linux/drivers/block/umem.c
<<
>>
Prefs
   1/*
   2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
   3 *
   4 * (C) 2001 San Mehat <nettwerk@valinux.com>
   5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
   6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
   7 *
   8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
   9 * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
  10 *
  11 * This driver is released to the public under the terms of the
  12 *  GNU GENERAL PUBLIC LICENSE version 2
  13 * See the file COPYING for details.
  14 *
  15 * This driver provides a standard block device interface for Micro Memory(tm)
  16 * PCI based RAM boards.
  17 * 10/05/01: Phap Nguyen - Rebuilt the driver
  18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
  19 * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
  20 *                       - use stand disk partitioning (so fdisk works).
  21 * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
  22 *                       - incorporate into main kernel
  23 * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
  24 *                       - use spin_lock_bh instead of _irq
  25 *                       - Never block on make_request.  queue
  26 *                         bh's instead.
  27 *                       - unregister umem from devfs at mod unload
  28 *                       - Change version to 2.3
  29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
  30 * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
  31 * 15May2002:NeilBrown   - convert to bio for 2.5
  32 * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
  33 *                       - a sequence of writes that cover the card, and
  34 *                       - set initialised bit then.
  35 */
  36
  37#undef DEBUG    /* #define DEBUG if you want debugging info (pr_debug) */
  38#include <linux/fs.h>
  39#include <linux/bio.h>
  40#include <linux/kernel.h>
  41#include <linux/mm.h>
  42#include <linux/mman.h>
  43#include <linux/ioctl.h>
  44#include <linux/module.h>
  45#include <linux/init.h>
  46#include <linux/interrupt.h>
  47#include <linux/timer.h>
  48#include <linux/pci.h>
  49#include <linux/slab.h>
  50#include <linux/dma-mapping.h>
  51
  52#include <linux/fcntl.h>        /* O_ACCMODE */
  53#include <linux/hdreg.h>  /* HDIO_GETGEO */
  54
  55#include "umem.h"
  56
  57#include <asm/uaccess.h>
  58#include <asm/io.h>
  59
  60#define MM_MAXCARDS 4
  61#define MM_RAHEAD 2      /* two sectors */
  62#define MM_BLKSIZE 1024  /* 1k blocks */
  63#define MM_HARDSECT 512  /* 512-byte hardware sectors */
  64#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
  65
  66/*
  67 * Version Information
  68 */
  69
  70#define DRIVER_NAME     "umem"
  71#define DRIVER_VERSION  "v2.3"
  72#define DRIVER_AUTHOR   "San Mehat, Johannes Erdfelt, NeilBrown"
  73#define DRIVER_DESC     "Micro Memory(tm) PCI memory board block driver"
  74
  75static int debug;
  76/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
  77#define HW_TRACE(x)
  78
  79#define DEBUG_LED_ON_TRANSFER   0x01
  80#define DEBUG_BATTERY_POLLING   0x02
  81
  82module_param(debug, int, 0644);
  83MODULE_PARM_DESC(debug, "Debug bitmask");
  84
  85static int pci_read_cmd = 0x0C;         /* Read Multiple */
  86module_param(pci_read_cmd, int, 0);
  87MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
  88
  89static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
  90module_param(pci_write_cmd, int, 0);
  91MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
  92
  93static int pci_cmds;
  94
  95static int major_nr;
  96
  97#include <linux/blkdev.h>
  98#include <linux/blkpg.h>
  99
 100struct cardinfo {
 101        struct pci_dev  *dev;
 102
 103        unsigned char   __iomem *csr_remap;
 104        unsigned int    mm_size;  /* size in kbytes */
 105
 106        unsigned int    init_size; /* initial segment, in sectors,
 107                                    * that we know to
 108                                    * have been written
 109                                    */
 110        struct bio      *bio, *currentbio, **biotail;
 111        int             current_idx;
 112        sector_t        current_sector;
 113
 114        struct request_queue *queue;
 115
 116        struct mm_page {
 117                dma_addr_t              page_dma;
 118                struct mm_dma_desc      *desc;
 119                int                     cnt, headcnt;
