret = pkt_generic_packet(pd, &cgc)))
 867                pkt_dump_sense(&cgc);
 868
 869        return ret;
 870}
 871
 872/*
 873 * Queue a bio for processing by the low-level CD device. Must be called
 874 * from process context.
 875 */
 876static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
 877{
 878        spin_lock(&pd->iosched.lock);
 879        if (bio_data_dir(bio) == READ) {
 880                pkt_add_list_last(bio, &pd->iosched.read_queue,
 881                                  &pd->iosched.read_queue_tail);
 882        } else {
 883                pkt_add_list_last(bio, &pd->iosched.write_queue,
 884                                  &pd->iosched.write_queue_tail);
 885        }
 886        spin_unlock(&pd->iosched.lock);
 887
 888        atomic_set(&pd->iosched.attention, 1);
 889        wake_up(&pd->wqueue);
 890}
 891
 892/*
 893 * Process the queued read/write requests. This function handles special
 894 * requirements for CDRW drives:
 895 * - A cache flush command must be inserted before a read request if the
 896 *   previous request was a write.
 897 * - Switching between reading and writing is slow, so don't do it more often
 898 *   than necessary.
 899 * - Optimize for throughput at the expense of latency. This means that streaming
 900 *   writes will never be interrupted by a read, but if the drive has to seek
 901 *   before the next write, switch to reading instead if there are any pending
 902 *   read requests.
 903 * - Set the read speed according to current usage pattern. When only reading
 904 *   from the device, it's best to use the highest possible read speed, but
 905 *   when switching often between reading and writing, it's better to have the
 906 *   same read and write speeds.
 907 */
 908static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
 909{
 910
 911        if (atomic_read(&pd->iosched.attention) == 0)
 912                return;
 913        atomic_set(&pd->iosched.attention, 0);
 914
 915        for (;;) {
 916                struct bio *bio;
 917                int reads_queued, writes_queued;
 918
 919                spin_lock(&pd->iosched.lock);
 920                reads_queued = (pd->iosched.read_queue != NULL);
 921                writes_queued = (pd->iosched.write_queue != NULL);
 922                spin_unlock(&pd->iosched.lock);
 923
 924                if (!reads_queued && !writes_queued)
 925                        break;
 926
 927                if (pd->iosched.writing) {
 928                        int need_write_seek = 1;
 929                        spin_lock(&pd->iosched.lock);
 930                        bio = pd->iosched.write_queue;
 931                        spin_unlock(&pd->iosched.lock);
 932                        if (bio && (bio->bi_sector == pd->iosched.last_write))
 933                                need_write_seek = 0;
 934                        if (need_write_seek && reads_queued) {
 935                                if (atomic_read(&pd->cdrw.pending_bios) > 0) {
 936                                        VPRINTK(DRIVER_NAME": write, waiting\n");
 937                                        break;
 938                                }
 939                                pkt_flush_cache(pd);
 940                                pd->iosched.writing = 0;
 941                        }
 942                } else {
 943                        if (!reads_queued && writes_queued) {
 944                                if (atomic_read(&pd->cdrw.pending_bios) > 0) {
 945                                        VPRINTK(DRIVER_NAME": read, waiting\n");
 946                                        break;
 947                                }
 948                                pd->iosched.writing = 1;
 949                        }
 950                }
 951
 952                spin_lock(&pd->iosched.lock);
 953                if (pd->iosched.writing) {
 954                        bio = pkt_get_list_first(&pd->iosched.write_queue,
 955                                                 &pd->iosched.write_queue_tail);
 956                } else {
 957                        bio = pkt_get_list_first(&pd->iosched.read_queue,
 958                                                 &pd->iosched.read_queue_tail);
 959                }
 960                spin_unlock(&pd->iosched.lock);
 961
 962                if (!bio)
 963                        continue;
 964
 965                if (bio_data_dir(bio) == READ)
 966                        pd->iosched.successive_reads += bio->bi_size >> 10;
 967                else {
 968                        pd->iosched.successive_reads = 0;
 969                        pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
 970                }
 971                if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
 972                        if (pd->read_speed == pd->write_speed) {
 973                                pd->read_speed = MAX_SPEED;
 974                                pkt_set_speed(pd, pd->write_speed, pd->read_speed);
 975                        }
 976                } else {
 977                        if (pd->read_speed != pd->write_speed) {
 978                                pd->read_speed = pd->write_speed;
 979                                pkt_set_speed(pd, pd->write_speed, pd->read_speed);
 980                        }
 981                }
 982
 983                atomic_inc(&pd->cdrw.pending_bios);
 984                generic_make_request(bio);
 985        }
 986}
 987
 988/*
 989 * Special care is needed if the underlying block device has a small
 990 * max_phys_segments value.
 991 */
 992static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
 993{
 994        if ((pd->settings.size << 9) / CD_FRAMESIZE
 995            <= queue_max_phys_segments(q)) {
 996                /*
 997                 * The cdrom device can handle one segment/frame
 998                 */
 999                clear_bit(PACKET_MERGE_SEGS, &pd->flags);
1000                return 0;
1001        } else if ((pd->settings.size << 9) / PAGE_SIZE
1002                   <= queue_max_phys_segments(q)) {
1003                /*
1004                 * We can handle this case at the expense of some extra memory
1005                 * copies during write operations
1006                 */
1007                set_bit(PACKET_MERGE_SEGS, &pd->flags);
1008                return 0;
1009        } else {
1010                printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
1011                return -EIO;
1012        }
1013}
1014
1015/*
1016 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
1017 */
1018static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
1019{
1020        unsigned int copy_size = CD_FRAMESIZE;
1021
1022        while (copy_size > 0) {
1023                struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
1024                void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
1025                        src_bvl->bv_offset + offs;
1026                void *vto = page_address(dst_page) + dst_offs;
1027                int len = min_t(int, copy_size, src_bvl->bv_len - offs);
1028
1029                BUG_ON(len < 0);
1030                memcpy(vto, vfrom, len);
1031                kunmap_atomic(vfrom, KM_USER0);
1032
1033                seg++;
1034                offs = 0;
1035                dst_offs += len;
1036                copy_size -= len;
1037        }
1038}
1039
1040/*
1041 * Copy all data for this packet to pkt->pages[], so that
1042 * a) The number of required segments for the write bio is minimized, which
1043 *    is necessary for some scsi controllers.
1044 * b) The data can be used as cache to avoid read requests if we receive a
1045 *    new write request for the same zone.
1046 */
1047static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1048{
1049        int f, p, offs;
1050
1051        /* Copy all data to pkt->pages[] */
1052        p = 0;
1053        offs = 0;
1054        for (f = 0; f < pkt->frames; f++) {
1055                if (bvec[f].bv_page != pkt->pages[p]) {
1056                        void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1057                        void *vto = page_address(pkt->pages[p]) + offs;
1058                        memcpy(vto, vfrom, CD_FRAMESIZE);
1059                        kunmap_atomic(vfrom, KM_USER0);
1060                        bvec[f].bv_page = pkt->pages[p];
1061                        bvec[f].bv_offset = offs;
1062                } else {
1063                        BUG_ON(bvec[f].bv_offset != offs);
1064                }
1065                offs += CD_FRAMESIZE;
1066                if (offs >= PAGE_SIZE) {
1067                        offs = 0;
1068                        p++;
1069                }
1070        }
1071}
1072
1073static void pkt_end_io_read(struct bio *bio, int err)
1074{
1075        struct packet_data *pkt = bio->bi_private;
1076        struct pktcdvd_device *pd = pkt->pd;
1077        BUG_ON(!pd);
1078
1079        VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1080                (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1081
1082        if (err)
1083                atomic_inc(&pkt->io_errors);
1084        if (atomic_dec_and_test(&pkt->io_wait)) {
1085                atomic_inc(&pkt->run_sm);
1086                wake_up(&pd->wqueue);
1087        }
1088        pkt_bio_finished(pd);
1089}
1090
1091static void pkt_end_io_packet_write(struct bio *bio, int err)
1092{
1093        struct packet_data *pkt = bio->bi_private;
1094        struct pktcdvd_device *pd = pkt->pd;
1095        BUG_ON(!pd);
1096
1097        VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1098
1099        pd->stats.pkt_ended++;
1100
1101        pkt_bio_finished(pd);
1102        atomic_dec(&pkt->io_wait);
1103        atomic_inc(&pkt->run_sm);
1104        wake_up(&pd->wqueue);
1105}
1106
1107/*
1108 * Schedule reads for the holes in a packet
1109 */
1110static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1111{
1112        int frames_read = 0;
1113        struct bio *bio;
1114        int f;
1115        char written[PACKET_MAX_SIZE];
1116
1117        BUG_ON(!pkt->orig_bios);
1118
1119        atomic_set(&pkt->io_wait, 0);
1120        atomic_set(&pkt->io_errors, 0);
1121
1122        /*
1123         * Figure out which frames we need to read before we can write.