 120                struct bio              *bio, **biotail;
 121                int                     idx;
 122        } mm_pages[2];
 123#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
 124
 125        int  Active, Ready;
 126
 127        struct tasklet_struct   tasklet;
 128        unsigned int dma_status;
 129
 130        struct {
 131                int             good;
 132                int             warned;
 133                unsigned long   last_change;
 134        } battery[2];
 135
 136        spinlock_t      lock;
 137        int             check_batteries;
 138
 139        int             flags;
 140};
 141
 142static struct cardinfo cards[MM_MAXCARDS];
 143static struct timer_list battery_timer;
 144
 145static int num_cards;
 146
 147static struct gendisk *mm_gendisk[MM_MAXCARDS];
 148
 149static void check_batteries(struct cardinfo *card);
 150
 151static int get_userbit(struct cardinfo *card, int bit)
 152{
 153        unsigned char led;
 154
 155        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 156        return led & bit;
 157}
 158
 159static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
 160{
 161        unsigned char led;
 162
 163        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 164        if (state)
 165                led |= bit;
 166        else
 167                led &= ~bit;
 168        writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 169
 170        return 0;
 171}
 172
 173/*
 174 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
 175 */
 176static void set_led(struct cardinfo *card, int shift, unsigned char state)
 177{
 178        unsigned char led;
 179
 180        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 181        if (state == LED_FLIP)
 182                led ^= (1<<shift);
 183        else {
 184                led &= ~(0x03 << shift);
 185                led |= (state << shift);
 186        }
 187        writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 188
 189}
 190
 191#ifdef MM_DIAG
 192static void dump_regs(struct cardinfo *card)
 193{
 194        unsigned char *p;
 195        int i, i1;
 196
 197        p = card->csr_remap;
 198        for (i = 0; i < 8; i++) {
 199                printk(KERN_DEBUG "%p   ", p);
 200
 201                for (i1 = 0; i1 < 16; i1++)
 202                        printk("%02x ", *p++);
 203
 204                printk("\n");
 205        }
 206}
 207#endif
 208
 209static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
 210{
 211        dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
 212        if (dmastat & DMASCR_ANY_ERR)
 213                printk(KERN_CONT "ANY_ERR ");
 214        if (dmastat & DMASCR_MBE_ERR)
 215                printk(KERN_CONT "MBE_ERR ");
 216        if (dmastat & DMASCR_PARITY_ERR_REP)
 217                printk(KERN_CONT "PARITY_ERR_REP ");
 218        if (dmastat & DMASCR_PARITY_ERR_DET)
 219                printk(KERN_CONT "PARITY_ERR_DET ");
 220        if (dmastat & DMASCR_SYSTEM_ERR_SIG)
 221                printk(KERN_CONT "SYSTEM_ERR_SIG ");
 222        if (dmastat & DMASCR_TARGET_ABT)
 223                printk(KERN_CONT "TARGET_ABT ");
 224        if (dmastat & DMASCR_MASTER_ABT)
 225                printk(KERN_CONT "MASTER_ABT ");
 226        if (dmastat & DMASCR_CHAIN_COMPLETE)
 227                printk(KERN_CONT "CHAIN_COMPLETE ");
 228        if (dmastat & DMASCR_DMA_COMPLETE)
 229                printk(KERN_CONT "DMA_COMPLETE ");
 230        printk("\n");
 231}
 232
 233/*
 234 * Theory of request handling
 235 *
 236 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
 237 * We have two pages of mm_dma_desc, holding about 64 descriptors
 238 * each.  These are allocated at init time.
 239 * One page is "Ready" and is either full, or can have request added.
 240 * The other page might be "Active", which DMA is happening on it.
 241 *
 242 * Whenever IO on the active page completes, the Ready page is activated
 243 * and the ex-Active page is clean out and made Ready.
 244 * Otherwise the Ready page is only activated when it becomes full, or
 245 * when mm_unplug_device is called via the unplug_io_fn.
 246 *
 247 * If a request arrives while both pages a full, it is queued, and b_rdev is
 248 * overloaded to record whether it was a read or a write.
 249 *
 250 * The interrupt handler only polls the device to clear the interrupt.
 251 * The processing of the result is done in a tasklet.
 252 */
 253
 254static void mm_start_io(struct cardinfo *card)
 255{
 256        /* we have the lock, we know there is
 257         * no IO active, and we know that card->Active
 258         * is set
 259         */
 260        struct mm_dma_desc *desc;
 261        struct mm_page *page;
 262        int offset;
 263
 264        /* make the last descriptor end the chain */
 265        page = &card->mm_pages[card->Active];
 266        pr_debug("start_io: %d %d->%d\n",
 267                card->Active, page->headcnt, page->cnt - 1);
 268        desc = &page->desc[page->cnt-1];
 269
 270        desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
 271        desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
 272        desc->sem_control_bits = desc->control_bits;
 273
 274
 275        if (debug & DEBUG_LED_ON_TRANSFER)
 276                set_led(card, LED_REMOVE, LED_ON);
 277
 278        desc = &page->desc[page->headcnt];
 279        writel(0, card->csr_remap + DMA_PCI_ADDR);
 280        writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
 281
 282        writel(0, card->csr_remap + DMA_LOCAL_ADDR);
 283        writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
 284
 285        writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
 286        writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
 287
 288        writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
 289        writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
 290
 291        offset = ((char *)desc) - ((char *)page->desc);
 292        writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
 293               card->csr_remap + DMA_DESCRIPTOR_ADDR);
 294        /* Force the value to u64 before shifting otherwise >> 32 is undefined C
 295         * and on some ports will do nothing ! */
 296        writel(cpu_to_le32(((u64)page->page_dma)>>32),
 297               card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
 298
 299        /* Go, go, go */
 300        writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
 301               card->csr_remap + DMA_STATUS_CTRL);
 302}
 303
 304static int add_bio(struct cardinfo *card);
 305
 306static void activate(struct cardinfo *card)
 307{
 308        /* if No page is Active, and Ready is
 309         * not empty, then switch Ready page
 310         * to active and start IO.
 311         * Then add any bh's that are available to Ready
 312         */
 313
 314        do {
 315                while (add_bio(card))
 316                        ;
 317
 318                if (card->Active == -1 &&
 319                    card->mm_pages[card->Ready].cnt > 0) {
 320                        card->Active = card->Ready;
 321                        card->Ready = 1-card->Ready;
 322                        mm_start_io(card);
 323                }
 324
 325        } while (card->Active == -1 && add_bio(card));
 326}
 327
 328static inline void reset_page(struct mm_page *page)
 329{
 330        page->cnt = 0;
 331        page->headcnt = 0;
 332        page->bio = NULL;
 333        page->biotail = &page->bio;
 334}
 335
 336static void mm_unplug_device(struct request_queue *q)
 337{
 338        struct cardinfo *card = q->queuedata;
 339        unsigned long flags;
 340
 341        spin_lock_irqsave(&card->lock, flags);
 342        if (blk_remove_plug(q))
 343                activate(card);
 344        spin_unlock_irqrestore(&card->lock, flags);
 345}
 346
 347/*
 348 * If there is room on Ready page, take
 349 * one bh off list and add it.
 350 * return 1 if there was room, else 0.
 351 */
 352static int add_bio(struct cardinfo *card)
 353{
 354        struct mm_page *p;
 355        struct mm_dma_desc *desc;
 356        dma_addr_t dma_handle;
 357        int offset;
 358        struct bio *bio;
 359        struct bio_vec *vec;
 360        int idx;
 361        int rw;
 362        int len;
 363
 364        bio = card->currentbio;
 365        if (!bio && card->bio) {
 366                card->currentbio = card->bio;
 367                card->current_idx = card->bio->bi_idx;
 368                card->current_sector = card->bio->bi_sector;
 369                card->bio = card->bio->bi_next;
 370                if (card->bio == NULL)
 371                        card->biotail = &card->bio;
 372                card->currentbio->bi_next = NULL;
 373                return 1;
 374        }
 375        if (!bio)
 376                return 0;
 377        idx = card->current_idx;
 378
 379        rw = bio_rw(bio);
 380        if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
 381                return 0;
 382
 383        vec = bio_iovec_idx(bio, idx);
 384        len = vec->bv_len;
 385        dma_handle = pci_map_page(card->dev,
 386                                  vec->bv_page,
 387                                  vec->bv_offset,
 388                                  len,
 389                                  (rw == READ) ?