1124         */
1125        memset(written, 0, sizeof(written));
1126        spin_lock(&pkt->lock);
1127        for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1128                int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1129                int num_frames = bio->bi_size / CD_FRAMESIZE;
1130                pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1131                BUG_ON(first_frame < 0);
1132                BUG_ON(first_frame + num_frames > pkt->frames);
1133                for (f = first_frame; f < first_frame + num_frames; f++)
1134                        written[f] = 1;
1135        }
1136        spin_unlock(&pkt->lock);
1137
1138        if (pkt->cache_valid) {
1139                VPRINTK("pkt_gather_data: zone %llx cached\n",
1140                        (unsigned long long)pkt->sector);
1141                goto out_account;
1142        }
1143
1144        /*
1145         * Schedule reads for missing parts of the packet.
1146         */
1147        for (f = 0; f < pkt->frames; f++) {
1148                struct bio_vec *vec;
1149
1150                int p, offset;
1151                if (written[f])
1152                        continue;
1153                bio = pkt->r_bios[f];
1154                vec = bio->bi_io_vec;
1155                bio_init(bio);
1156                bio->bi_max_vecs = 1;
1157                bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1158                bio->bi_bdev = pd->bdev;
1159                bio->bi_end_io = pkt_end_io_read;
1160                bio->bi_private = pkt;
1161                bio->bi_io_vec = vec;
1162                bio->bi_destructor = pkt_bio_destructor;
1163
1164                p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1165                offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1166                VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1167                        f, pkt->pages[p], offset);
1168                if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1169                        BUG();
1170
1171                atomic_inc(&pkt->io_wait);
1172                bio->bi_rw = READ;
1173                pkt_queue_bio(pd, bio);
1174                frames_read++;
1175        }
1176
1177out_account:
1178        VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1179                frames_read, (unsigned long long)pkt->sector);
1180        pd->stats.pkt_started++;
1181        pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1182}
1183
1184/*
1185 * Find a packet matching zone, or the least recently used packet if
1186 * there is no match.
1187 */
1188static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1189{
1190        struct packet_data *pkt;
1191
1192        list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1193                if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1194                        list_del_init(&pkt->list);
1195                        if (pkt->sector != zone)
1196                                pkt->cache_valid = 0;
1197                        return pkt;
1198                }
1199        }
1200        BUG();
1201        return NULL;
1202}
1203
1204static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1205{
1206        if (pkt->cache_valid) {
1207                list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1208        } else {
1209                list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1210        }
1211}
1212
1213/*
1214 * recover a failed write, query for relocation if possible
1215 *
1216 * returns 1 if recovery is possible, or 0 if not
1217 *
1218 */
1219static int pkt_start_recovery(struct packet_data *pkt)
1220{
1221        /*
1222         * FIXME. We need help from the file system to implement
1223         * recovery handling.
1224         */
1225        return 0;
1226#if 0
1227        struct request *rq = pkt->rq;
1228        struct pktcdvd_device *pd = rq->rq_disk->private_data;
1229        struct block_device *pkt_bdev;
1230        struct super_block *sb = NULL;
1231        unsigned long old_block, new_block;
1232        sector_t new_sector;
1233
1234        pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1235        if (pkt_bdev) {
1236                sb = get_super(pkt_bdev);
1237                bdput(pkt_bdev);
1238        }
1239
1240        if (!sb)
1241                return 0;
1242
1243        if (!sb->s_op || !sb->s_op->relocate_blocks)
1244                goto out;
1245
1246        old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1247        if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1248                goto out;
1249
1250        new_sector = new_block * (CD_FRAMESIZE >> 9);
1251        pkt->sector = new_sector;
1252
1253        pkt->bio->bi_sector = new_sector;
1254        pkt->bio->bi_next = NULL;
1255        pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1256        pkt->bio->bi_idx = 0;
1257
1258        BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1259        BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1260        BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1261        BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1262        BUG_ON(pkt->bio->bi_private != pkt);
1263
1264        drop_super(sb);
1265        return 1;
1266
1267out:
1268        drop_super(sb);
1269        return 0;
1270#endif
1271}
1272
1273static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1274{
1275#if PACKET_DEBUG > 1
1276        static const char *state_name[] = {
1277                "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1278        };
1279        enum packet_data_state old_state = pkt->state;
1280        VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1281                state_name[old_state], state_name[state]);
1282#endif
1283        pkt->state = state;
1284}
1285
1286/*
1287 * Scan the work queue to see if we can start a new packet.
1288 * returns non-zero if any work was done.
1289 */
1290static int pkt_handle_queue(struct pktcdvd_device *pd)
1291{
1292        struct packet_data *pkt, *p;
1293        struct bio *bio = NULL;
1294        sector_t zone = 0; /* Suppress gcc warning */
1295        struct pkt_rb_node *node, *first_node;
1296        struct rb_node *n;
1297        int wakeup;
1298
1299        VPRINTK("handle_queue\n");
1300
1301        atomic_set(&pd->scan_queue, 0);
1302
1303        if (list_empty(&pd->cdrw.pkt_free_list)) {
1304                VPRINTK("handle_queue: no pkt\n");
1305                return 0;
1306        }
1307
1308        /*
1309         * Try to find a zone we are not already working on.
1310         */
1311        spin_lock(&pd->lock);
1312        first_node = pkt_rbtree_find(pd, pd->current_sector);
1313        if (!first_node) {
1314                n = rb_first(&pd->bio_queue);
1315                if (n)
1316                        first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1317        }
1318        node = first_node;
1319        while (node) {
1320                bio = node->bio;
1321                zone = ZONE(bio->bi_sector, pd);
1322                list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1323                        if (p->sector == zone) {
1324                                bio = NULL;
1325                                goto try_next_bio;
1326                        }
1327                }
1328                break;
1329try_next_bio:
1330                node = pkt_rbtree_next(node);
1331                if (!node) {
1332                        n = rb_first(&pd->bio_queue);
1333                        if (n)
1334                                node = rb_entry(n, struct pkt_rb_node, rb_node);
1335                }
1336                if (node == first_node)
1337                        node = NULL;
1338        }
1339        spin_unlock(&pd->lock);
1340        if (!bio) {
1341                VPRINTK("handle_queue: no bio\n");
1342                return 0;
1343        }
1344
1345        pkt = pkt_get_packet_data(pd, zone);
1346
1347        pd->current_sector = zone + pd->settings.size;
1348        pkt->sector = zone;
1349        BUG_ON(pkt->frames != pd->settings.size >> 2);
1350        pkt->write_size = 0;
1351
1352        /*
1353         * Scan work queue for bios in the same zone and link them
1354         * to this packet.
1355         */
1356        spin_lock(&pd->lock);
1357        VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1358        while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1359                bio = node->bio;
1360                VPRINTK("pkt_handle_queue: found zone=%llx\n",
1361                        (unsigned long long)ZONE(bio->bi_sector, pd));
1362                if (ZONE(bio->bi_sector, pd) != zone)
1363                        break;
1364                pkt_rbtree_erase(pd, node);
1365                spin_lock(&pkt->lock);
1366                pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
1367                pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1368                spin_unlock(&pkt->lock);
1369        }
1370        /* check write congestion marks, and if bio_queue_size is
1371           below, wake up any waiters */
1372        wakeup = (pd->write_congestion_on > 0
1373                        && pd->bio_queue_size <= pd->write_congestion_off);
1374        spin_unlock(&pd->lock);
1375        if (wakeup) {
1376                clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1377                                        BLK_RW_ASYNC);
1378        }
1379
1380        pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1381        pkt_set_state(pkt, PACKET_WAITING_STATE);
1382        atomic_set(&pkt->run_sm, 1);
1383
1384        spin_lock(&pd->cdrw.active_list_lock);
1385        list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1386        spin_unlock(&pd->cdrw.active_list_lock);
1387
1388        return 1;
1389}
1390
1391/*
1392 * Assemble a bio to write one packet and queue the bio for processing
1393 * by the underlying block device.
1394 */
1395static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1396{
1397        struct bio *bio;
1398        int f;
1399        int frames_write;
1400        struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1401
1402        for (f = 0; f < pkt->frames; f++) {
1403                bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1404                bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1405        }
1406
1407        /*
1408         * Fill-in bvec with data from orig_bios.