 390                                  PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
 391
 392        p = &card->mm_pages[card->Ready];
 393        desc = &p->desc[p->cnt];
 394        p->cnt++;
 395        if (p->bio == NULL)
 396                p->idx = idx;
 397        if ((p->biotail) != &bio->bi_next) {
 398                *(p->biotail) = bio;
 399                p->biotail = &(bio->bi_next);
 400                bio->bi_next = NULL;
 401        }
 402
 403        desc->data_dma_handle = dma_handle;
 404
 405        desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
 406        desc->local_addr = cpu_to_le64(card->current_sector << 9);
 407        desc->transfer_size = cpu_to_le32(len);
 408        offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
 409        desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
 410        desc->zero1 = desc->zero2 = 0;
 411        offset = (((char *)(desc+1)) - ((char *)p->desc));
 412        desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
 413        desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
 414                                         DMASCR_PARITY_INT_EN|
 415                                         DMASCR_CHAIN_EN |
 416                                         DMASCR_SEM_EN |
 417                                         pci_cmds);
 418        if (rw == WRITE)
 419                desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
 420        desc->sem_control_bits = desc->control_bits;
 421
 422        card->current_sector += (len >> 9);
 423        idx++;
 424        card->current_idx = idx;
 425        if (idx >= bio->bi_vcnt)
 426                card->currentbio = NULL;
 427
 428        return 1;
 429}
 430
 431static void process_page(unsigned long data)
 432{
 433        /* check if any of the requests in the page are DMA_COMPLETE,
 434         * and deal with them appropriately.
 435         * If we find a descriptor without DMA_COMPLETE in the semaphore, then
 436         * dma must have hit an error on that descriptor, so use dma_status
 437         * instead and assume that all following descriptors must be re-tried.
 438         */
 439        struct mm_page *page;
 440        struct bio *return_bio = NULL;
 441        struct cardinfo *card = (struct cardinfo *)data;
 442        unsigned int dma_status = card->dma_status;
 443
 444        spin_lock_bh(&card->lock);
 445        if (card->Active < 0)
 446                goto out_unlock;
 447        page = &card->mm_pages[card->Active];
 448
 449        while (page->headcnt < page->cnt) {
 450                struct bio *bio = page->bio;
 451                struct mm_dma_desc *desc = &page->desc[page->headcnt];
 452                int control = le32_to_cpu(desc->sem_control_bits);
 453                int last = 0;
 454                int idx;
 455
 456                if (!(control & DMASCR_DMA_COMPLETE)) {
 457                        control = dma_status;
 458                        last = 1;
 459                }
 460                page->headcnt++;
 461                idx = page->idx;
 462                page->idx++;
 463                if (page->idx >= bio->bi_vcnt) {
 464                        page->bio = bio->bi_next;
 465                        if (page->bio)
 466                                page->idx = page->bio->bi_idx;
 467                }
 468
 469                pci_unmap_page(card->dev, desc->data_dma_handle,
 470                               bio_iovec_idx(bio, idx)->bv_len,
 471                                 (control & DMASCR_TRANSFER_READ) ?
 472                                PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
 473                if (control & DMASCR_HARD_ERROR) {
 474                        /* error */
 475                        clear_bit(BIO_UPTODATE, &bio->bi_flags);
 476                        dev_printk(KERN_WARNING, &card->dev->dev,
 477                                "I/O error on sector %d/%d\n",
 478                                le32_to_cpu(desc->local_addr)>>9,
 479                                le32_to_cpu(desc->transfer_size));
 480                        dump_dmastat(card, control);
 481                } else if (test_bit(BIO_RW, &bio->bi_rw) &&
 482                           le32_to_cpu(desc->local_addr) >> 9 ==
 483                                card->init_size) {
 484                        card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
 485                        if (card->init_size >> 1 >= card->mm_size) {
 486                                dev_printk(KERN_INFO, &card->dev->dev,
 487                                        "memory now initialised\n");
 488                                set_userbit(card, MEMORY_INITIALIZED, 1);
 489                        }
 490                }
 491                if (bio != page->bio) {
 492                        bio->bi_next = return_bio;
 493                        return_bio = bio;
 494                }
 495
 496                if (last)
 497                        break;
 498        }
 499
 500        if (debug & DEBUG_LED_ON_TRANSFER)
 501                set_led(card, LED_REMOVE, LED_OFF);
 502
 503        if (card->check_batteries) {