1409         */
1410        frames_write = 0;
1411        spin_lock(&pkt->lock);
1412        for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1413                int segment = bio->bi_idx;
1414                int src_offs = 0;
1415                int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1416                int num_frames = bio->bi_size / CD_FRAMESIZE;
1417                BUG_ON(first_frame < 0);
1418                BUG_ON(first_frame + num_frames > pkt->frames);
1419                for (f = first_frame; f < first_frame + num_frames; f++) {
1420                        struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1421
1422                        while (src_offs >= src_bvl->bv_len) {
1423                                src_offs -= src_bvl->bv_len;
1424                                segment++;
1425                                BUG_ON(segment >= bio->bi_vcnt);
1426                                src_bvl = bio_iovec_idx(bio, segment);
1427                        }
1428
1429                        if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1430                                bvec[f].bv_page = src_bvl->bv_page;
1431                                bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1432                        } else {
1433                                pkt_copy_bio_data(bio, segment, src_offs,
1434                                                  bvec[f].bv_page, bvec[f].bv_offset);
1435                        }
1436                        src_offs += CD_FRAMESIZE;
1437                        frames_write++;
1438                }
1439        }
1440        pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1441        spin_unlock(&pkt->lock);
1442
1443        VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1444                frames_write, (unsigned long long)pkt->sector);
1445        BUG_ON(frames_write != pkt->write_size);
1446
1447        if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1448                pkt_make_local_copy(pkt, bvec);
1449                pkt->cache_valid = 1;
1450        } else {
1451                pkt->cache_valid = 0;
1452        }
1453
1454        /* Start the write request */
1455        bio_init(pkt->w_bio);
1456        pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1457        pkt->w_bio->bi_sector = pkt->sector;
1458        pkt->w_bio->bi_bdev = pd->bdev;
1459        pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1460        pkt->w_bio->bi_private = pkt;
1461        pkt->w_bio->bi_io_vec = bvec;
1462        pkt->w_bio->bi_destructor = pkt_bio_destructor;
1463        for (f = 0; f < pkt->frames; f++)
1464                if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1465                        BUG();
1466        VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1467
1468        atomic_set(&pkt->io_wait, 1);
1469        pkt->w_bio->bi_rw = WRITE;
1470        pkt_queue_bio(pd, pkt->w_bio);
1471}
1472
1473static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1474{
1475        struct bio *bio, *next;
1476
1477        if (!uptodate)
1478                pkt->cache_valid = 0;
1479
1480        /* Finish all bios corresponding to this packet */
1481        bio = pkt->orig_bios;
1482        while (bio) {
1483                next = bio->bi_next;
1484                bio->bi_next = NULL;
1485                bio_endio(bio, uptodate ? 0 : -EIO);
1486                bio = next;
1487        }
1488        pkt->orig_bios = pkt->orig_bios_tail = NULL;
1489}
1490
1491static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1492{
1493        int uptodate;
1494
1495        VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1496
1497        for (;;) {
1498                switch (pkt->state) {
1499                case PACKET_WAITING_STATE:
1500                        if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1501                                return;
1502
1503                        pkt->sleep_time = 0;
1504                        pkt_gather_data(pd, pkt);
1505                        pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1506                        break;
1507
1508                case PACKET_READ_WAIT_STATE:
1509                        if (atomic_read(&pkt->io_wait) > 0)
1510                                return;
1511
1512                        if (atomic_read(&pkt->io_errors) > 0) {
1513                                pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1514                        } else {
1515                                pkt_start_write(pd, pkt);
1516                        }
1517                        break;
1518
1519                case PACKET_WRITE_WAIT_STATE:
1520                        if (atomic_read(&pkt->io_wait) > 0)
1521                                return;
1522
1523                        if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1524                                pkt_set_state(pkt, PACKET_FINISHED_STATE);
1525                        } else {
1526                                pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1527                        }
1528                        break;
1529
1530                case PACKET_RECOVERY_STATE:
1531                        if (pkt_start_recovery(pkt)) {
1532                                pkt_start_write(pd, pkt);
1533                        } else {
1534                                VPRINTK("No recovery possible\n");
1535                                pkt_set_state(pkt, PACKET_FINISHED_STATE);
1536                        }
1537                        break;
1538
1539                case PACKET_FINISHED_STATE:
1540                        uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1541                        pkt_finish_packet(pkt, uptodate);
1542                        return;
1543
1544                default:
1545                        BUG();
1546                        break;
1547                }
1548        }
1549}
1550
1551static void pkt_handle_packets(struct pktcdvd_device *pd)
1552{
1553        struct packet_data *pkt, *next;
1554
1555        VPRINTK("pkt_handle_packets\n");
1556
1557        /*
1558         * Run state machine for active packets
1559         */
1560        list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1561                if (atomic_read(&pkt->run_sm) > 0) {
1562                        atomic_set(&pkt->run_sm, 0);
1563                        pkt_run_state_machine(pd, pkt);
1564                }
1565        }
1566
1567        /*
1568         * Move no longer active packets to the free list
1569         */
1570        spin_lock(&pd->cdrw.active_list_lock);
1571        list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1572                if (pkt->state == PACKET_FINISHED_STATE) {
1573                        list_del(&pkt->list);
1574                        pkt_put_packet_data(pd, pkt);
1575                        pkt_set_state(pkt, PACKET_IDLE_STATE);
1576                        atomic_set(&pd->scan_queue, 1);
1577                }
1578        }
1579        spin_unlock(&pd->cdrw.active_list_lock);
1580}
1581
1582static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1583{
1584        struct packet_data *pkt;
1585        int i;
1586
1587        for (i = 0; i < PACKET_NUM_STATES; i++)
1588                states[i] = 0;
1589
1590        spin_lock(&pd->cdrw.active_list_lock);
1591        list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1592                states[pkt->state]++;
1593        }
1594        spin_unlock(&pd->cdrw.active_list_lock);
1595}
1596
1597/*
1598 * kcdrwd is woken up when writes have been queued for one of our
1599 * registered devices
1600 */
1601static int kcdrwd(void *foobar)
1602{
1603        struct pktcdvd_device *pd = foobar;
1604        struct packet_data *pkt;
1605        long min_sleep_time, residue;
1606
1607        set_user_nice(current, -20);
1608        set_freezable();
1609
1610        for (;;) {
1611                DECLARE_WAITQUEUE(wait, current);
1612
1613                /*
1614                 * Wait until there is something to do
1615                 */
1616                add_wait_queue(&pd->wqueue, &wait);
1617                for (;;) {
1618                        set_current_state(TASK_INTERRUPTIBLE);
1619
1620                        /* Check if we need to run pkt_handle_queue */
1621                        if (atomic_read(&pd->scan_queue) > 0)
1622                                goto work_to_do;
1623
1624                        /* Check if we need to run the state machine for some packet */
1625                        list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1626                                if (atomic_read(&pkt->run_sm) > 0)
1627                                        goto work_to_do;
1628                        }
1629
1630                        /* Check if we need to process the iosched queues */
1631                        if (atomic_read(&pd->iosched.attention) != 0)
1632                                goto work_to_do;
1633
1634                        /* Otherwise, go to sleep */
1635                        if (PACKET_DEBUG > 1) {
1636                                int states[PACKET_NUM_STATES];
1637                                pkt_count_states(pd, states);
1638                                VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1639                                        states[0], states[1], states[2], states[3],
1640                                        states[4], states[5]);
1641                        }
1642
1643                        min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1644                        list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1645                                if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1646                                        min_sleep_time = pkt->sleep_time;
1647                        }
1648
1649                        generic_unplug_device(bdev_get_queue(pd->bdev));
1650
1651                        VPRINTK("kcdrwd: sleeping\n");
1652                        residue = schedule_timeout(min_sleep_time);
1653                        VPRINTK("kcdrwd: wake up\n");
1654
1655                        /* make swsusp happy with our thread */
1656                        try_to_freeze();
1657
1658                        list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1659                                if (!pkt->sleep_time)
1660                                        continue;
1661                                pkt->sleep_time -= min_sleep_time - residue;
1662                                if (pkt->sleep_time <= 0) {
1663                                        pkt->sleep_time = 0;
1664                                        atomic_inc(&pkt->run_sm);
1665                                }
1666                        }
1667
1668                        if (kthread_should_stop())
1669                                break;
1670                }
1671work_to_do:
1672                set_current_state(TASK_RUNNING);
1673                remove_wait_queue(&pd->wqueue, &wait);
1674
1675                if (kthread_should_stop())
1676                        break;
1677
1678                /*
1679                 * if pkt_handle_queue returns true, we can queue
1680                 * another request.
1681                 */
1682                while (pkt_handle_queue(pd))
1683                        ;
1684
1685                /*
1686                 * Handle packet state machine
1687                 */
1688                pkt_handle_packets(pd);
1689
1690                /*
1691                 * Handle iosched queues
1692                 */
1693                pkt_iosched_process_queue(pd);
1694        }
1695
1696        return 0;
1697}
1698
1699static void pkt_print_settings(struct pktcdvd_device *pd)
1700{
1701        printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1702        printk("%u blocks, ", pd->settings.size >> 2);
1703        printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1704}
1705
1706static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1707{
1708        memset(cgc->cmd, 0, sizeof(cgc->cmd));
1709
1710        cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1711        cgc->cmd[2] = page_code | (page_control << 6);
1712        cgc->cmd[7] = cgc->buflen >> 8;
1713        cgc->cmd[8] = cgc->buflen & 0xff;
1714        cgc->data_direction = CGC_DATA_READ;
1715        return pkt_generic_packet(pd, cgc);
1716}
1717
1718static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1719{
1720        memset(cgc->cmd, 0, sizeof(cgc->cmd));
1721        memset(cgc->buffer, 0, 2);
1722        cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1723        cgc->cmd[1] = 0x10;             /* PF */
1724        cgc->cmd[7] = cgc->buflen >> 8;
1725        cgc->cmd[8] = cgc->buflen & 0xff;
1726        cgc->data_direction = CGC_DATA_WRITE;
1727        return pkt_generic_packet(pd, cgc);
1728}
1729
1730static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1731{
1732        struct packet_command cgc;
1733        int ret;
1734
1735        /* set up command and get the disc info */
1736        init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1737        cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1738        cgc.cmd[8] = cgc.buflen = 2;
1739        cgc.quiet = 1;
1740
1741        if ((ret = pkt_generic_packet(pd, &cgc)))
1742                return ret;
1743
1744        /* not all drives have the same disc_info length, so requeue
1745         * packet with the length the drive tells us it can supply
1746         */
1747        cgc.buflen = be16_to_cpu(di->disc_information_length) +
1748                     sizeof(di->disc_information_length);
1749
1750        if (cgc.buflen > sizeof(disc_information))
1751                cgc.buflen = sizeof(disc_information);
1752
1753        cgc.cmd[8] = cgc.buflen;
1754        return pkt_generic_packet(pd, &cgc);
1755}
1756
1757static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1758{
1759        struct packet_command cgc;
1760        int ret;
1761
1762        init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1763        cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1764        cgc.cmd[1] = type & 3;
1765        cgc.cmd[4] = (track & 0xff00) >> 8;
1766        cgc.cmd[5] = track & 0xff;
1767        cgc.cmd[8] = 8;
1768        cgc.quiet = 1;
1769
1770        if ((ret = pkt_generic_packet(pd, &cgc)))
1771                return ret;
1772
1773        cgc.buflen = be16_to_cpu(ti->track_information_length) +
1774                     sizeof(ti->track_information_length);
1775
1776        if (cgc.buflen > sizeof(track_information))
1777                cgc.buflen = sizeof(track_information);
1778
1779        cgc.cmd[8] = cgc.buflen;
1780        return pkt_generic_packet(pd, &cgc);
1781}
1782
1783static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1784                                                long *last_written)
1785{
1786        disc_information di;
1787        track_information ti;
1788        __u32 last_track;
1789        int ret = -1;
1790
1791        if ((ret = pkt_get_disc_info(pd, &di)))
1792                return ret;
1793
1794        last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1795        if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1796                return ret;
1797
1798        /* if this track is blank, try the previous. */
1799        if (ti.blank) {
1800                last_track--;
1801                if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1802                        return ret;
1803        }
1804
1805        /* if last recorded field is valid, return it. */
1806        if (ti.lra_v) {
1807                *last_written = be32_to_cpu(ti.last_rec_address);
1808        } else {
1809                /* make it up instead */
1810                *last_written = be32_to_cpu(ti.track_start) +
1811                                be32_to_cpu(ti.track_size);
1812                if (ti.free_blocks)
1813                        *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1814        }
1815        return 0;
1816}
1817
1818/*
1819 * write mode select package based on pd->settings
1820 */
1821static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1822{
1823        struct packet_command cgc;
1824        struct request_sense sense;
1825        write_param_page *wp;
1826        char buffer[128];
1827        int ret, size;
1828
1829        /* doesn't apply to DVD+RW or DVD-RAM */
1830        if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1831                return 0;
1832
1833        memset(buffer, 0, sizeof(buffer));
1834        init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1835        cgc.sense = &sense;
1836        if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1837                pkt_dump_sense(&cgc);
1838                return ret;
1839        }
1840
1841        size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1842        pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1843        if (size > sizeof(buffer))
1844                size = sizeof(buffer);
1845
1846        /*
1847         * now get it all
1848         */
1849        init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1850        cgc.sense = &sense;
1851        if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1852                pkt_dump_sense(&cgc);
1853                return ret;
1854        }
1855
1856        /*
1857         * write page is offset header + block descriptor length
1858         */
1859        wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1860
1861        wp->fp = pd->settings.fp;
1862        wp->track_mode = pd->settings.track_mode;
1863        wp->write_type = pd->settings.write_type;
1864        wp->data_block_type = pd->settings.block_mode;
1865
1866        wp->multi_session = 0;
1867
1868#ifdef PACKET_USE_LS
1869        wp->link_size = 7;
1870        wp->ls_v = 1;
1871#endif
1872
1873        if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1874                wp->session_format = 0;
1875                wp->subhdr2 = 0x20;
1876        } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1877                wp->session_format = 0x20;
1878                wp->subhdr2 = 8;
1879#if 0
1880                wp->mcn[0] = 0x80;
1881                memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1882#endif
1883        } else {
1884                /*
1885                 * paranoia
1886                 */
1887                printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1888                return 1;
1889        }
1890        wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1891
1892        cgc.buflen = cgc.cmd[8] = size;
1893        if ((ret = pkt_mode_select(pd, &cgc))) {
1894                pkt_dump_sense(&cgc);
1895                return ret;
1896        }
1897
1898        pkt_print_settings(pd);
1899        return 0;
1900}
1901
1902/*
1903 * 1 -- we can write to this track, 0 -- we can't
1904 */
1905static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1906{
1907        switch (pd->mmc3_profile) {
1908                case 0x1a: /* DVD+RW */
1909                case 0x12: /* DVD-RAM */
1910                        /* The track is always writable on DVD+RW/DVD-RAM */
1911                        return 1;
1912                default:
1913                        break;
1914        }
1915
1916        if (!ti->packet || !ti->fp)
1917                return 0;
1918
1919        /*
1920         * "good" settings as per Mt Fuji.
1921         */
1922        if (ti->rt == 0 && ti->blank == 0)
1923                return 1;
1924
1925        if (ti->rt == 0 && ti->blank == 1)
1926                return 1;
1927
1928        if (ti->rt == 1 && ti->blank == 0)
1929                return 1;
1930
1931        printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1932        return 0;
1933}
1934
1935/*
1936 * 1 -- we can write to this disc, 0 -- we can't
1937 */
1938static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1939{
1940        switch (pd->mmc3_profile) {
1941                case 0x0a: /* CD-RW */
1942                case 0xffff: /* MMC3 not supported */
1943                        break;
1944                case 0x1a: /* DVD+RW */
1945                case 0x13: /* DVD-RW */
1946                case 0x12: /* DVD-RAM */
1947                        return 1;
1948                default:
1949                        VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1950                        return 0;
1951        }
1952
1953        /*
1954         * for disc type 0xff we should probably reserve a new track.
1955         * but i'm not sure, should we leave this to user apps? probably.