 504                card->check_batteries = 0;
 505                check_batteries(card);
 506        }
 507        if (page->headcnt >= page->cnt) {
 508                reset_page(page);
 509                card->Active = -1;
 510                activate(card);
 511        } else {
 512                /* haven't finished with this one yet */
 513                pr_debug("do some more\n");
 514                mm_start_io(card);
 515        }
 516 out_unlock:
 517        spin_unlock_bh(&card->lock);
 518
 519        while (return_bio) {
 520                struct bio *bio = return_bio;
 521
 522                return_bio = bio->bi_next;
 523                bio->bi_next = NULL;
 524                bio_endio(bio, 0);
 525        }
 526}
 527
 528static int mm_make_request(struct request_queue *q, struct bio *bio)
 529{
 530        struct cardinfo *card = q->queuedata;
 531        pr_debug("mm_make_request %llu %u\n",
 532                 (unsigned long long)bio->bi_sector, bio->bi_size);
 533
 534        spin_lock_irq(&card->lock);
 535        *card->biotail = bio;
 536        bio->bi_next = NULL;
 537        card->biotail = &bio->bi_next;
 538        blk_plug_device(q);
 539        spin_unlock_irq(&card->lock);
 540
 541        return 0;
 542}
 543
 544static irqreturn_t mm_interrupt(int irq, void *__card)
 545{
 546        struct cardinfo *card = (struct cardinfo *) __card;
 547        unsigned int dma_status;
 548        unsigned short cfg_status;
 549
 550HW_TRACE(0x30);
 551
 552        dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
 553
 554        if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
 555                /* interrupt wasn't for me ... */
 556                return IRQ_NONE;
 557        }
 558
 559        /* clear COMPLETION interrupts */
 560        if (card->flags & UM_FLAG_NO_BYTE_STATUS)
 561                writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
 562                       card->csr_remap + DMA_STATUS_CTRL);
 563        else
 564                writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
 565                       card->csr_remap + DMA_STATUS_CTRL + 2);
 566
 567        /* log errors and clear interrupt status */
 568        if (dma_status & DMASCR_ANY_ERR) {
 569                unsigned int    data_log1, data_log2;
 570                unsigned int    addr_log1, addr_log2;
 571                unsigned char   stat, count, syndrome, check;
 572
 573                stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
 574
 575                data_log1 = le32_to_cpu(readl(card->csr_remap +
 576                                                ERROR_DATA_LOG));
 577                data_log2 = le32_to_cpu(readl(card->csr_remap +
 578                                                ERROR_DATA_LOG + 4));
 579                addr_log1 = le32_to_cpu(readl(card->csr_remap +
 580                                                ERROR_ADDR_LOG));
 581                addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
 582
 583                count = readb(card->csr_remap + ERROR_COUNT);
 584                syndrome = readb(card->csr_remap + ERROR_SYNDROME);
 585                check = readb(card->csr_remap + ERROR_CHECK);
 586
 587                dump_dmastat(card, dma_status);
 588
 589                if (stat & 0x01)
 590                        dev_printk(KERN_ERR, &card->dev->dev,
 591                                "Memory access error detected (err count %d)\n",
 592                                count);
 593                if (stat & 0x02)
 594                        dev_printk(KERN_ERR, &card->dev->dev,
 595                                "Multi-bit EDC error\n");
 596
 597                dev_printk(KERN_ERR, &card->dev->dev,
 598                        "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
 599                        addr_log2, addr_log1, data_log2, data_log1);
 600                dev_printk(KERN_ERR, &card->dev->dev,
 601                        "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
 602                        check, syndrome);
 603
 604                writeb(0, card->csr_remap + ERROR_COUNT);
 605        }
 606
 607        if (dma_status & DMASCR_PARITY_ERR_REP) {
 608                dev_printk(KERN_ERR, &card->dev->dev,
 609                        "PARITY ERROR REPORTED\n");
 610                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 611                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 612        }
 613
 614        if (dma_status & DMASCR_PARITY_ERR_DET) {
 615                dev_printk(KERN_ERR, &card->dev->dev,
 616                        "PARITY ERROR DETECTED\n");
 617                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 618                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 619        }
 620
 621        if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
 622                dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
 623                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 624                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 625        }
 626