1956         */
1957        if (di->disc_type == 0xff) {
1958                printk(DRIVER_NAME": Unknown disc. No track?\n");
1959                return 0;
1960        }
1961
1962        if (di->disc_type != 0x20 && di->disc_type != 0) {
1963                printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1964                return 0;
1965        }
1966
1967        if (di->erasable == 0) {
1968                printk(DRIVER_NAME": Disc not erasable\n");
1969                return 0;
1970        }
1971
1972        if (di->border_status == PACKET_SESSION_RESERVED) {
1973                printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1974                return 0;
1975        }
1976
1977        return 1;
1978}
1979
1980static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1981{
1982        struct packet_command cgc;
1983        unsigned char buf[12];
1984        disc_information di;
1985        track_information ti;
1986        int ret, track;
1987
1988        init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1989        cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1990        cgc.cmd[8] = 8;
1991        ret = pkt_generic_packet(pd, &cgc);
1992        pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1993
1994        memset(&di, 0, sizeof(disc_information));
1995        memset(&ti, 0, sizeof(track_information));
1996
1997        if ((ret = pkt_get_disc_info(pd, &di))) {
1998                printk("failed get_disc\n");
1999                return ret;
2000        }
2001
2002        if (!pkt_writable_disc(pd, &di))
2003                return -EROFS;
2004
2005        pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
2006
2007        track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
2008        if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
2009                printk(DRIVER_NAME": failed get_track\n");
2010                return ret;
2011        }
2012
2013        if (!pkt_writable_track(pd, &ti)) {
2014                printk(DRIVER_NAME": can't write to this track\n");
2015                return -EROFS;
2016        }
2017
2018        /*
2019         * we keep packet size in 512 byte units, makes it easier to
2020         * deal with request calculations.
2021         */
2022        pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
2023        if (pd->settings.size == 0) {
2024                printk(DRIVER_NAME": detected zero packet size!\n");
2025                return -ENXIO;
2026        }
2027        if (pd->settings.size > PACKET_MAX_SECTORS) {
2028                printk(DRIVER_NAME": packet size is too big\n");
2029                return -EROFS;
2030        }
2031        pd->settings.fp = ti.fp;
2032        pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
2033
2034        if (ti.nwa_v) {
2035                pd->nwa = be32_to_cpu(ti.next_writable);
2036                set_bit(PACKET_NWA_VALID, &pd->flags);
2037        }
2038
2039        /*
2040         * in theory we could use lra on -RW media as well and just zero
2041         * blocks that haven't been written yet, but in practice that
2042         * is just a no-go. we'll use that for -R, naturally.
2043         */
2044        if (ti.lra_v) {
2045                pd->lra = be32_to_cpu(ti.last_rec_address);
2046                set_bit(PACKET_LRA_VALID, &pd->flags);
2047        } else {
2048                pd->lra = 0xffffffff;
2049                set_bit(PACKET_LRA_VALID, &pd->flags);
2050        }
2051
2052        /*
2053         * fine for now
2054         */
2055        pd->settings.link_loss = 7;
2056        pd->settings.write_type = 0;    /* packet */
2057        pd->settings.track_mode = ti.track_mode;
2058
2059        /*
2060         * mode1 or mode2 disc
2061         */
2062        switch (ti.data_mode) {
2063                case PACKET_MODE1:
2064                        pd->settings.block_mode = PACKET_BLOCK_MODE1;
2065                        break;
2066                case PACKET_MODE2:
2067                        pd->settings.block_mode = PACKET_BLOCK_MODE2;
2068                        break;
2069                default:
2070                        printk(DRIVER_NAME": unknown data mode\n");
2071                        return -EROFS;
2072        }
2073        return 0;
2074}
2075
2076/*
2077 * enable/disable write caching on drive
2078 */
2079static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2080                                                int set)
2081{
2082        struct packet_command cgc;
2083        struct request_sense sense;
2084        unsigned char buf[64];
2085        int ret;
2086
2087        init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2088        cgc.sense = &sense;
2089        cgc.buflen = pd->mode_offset + 12;
2090
2091        /*
2092         * caching mode page might not be there, so quiet this command
2093         */
2094        cgc.quiet = 1;
2095
2096        if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2097                return ret;
2098
2099        buf[pd->mode_offset + 10] |= (!!set << 2);
2100
2101        cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2102        ret = pkt_mode_select(pd, &cgc);
2103        if (ret) {
2104                printk(DRIVER_NAME": write caching control failed\n");
2105                pkt_dump_sense(&cgc);
2106        } else if (!ret && set)
2107                printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2108        return ret;
2109}
2110
2111static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2112{
2113        struct packet_command cgc;
2114
2115        init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2116        cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2117        cgc.cmd[4] = lockflag ? 1 : 0;
2118        return pkt_generic_packet(pd, &cgc);
2119}
2120
2121/*
2122 * Returns drive maximum write speed
2123 */
2124static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2125                                                unsigned *write_speed)
2126{
2127        struct packet_command cgc;
2128        struct request_sense sense;
2129        unsigned char buf[256+18];
2130        unsigned char *cap_buf;
2131        int ret, offset;
2132
2133        cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2134        init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2135        cgc.sense = &sense;
2136
2137        ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2138        if (ret) {
2139                cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2140                             sizeof(struct mode_page_header);
2141                ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2142                if (ret) {
2143                        pkt_dump_sense(&cgc);
2144                        return ret;
2145                }
2146        }
2147
2148        offset = 20;                        /* Obsoleted field, used by older drives */
2149        if (cap_buf[1] >= 28)
2150                offset = 28;                /* Current write speed selected */
2151        if (cap_buf[1] >= 30) {
2152                /* If the drive reports at least one "Logical Unit Write
2153                 * Speed Performance Descriptor Block", use the information
2154                 * in the first block. (contains the highest speed)
2155                 */
2156                int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2157                if (num_spdb > 0)
2158                        offset = 34;
2159        }
2160
2161        *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2162        return 0;
2163}
2164
2165/* These tables from cdrecord - I don't have orange book */
2166/* standard speed CD-RW (1-4x) */
2167static char clv_to_speed[16] = {
2168        /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2169           0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2170};
2171/* high speed CD-RW (-10x) */
2172static char hs_clv_to_speed[16] = {
2173        /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2174           0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2175};
2176/* ultra high speed CD-RW */
2177static char us_clv_to_speed[16] = {
2178        /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2179           0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2180};
2181
2182/*
2183 * reads the maximum media speed from ATIP
2184 */
2185static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2186                                                unsigned *speed)
2187{
2188        struct packet_command cgc;
2189        struct request_sense sense;
2190        unsigned char buf[64];
2191        unsigned int size, st, sp;
2192        int ret;
2193
2194        init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2195        cgc.sense = &sense;
2196        cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2197        cgc.cmd[1] = 2;
2198        cgc.cmd[2] = 4; /* READ ATIP */
2199        cgc.cmd[8] = 2;
2200        ret = pkt_generic_packet(pd, &cgc);
2201        if (ret) {
2202                pkt_dump_sense(&cgc);
2203                return ret;
2204        }
2205        size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2206        if (size > sizeof(buf))
2207                size = sizeof(buf);
2208
2209        init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2210        cgc.sense = &sense;
2211        cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2212        cgc.cmd[1] = 2;
2213        cgc.cmd[2] = 4;
2214        cgc.cmd[8] = size;
2215        ret = pkt_generic_packet(pd, &cgc);
2216        if (ret) {
2217                pkt_dump_sense(&cgc);
2218                return ret;
2219        }
2220
2221        if (!(buf[6] & 0x40)) {
2222                printk(DRIVER_NAME": Disc type is not CD-RW\n");
2223                return 1;
2224        }
2225        if (!(buf[6] & 0x4)) {
2226                printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2227                return 1;
2228        }
2229
2230        st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2231
2232        sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2233
2234        /* Info from cdrecord */
2235        switch (st) {
2236                case 0: /* standard speed */
2237                        *speed = clv_to_speed[sp];
2238                        break;
2239                case 1: /* high speed */
2240                        *speed = hs_clv_to_speed[sp];
2241                        break;
2242                case 2: /* ultra high speed */
2243                        *speed = us_clv_to_speed[sp];
2244                        break;
2245                default:
2246                        printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2247                        return 1;
2248        }
2249        if (*speed) {
2250                printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2251                return 0;
2252        } else {
2253                printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2254                return 1;
2255        }
2256}
2257
2258static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2259{
2260        struct packet_command cgc;
2261        struct request_sense sense;
2262        int ret;
2263
2264        VPRINTK(DRIVER_NAME": Performing OPC\n");
2265
2266        init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2267        cgc.sense = &sense;
2268        cgc.timeout = 60*HZ;
2269        cgc.cmd[0] = GPCMD_SEND_OPC;
2270        cgc.cmd[1] = 1;
2271        if ((ret = pkt_generic_packet(pd, &cgc)))
2272                pkt_dump_sense(&cgc);
2273        return ret;
2274}
2275
2276static int pkt_open_write(struct pktcdvd_device *pd)
2277{
2278        int ret;
2279        unsigned int write_speed, media_write_speed, read_speed;
2280
2281        if ((ret = pkt_probe_settings(pd))) {
2282                VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2283                return ret;
2284        }
2285
2286        if ((ret = pkt_set_write_settings(pd))) {
2287                DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2288                return -EIO;
2289        }
2290
2291        pkt_write_caching(pd, USE_WCACHING);
2292
2293        if ((ret = pkt_get_max_speed(pd, &write_speed)))
2294                write_speed = 16 * 177;
2295        switch (pd->mmc3_profile) {
2296                case 0x13: /* DVD-RW */
2297                case 0x1a: /* DVD+RW */
2298                case 0x12: /* DVD-RAM */
2299                        DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2300                        break;
2301                default:
2302                        if ((ret = pkt_media_speed(pd, &media_write_speed)))
2303                                media_write_speed = 16;
2304                        write_speed = min(write_speed, media_write_speed * 177);
2305                        DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2306                        break;
2307        }
2308        read_speed = write_speed;
2309
2310        if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2311                DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2312                return -EIO;
2313        }
2314        pd->write_speed = write_speed;
2315        pd->read_speed = read_speed;
2316
2317        if ((ret = pkt_perform_opc(pd))) {
2318                DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2319        }
2320
2321        return 0;
2322}
2323
2324/*
2325 * called at open time.