 627        if (dma_status & DMASCR_TARGET_ABT) {
 628                dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
 629                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 630                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 631        }
 632
 633        if (dma_status & DMASCR_MASTER_ABT) {
 634                dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
 635                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 636                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 637        }
 638
 639        /* and process the DMA descriptors */
 640        card->dma_status = dma_status;
 641        tasklet_schedule(&card->tasklet);
 642
 643HW_TRACE(0x36);
 644
 645        return IRQ_HANDLED;
 646}
 647
 648/*
 649 * If both batteries are good, no LED
 650 * If either battery has been warned, solid LED
 651 * If both batteries are bad, flash the LED quickly
 652 * If either battery is bad, flash the LED semi quickly
 653 */
 654static void set_fault_to_battery_status(struct cardinfo *card)
 655{
 656        if (card->battery[0].good && card->battery[1].good)
 657                set_led(card, LED_FAULT, LED_OFF);
 658        else if (card->battery[0].warned || card->battery[1].warned)
 659                set_led(card, LED_FAULT, LED_ON);
 660        else if (!card->battery[0].good && !card->battery[1].good)
 661                set_led(card, LED_FAULT, LED_FLASH_7_0);
 662        else
 663                set_led(card, LED_FAULT, LED_FLASH_3_5);
 664}
 665
 666static void init_battery_timer(void);
 667
 668static int check_battery(struct cardinfo *card, int battery, int status)
 669{
 670        if (status != card->battery[battery].good) {
 671                card->battery[battery].good = !card->battery[battery].good;
 672                card->battery[battery].last_change = jiffies;
 673
 674                if (card->battery[battery].good) {
 675                        dev_printk(KERN_ERR, &card->dev->dev,
 676                                "Battery %d now good\n", battery + 1);
 677                        card->battery[battery].warned = 0;
 678                } else
 679                        dev_printk(KERN_ERR, &card->dev->dev,
 680                                "Battery %d now FAILED\n", battery + 1);
 681
 682                return 1;
 683        } else if (!card->battery[battery].good &&
 684                   !card->battery[battery].warned &&
 685                   time_after_eq(jiffies, card->battery[battery].last_change +
 686                                 (HZ * 60 * 60 * 5))) {
 687                dev_printk(KERN_ERR, &card->dev->dev,
 688                        "Battery %d still FAILED after 5 hours\n", battery + 1);
 689                card->battery[battery].warned = 1;
 690
 691                return 1;
 692        }
 693
 694        return 0;
 695}
 696
 697static void check_batteries(struct cardinfo *card)
 698{
 699        /* NOTE: this must *never* be called while the card
 700         * is doing (bus-to-card) DMA, or you will need the
 701         * reset switch
 702         */
 703        unsigned char status;
 704        int ret1, ret2;
 705
 706        status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 707        if (debug & DEBUG_BATTERY_POLLING)
 708                dev_printk(KERN_DEBUG, &card->dev->dev,
 709                        "checking battery status, 1 = %s, 2 = %s\n",
 710                       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
 711                       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
 712
 713        ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
 714        ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
 715
 716        if (ret1 || ret2)
 717                set_fault_to_battery_status(card);
 718}
 719
 720static void check_all_batteries(unsigned long ptr)
 721{
 722        int i;
 723
 724        for (i = 0; i < num_cards; i++)
 725                if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
 726                        struct cardinfo *card = &cards[i];
 727                        spin_lock_bh(&card->lock);
 728                        if (card->Active >= 0)
 729                                card->check_batteries = 1;
 730                        else
 731                                check_batteries(card);
 732                        spin_unlock_bh(&card->lock);
 733                }
 734
 735        init_battery_timer();
 736}
 737
 738static void init_battery_timer(void)
 739{
 740        init_timer(&battery_timer);
 741        battery_timer.function = check_all_batteries;
 742        battery_timer.expires = jiffies + (HZ * 60);
 743        add_timer(&battery_timer);
 744}
 745
 746static void del_battery_timer(void)
 747{
 748        del_timer(&battery_timer);
 749}
 750
 751/*
 752 * Note no locks taken out here.  In a worst case scenario, we could drop
 753 * a chunk of system memory.  But that should never happen, since validation
 754 * happens at open or mount time, when locks are held.
 755 *
 756 *      That's crap, since doing that while some partitions are opened
 757 * or mounted will give you really nasty results.