2326 */
2327static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2328{
2329        int ret;
2330        long lba;
2331        struct request_queue *q;
2332
2333        /*
2334         * We need to re-open the cdrom device without O_NONBLOCK to be able
2335         * to read/write from/to it. It is already opened in O_NONBLOCK mode
2336         * so bdget() can't fail.
2337         */
2338        bdget(pd->bdev->bd_dev);
2339        if ((ret = blkdev_get(pd->bdev, FMODE_READ)))
2340                goto out;
2341
2342        if ((ret = bd_claim(pd->bdev, pd)))
2343                goto out_putdev;
2344
2345        if ((ret = pkt_get_last_written(pd, &lba))) {
2346                printk(DRIVER_NAME": pkt_get_last_written failed\n");
2347                goto out_unclaim;
2348        }
2349
2350        set_capacity(pd->disk, lba << 2);
2351        set_capacity(pd->bdev->bd_disk, lba << 2);
2352        bd_set_size(pd->bdev, (loff_t)lba << 11);
2353
2354        q = bdev_get_queue(pd->bdev);
2355        if (write) {
2356                if ((ret = pkt_open_write(pd)))
2357                        goto out_unclaim;
2358                /*
2359                 * Some CDRW drives can not handle writes larger than one packet,
2360                 * even if the size is a multiple of the packet size.
2361                 */
2362                spin_lock_irq(q->queue_lock);
2363                blk_queue_max_sectors(q, pd->settings.size);
2364                spin_unlock_irq(q->queue_lock);
2365                set_bit(PACKET_WRITABLE, &pd->flags);
2366        } else {
2367                pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2368                clear_bit(PACKET_WRITABLE, &pd->flags);
2369        }
2370
2371        if ((ret = pkt_set_segment_merging(pd, q)))
2372                goto out_unclaim;
2373
2374        if (write) {
2375                if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2376                        printk(DRIVER_NAME": not enough memory for buffers\n");
2377                        ret = -ENOMEM;
2378                        goto out_unclaim;
2379                }
2380                printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2381        }
2382
2383        return 0;
2384
2385out_unclaim:
2386        bd_release(pd->bdev);
2387out_putdev:
2388        blkdev_put(pd->bdev, FMODE_READ);
2389out:
2390        return ret;
2391}
2392
2393/*
2394 * called when the device is closed. makes sure that the device flushes
2395 * the internal cache before we close.
2396 */
2397static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2398{
2399        if (flush && pkt_flush_cache(pd))
2400                DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2401
2402        pkt_lock_door(pd, 0);
2403
2404        pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2405        bd_release(pd->bdev);
2406        blkdev_put(pd->bdev, FMODE_READ);
2407
2408        pkt_shrink_pktlist(pd);
2409}
2410
2411static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2412{
2413        if (dev_minor >= MAX_WRITERS)
2414                return NULL;
2415        return pkt_devs[dev_minor];
2416}
2417
2418static int pkt_open(struct block_device *bdev, fmode_t mode)
2419{
2420        struct pktcdvd_device *pd = NULL;
2421        int ret;
2422
2423        VPRINTK(DRIVER_NAME": entering open\n");
2424
2425        mutex_lock(&ctl_mutex);
2426        pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2427        if (!pd) {
2428                ret = -ENODEV;
2429                goto out;
2430        }
2431        BUG_ON(pd->refcnt < 0);
2432
2433        pd->refcnt++;
2434        if (pd->refcnt > 1) {
2435                if ((mode & FMODE_WRITE) &&
2436                    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2437                        ret = -EBUSY;
2438                        goto out_dec;
2439                }
2440        } else {
2441                ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2442                if (ret)
2443                        goto out_dec;
2444                /*
2445                 * needed here as well, since ext2 (among others) may change
2446                 * the blocksize at mount time
2447                 */
2448                set_blocksize(bdev, CD_FRAMESIZE);
2449        }
2450
2451        mutex_unlock(&ctl_mutex);
2452        return 0;
2453
2454out_dec:
2455        pd->refcnt--;
2456out:
2457        VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2458        mutex_unlock(&ctl_mutex);
2459        return ret;
2460}
2461
2462static int pkt_close(struct gendisk *disk, fmode_t mode)
2463{
2464        struct pktcdvd_device *pd = disk->private_data;
2465        int ret = 0;
2466
2467        mutex_lock(&ctl_mutex);
2468        pd->refcnt--;
2469        BUG_ON(pd->refcnt < 0);
2470        if (pd->refcnt == 0) {
2471                int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2472                pkt_release_dev(pd, flush);
2473        }
2474        mutex_unlock(&ctl_mutex);
2475        return ret;
2476}
2477
2478
2479static void pkt_end_io_read_cloned(struct bio *bio, int err)
2480{
2481        struct packet_stacked_data *psd = bio->bi_private;
2482        struct pktcdvd_device *pd = psd->pd;
2483
2484        bio_put(bio);
2485        bio_endio(psd->bio, err);
2486        mempool_free(psd, psd_pool);
2487        pkt_bio_finished(pd);
2488}
2489
2490static int pkt_make_request(struct request_queue *q, struct bio *bio)
2491{
2492        struct pktcdvd_device *pd;
2493        char b[BDEVNAME_SIZE];
2494        sector_t zone;
2495        struct packet_data *pkt;
2496        int was_empty, blocked_bio;
2497        struct pkt_rb_node *node;
2498
2499        pd = q->queuedata;
2500        if (!pd) {
2501                printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2502                goto end_io;
2503        }
2504
2505        /*
2506         * Clone READ bios so we can have our own bi_end_io callback.
2507         */
2508        if (bio_data_dir(bio) == READ) {
2509                struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2510                struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2511
2512                psd->pd = pd;
2513                psd->bio = bio;
2514                cloned_bio->bi_bdev = pd->bdev;
2515                cloned_bio->bi_private = psd;
2516                cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2517                pd->stats.secs_r += bio->bi_size >> 9;
2518                pkt_queue_bio(pd, cloned_bio);
2519                return 0;
2520        }
2521
2522        if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2523                printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2524                        pd->name, (unsigned long long)bio->bi_sector);
2525                goto end_io;
2526        }
2527
2528        if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2529                printk(DRIVER_NAME": wrong bio size\n");
2530                goto end_io;
2531        }
2532
2533        blk_queue_bounce(q, &bio);
2534
2535        zone = ZONE(bio->bi_sector, pd);
2536        VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2537                (unsigned long long)bio->bi_sector,
2538                (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2539
2540        /* Check if we have to split the bio */
2541        {
2542                struct bio_pair *bp;
2543                sector_t last_zone;
2544                int first_sectors;
2545
2546                last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2547                if (last_zone != zone) {
2548                        BUG_ON(last_zone != zone + pd->settings.size);
2549                        first_sectors = last_zone - bio->bi_sector;
2550                        bp = bio_split(bio, first_sectors);
2551                        BUG_ON(!bp);
2552                        pkt_make_request(q, &bp->bio1);
2553                        pkt_make_request(q, &bp->bio2);
2554                        bio_pair_release(bp);
2555                        return 0;
2556                }
2557        }
2558
2559        /*
2560         * If we find a matching packet in state WAITING or READ_WAIT, we can
2561         * just append this bio to that packet.
2562         */
2563        spin_lock(&pd->cdrw.active_list_lock);
2564        blocked_bio = 0;
2565        list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2566                if (pkt->sector == zone) {
2567                        spin_lock(&pkt->lock);
2568                        if ((pkt->state == PACKET_WAITING_STATE) ||
2569                            (pkt->state == PACKET_READ_WAIT_STATE)) {
2570                                pkt_add_list_last(bio, &pkt->orig_bios,
2571                                                  &pkt->orig_bios_tail);
2572                                pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2573                                if ((pkt->write_size >= pkt->frames) &&
2574                                    (pkt->state == PACKET_WAITING_STATE)) {
2575                                        atomic_inc(&pkt->run_sm);
2576                                        wake_up(&pd->wqueue);
2577                                }
2578                                spin_unlock(&pkt->lock);
2579                                spin_unlock(&pd->cdrw.active_list_lock);
2580                                return 0;
2581                        } else {
2582                                blocked_bio = 1;
2583                        }
2584                        spin_unlock(&pkt->lock);
2585                }
2586        }
2587        spin_unlock(&pd->cdrw.active_list_lock);
2588
2589        /*
2590         * Test if there is enough room left in the bio work queue
2591         * (queue size >= congestion on mark).
2592         * If not, wait till the work queue size is below the congestion off mark.
2593         */
2594        spin_lock(&pd->lock);
2595        if (pd->write_congestion_on > 0
2596            && pd->bio_queue_size >= pd->write_congestion_on) {
2597                set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2598                do {
2599                        spin_unlock(&pd->lock);
2600                        congestion_wait(BLK_RW_ASYNC, HZ);
2601                        spin_lock(&pd->lock);
2602                } while(pd->bio_queue_size > pd->write_congestion_off);
2603        }
2604        spin_unlock(&pd->lock);
2605
2606        /*
2607         * No matching packet found. Store the bio in the work queue.
2608         */
2609        node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2610        node->bio = bio;
2611        spin_lock(&pd->lock);
2612        BUG_ON(pd->bio_queue_size < 0);
2613        was_empty = (pd->bio_queue_size == 0);
2614        pkt_rbtree_insert(pd, node);
2615        spin_unlock(&pd->lock);
2616
2617        /*
2618         * Wake up the worker thread.
2619         */
2620        atomic_set(&pd->scan_queue, 1);
2621        if (was_empty) {
2622                /* This wake_up is required for correct operation */
2623                wake_up(&pd->wqueue);
2624        } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2625                /*
2626                 * This wake up is not required for correct operation,
2627                 * but improves performance in some cases.
2628                 */
2629                wake_up(&pd->wqueue);
2630        }
2631        return 0;
2632end_io:
2633        bio_io_error(bio);
2634        return 0;
2635}
2636
2637
2638
2639static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2640                          struct bio_vec *bvec)
2641{
2642        struct pktcdvd_device *pd = q->queuedata;
2643        sector_t zone = ZONE(bmd->bi_sector, pd);
2644        int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2645        int remaining = (pd->settings.size << 9) - used;
2646        int remaining2;
2647
2648        /*
2649         * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2650         * boundary, pkt_make_request() will split the bio.
2651         */
2652        remaining2 = PAGE_SIZE - bmd->bi_size;
2653        remaining = max(remaining, remaining2);
2654
2655        BUG_ON(remaining < 0);
2656        return remaining;
2657}
2658
2659static void pkt_init_queue(struct pktcdvd_device *pd)
2660{
2661        struct request_queue *q = pd->disk->queue;
2662
2663        blk_queue_make_request(q, pkt_make_request);
2664        blk_queue_logical_block_size(q, CD_FRAMESIZE);
2665        blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2666        blk_queue_merge_bvec(q, pkt_merge_bvec);
2667        q->queuedata = pd;
2668}
2669
2670static int pkt_seq_show(struct seq_file *m, void *p)
2671{
2672        struct pktcdvd_device *pd = m->private;
2673        char *msg;
2674        char bdev_buf[BDEVNAME_SIZE];
2675        int states[PACKET_NUM_STATES];
2676
2677        seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2678                   bdevname(pd->bdev, bdev_buf));
2679
2680        seq_printf(m, "\nSettings:\n");
2681        seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2682
2683        if (pd->settings.write_type == 0)
2684                msg = "Packet";
2685        else
2686                msg = "Unknown";
2687        seq_printf(m, "\twrite type:\t\t%s\n", msg);
2688
2689        seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2690        seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2691
2692        seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2693
2694        if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2695                msg = "Mode 1";
2696        else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2697                msg = "Mode 2";
2698        else
2699                msg = "Unknown";
2700        seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2701
2702        seq_printf(m, "\nStatistics:\n");
2703        seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2704        seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2705        seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2706        seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2707        seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2708
2709        seq_printf(m, "\nMisc:\n");
2710        seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2711        seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2712        seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2713        seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2714        seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2715        seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2716
2717        seq_printf(m, "\nQueue state:\n");
2718        seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2719        seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2720        seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2721
2722        pkt_count_states(pd, states);
2723        seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2724                   states[0], states[1], states[2], states[3], states[4], states[5]);
2725
2726        seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2727                        pd->write_congestion_off,
2728                        pd->write_congestion_on);
2729        return 0;
2730}
2731
2732static int pkt_seq_open(struct inode *inode, struct file *file)
2733{
2734        return single_open(file, pkt_seq_show, PDE(inode)->data);
2735}
2736
2737static const struct file_operations pkt_proc_fops = {
2738        .open   = pkt_seq_open,
2739        .read   = seq_read,
2740        .llseek = seq_lseek,
2741        .release = single_release
2742};
2743
2744static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2745{
2746        int i;
2747        int ret = 0;
2748        char b[BDEVNAME_SIZE];
2749        struct block_device *bdev;
2750
2751        if (pd->pkt_dev == dev) {
2752                printk(DRIVER_NAME": Recursive setup not allowed\n");
2753                return -EBUSY;
2754        }
2755        for (i = 0; i < MAX_WRITERS; i++) {
2756                struct pktcdvd_device *pd2 = pkt_devs[i];
2757                if (!pd2)
2758                        continue;
2759                if (pd2->bdev->bd_dev == dev) {
2760                        printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2761                        return -EBUSY;
2762                }
2763                if (pd2->pkt_dev == dev) {
2764                        printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2765                        return -EBUSY;
2766                }
2767        }
2768
2769        bdev = bdget(dev);
2770        if (!bdev)
2771                return -ENOMEM;
2772        ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY);
2773        if (ret)
2774                return ret;
2775
2776        /* This is safe, since we have a reference from open(). */
2777        __module_get(THIS_MODULE);
2778
2779        pd->bdev = bdev;
2780        set_blocksize(bdev, CD_FRAMESIZE);
2781
2782        pkt_init_queue(pd);
2783
2784        atomic_set(&pd->cdrw.pending_bios, 0);
2785        pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2786        if (IS_ERR(pd->cdrw.thread)) {
2787                printk(DRIVER_NAME": can't start kernel thread\n");
2788                ret = -ENOMEM;
2789                goto out_mem;
2790        }
2791
2792        proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2793        DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2794        return 0;
2795
2796out_mem:
2797        blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2798        /* This is safe: open() is still holding a reference. */
2799        module_put(THIS_MODULE);
2800        return ret;
2801}
2802
2803static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2804{
2805        struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2806
2807        VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2808                MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2809
2810        switch (cmd) {
2811        case CDROMEJECT:
2812                /*
2813                 * The door gets locked when the device is opened, so we
2814                 * have to unlock it or else the eject command fails.
2815                 */
2816                if (pd->refcnt == 1)
2817                        pkt_lock_door(pd, 0);
2818                /* fallthru */
2819        /*
2820         * forward selected CDROM ioctls to CD-ROM, for UDF
2821         */
2822        case CDROMMULTISESSION:
2823        case CDROMREADTOCENTRY:
2824        case CDROM_LAST_WRITTEN:
2825        case CDROM_SEND_PACKET:
2826        case SCSI_IOCTL_SEND_COMMAND:
2827                return __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2828
2829        default:
2830                VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2831                return -ENOTTY;
2832        }
2833
2834        return 0;
2835}
2836
2837static int pkt_media_changed(struct gendisk *disk)
2838{
2839        struct pktcdvd_device *pd = disk->private_data;
2840        struct gendisk *attached_disk;
2841
2842        if (!pd)
2843                return 0;
2844        if (!pd->bdev)
2845                return 0;
2846        attached_disk = pd->bdev->bd_disk;
2847        if (!attached_disk)
2848                return 0;
2849        return attached_disk->fops->media_changed(attached_disk);
2850}
2851
2852static const struct block_device_operations pktcdvd_ops = {
2853        .owner =                THIS_MODULE,
2854        .open =                 pkt_open,
2855        .release =              pkt_close,
2856        .locked_ioctl =         pkt_ioctl,
2857        .media_changed =        pkt_media_changed,
2858};
2859
2860static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2861{
2862        return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2863}
2864
2865/*
2866 * Set up mapping from pktcdvd device to CD-ROM device.
2867 */
2868static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2869{
2870        int idx;
2871        int ret = -ENOMEM;
2872        struct pktcdvd_device *pd;
2873        struct gendisk *disk;
2874
2875        mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2876
2877        for (idx = 0; idx < MAX_WRITERS; idx++)
2878                if (!pkt_devs[idx])
2879                        break;
2880        if (idx == MAX_WRITERS) {
2881                printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2882                ret = -EBUSY;
2883                goto out_mutex;
2884        }
2885
2886        pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2887        if (!pd)
2888                goto out_mutex;
2889
2890        pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2891                                                  sizeof(struct pkt_rb_node));
2892        if (!pd->rb_pool)
2893                goto out_mem;
2894
2895        INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2896        INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2897        spin_lock_init(&pd->cdrw.active_list_lock);
2898
2899        spin_lock_init(&pd->lock);
2900        spin_lock_init(&pd->iosched.lock);
2901        sprintf(pd->name, DRIVER_NAME"%d", idx);
2902        init_waitqueue_head(&pd->wqueue);
2903        pd->bio_queue = RB_ROOT;
2904
2905        pd->write_congestion_on  = write_congestion_on;
2906        pd->write_congestion_off = write_congestion_off;
2907
2908        disk = alloc_disk(1);
2909        if (!disk)
2910                goto out_mem;
2911        pd->disk = disk;
2912        disk->major = pktdev_major;
2913        disk->first_minor = idx;
2914        disk->fops = &pktcdvd_ops;
2915        disk->flags = GENHD_FL_REMOVABLE;
2916        strcpy(disk->disk_name, pd->name);
2917        disk->devnode = pktcdvd_devnode;
2918        disk->private_data = pd;
2919        disk->queue = blk_alloc_queue(GFP_KERNEL);
2920        if (!disk->queue)
2921                goto out_mem2;
2922
2923        pd->pkt_dev = MKDEV(pktdev_major, idx);
2924        ret = pkt_new_dev(pd, dev);
2925        if (ret)
2926                goto out_new_dev;
2927
2928        add_disk(disk);
2929
2930        pkt_sysfs_dev_new(pd);
2931        pkt_debugfs_dev_new(pd);
2932
2933        pkt_devs[idx] = pd;
2934        if (pkt_dev)
2935                *pkt_dev = pd->pkt_dev;
2936
2937        mutex_unlock(&ctl_mutex);
2938        return 0;
2939
2940out_new_dev:
2941        blk_cleanup_queue(disk->queue);
2942out_mem2:
2943        put_disk(disk);
2944out_mem:
2945        if (pd->rb_pool)
2946                mempool_destroy(pd->rb_pool);
2947        kfree(pd);
2948out_mutex:
2949        mutex_unlock(&ctl_mutex);
2950        printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2951        return ret;
2952}
2953
2954/*
2955 * Tear down mapping from pktcdvd device to CD-ROM device.
2956 */
2957static int pkt_remove_dev(dev_t pkt_dev)
2958{
2959        struct pktcdvd_device *pd;
2960        int idx;
2961        int ret = 0;
2962
2963        mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2964
2965        for (idx = 0; idx < MAX_WRITERS; idx++) {
2966                pd = pkt_devs[idx];
2967                if (pd && (pd->pkt_dev == pkt_dev))
2968                        break;
2969        }
2970        if (idx == MAX_WRITERS) {
2971                DPRINTK(DRIVER_NAME": dev not setup\n");
2972                ret = -ENXIO;
2973                goto out;
2974        }
2975
2976        if (pd->refcnt > 0) {
2977                ret = -EBUSY;
2978                goto out;
2979        }
2980        if (!IS_ERR(pd->cdrw.thread))
2981                kthread_stop(pd->cdrw.thread);
2982
2983        pkt_devs[idx] = NULL;
2984
2985        pkt_debugfs_dev_remove(pd);
2986        pkt_sysfs_dev_remove(pd);
2987
2988        blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2989
2990        remove_proc_entry(pd->name, pkt_proc);
2991        DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2992
2993        del_gendisk(pd->disk);
2994        blk_cleanup_queue(pd->disk->queue);
2995        put_disk(pd->disk);
2996
2997        mempool_destroy(pd->rb_pool);
2998        kfree(pd);
2999
3000        /* This is safe: open() is still holding a reference. */
3001        module_put(THIS_MODULE);
3002
3003out:
3004        mutex_unlock(&ctl_mutex);
3005        return ret;
3006}
3007
3008static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
3009{
3010        struct pktcdvd_device *pd;
3011
3012        mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3013
3014        pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
3015        if (pd) {
3016                ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
3017                ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
3018        } else {
3019                ctrl_cmd->dev = 0;
3020                ctrl_cmd->pkt_dev = 0;
3021        }
3022        ctrl_cmd->num_devices = MAX_WRITERS;
3023
3024        mutex_unlock(&ctl_mutex);
3025}
3026
3027static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
3028{
3029        void __user *argp = (void __user *)arg;
3030        struct pkt_ctrl_command ctrl_cmd;
3031        int ret = 0;
3032        dev_t pkt_dev = 0;
3033
3034        if (cmd != PACKET_CTRL_CMD)
3035                return -ENOTTY;
3036
3037        if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3038                return -EFAULT;
3039
3040        switch (ctrl_cmd.command) {
3041        case PKT_CTRL_CMD_SETUP:
3042                if (!capable(CAP_SYS_ADMIN))
3043                        return -EPERM;
3044                ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3045                ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3046                break;
3047        case PKT_CTRL_CMD_TEARDOWN:
3048                if (!capable(CAP_SYS_ADMIN))
3049                        return -EPERM;
3050                ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3051                break;
3052        case PKT_CTRL_CMD_STATUS:
3053                pkt_get_status(&ctrl_cmd);
3054                break;
3055        default:
3056                return -ENOTTY;
3057        }
3058
3059        if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3060                return -EFAULT;
3061        return ret;
3062}
3063
3064
3065static const struct file_operations pkt_ctl_fops = {
3066        .ioctl   = pkt_ctl_ioctl,
3067        .owner   = THIS_MODULE,
3068};
3069
3070static struct miscdevice pkt_misc = {
3071        .minor          = MISC_DYNAMIC_MINOR,
3072        .name           = DRIVER_NAME,
3073        .nodename       = "pktcdvd/control",
3074        .fops           = &pkt_ctl_fops
3075};
3076
3077static int __init pkt_init(void)
3078{
3079        int ret;
3080
3081        mutex_init(&ctl_mutex);
3082
3083        psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3084                                        sizeof(struct packet_stacked_data));
3085        if (!psd_pool)
3086                return -ENOMEM;
3087
3088        ret = register_blkdev(pktdev_major, DRIVER_NAME);
3089        if (ret < 0) {
3090                printk(DRIVER_NAME": Unable to register block device\n");
3091                goto out2;
3092        }
3093        if (!pktdev_major)
3094                pktdev_major = ret;
3095
3096        ret = pkt_sysfs_init();
3097        if (ret)
3098                goto out;
3099
3100        pkt_debugfs_init();
3101
3102        ret = misc_register(&pkt_misc);
3103        if (ret) {
3104                printk(DRIVER_NAME": Unable to register misc device\n");
3105                goto out_misc;
3106        }
3107
3108        pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3109
3110        return 0;
3111
3112out_misc:
3113        pkt_debugfs_cleanup();
3114        pkt_sysfs_cleanup();
3115out:
3116        unregister_blkdev(pktdev_major, DRIVER_NAME);
3117out2:
3118        mempool_destroy(psd_pool);
3119        return ret;
3120}
3121
3122static void __exit pkt_exit(void)
3123{
3124        remove_proc_entry("driver/"DRIVER_NAME, NULL);
3125        misc_deregister(&pkt_misc);
3126
3127        pkt_debugfs_cleanup();
3128        pkt_sysfs_cleanup();
3129
3130        unregister_blkdev(pktdev_major, DRIVER_NAME);
3131        mempool_destroy(psd_pool);
3132}
3133
3134MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3135MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3136MODULE_LICENSE("GPL");
3137
3138module_init(pkt_init);
3139module_exit(pkt_exit);
3140