 758 */
 759static int mm_revalidate(struct gendisk *disk)
 760{
 761        struct cardinfo *card = disk->private_data;
 762        set_capacity(disk, card->mm_size << 1);
 763        return 0;
 764}
 765
 766static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 767{
 768        struct cardinfo *card = bdev->bd_disk->private_data;
 769        int size = card->mm_size * (1024 / MM_HARDSECT);
 770
 771        /*
 772         * get geometry: we have to fake one...  trim the size to a
 773         * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
 774         * whatever cylinders.
 775         */
 776        geo->heads     = 64;
 777        geo->sectors   = 32;
 778        geo->cylinders = size / (geo->heads * geo->sectors);
 779        return 0;
 780}
 781
 782/*
 783 * Future support for removable devices
 784 */
 785static int mm_check_change(struct gendisk *disk)
 786{
 787/*  struct cardinfo *dev = disk->private_data; */
 788        return 0;
 789}
 790
 791static const struct block_device_operations mm_fops = {
 792        .owner          = THIS_MODULE,
 793        .getgeo         = mm_getgeo,
 794        .revalidate_disk = mm_revalidate,
 795        .media_changed  = mm_check_change,
 796};
 797
 798static int __devinit mm_pci_probe(struct pci_dev *dev,
 799                                const struct pci_device_id *id)
 800{
 801        int ret = -ENODEV;
 802        struct cardinfo *card = &cards[num_cards];
 803        unsigned char   mem_present;
 804        unsigned char   batt_status;
 805        unsigned int    saved_bar, data;
 806        unsigned long   csr_base;
 807        unsigned long   csr_len;
 808        int             magic_number;
 809        static int      printed_version;
 810
 811        if (!printed_version++)
 812                printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
 813
 814        ret = pci_enable_device(dev);
 815        if (ret)
 816                return ret;
 817
 818        pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
 819        pci_set_master(dev);
 820
 821        card->dev         = dev;
 822
 823        csr_base = pci_resource_start(dev, 0);
 824        csr_len  = pci_resource_len(dev, 0);
 825        if (!csr_base || !csr_len)
 826                return -ENODEV;
 827
 828        dev_printk(KERN_INFO, &dev->dev,
 829          "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
 830
 831        if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
 832            pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
 833                dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
 834                return  -ENOMEM;
 835        }
 836
 837        ret = pci_request_regions(dev, DRIVER_NAME);
 838        if (ret) {
 839                dev_printk(KERN_ERR, &card->dev->dev,
 840                        "Unable to request memory region\n");
 841                goto failed_req_csr;
 842        }
 843
 844        card->csr_remap = ioremap_nocache(csr_base, csr_len);
 845        if (!card->csr_remap) {
 846                dev_printk(KERN_ERR, &card->dev->dev,
 847                        "Unable to remap memory region\n");
 848                ret = -ENOMEM;
 849
 850                goto failed_remap_csr;
 851        }
 852
 853        dev_printk(KERN_INFO, &card->dev->dev,
 854                "CSR 0x%08lx -> 0x%p (0x%lx)\n",
 855               csr_base, card->csr_remap, csr_len);
 856
 857        switch (card->dev->device) {
 858        case 0x5415:
 859                card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
 860                magic_number = 0x59;
 861                break;
 862
 863        case 0x5425:
 864                card->flags |= UM_FLAG_NO_BYTE_STATUS;
 865                magic_number = 0x5C;
 866                break;
 867
 868        case 0x6155:
 869                card->flags |= UM_FLAG_NO_BYTE_STATUS |
 870                                UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
 871                magic_number = 0x99;
 872                break;
 873
 874        default:
 875                magic_number = 0x100;
 876                break;
 877        }
 878
 879        if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
 880                dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
 881                ret = -ENOMEM;
 882                goto failed_magic;
 883        }
 884
 885        card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
 886                                                PAGE_SIZE * 2,
 887                                                &card->mm_pages[0].page_dma);
 888        card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
 889                                                PAGE_SIZE * 2,
 890                                                &card->mm_pages[1].page_dma);
 891        if (card->mm_pages[0].desc == NULL ||
 892            card->mm_pages[1].desc == NULL) {
 893                dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
 894                goto failed_alloc;
 895        }
 896        reset_page(&card->mm_pages[0]);
 897        reset_page(&card->mm_pages[1]);
 898        card->Ready = 0;        /* page 0 is ready */
 899        card->Active = -1;      /* no page is active */
 900        card->bio = NULL;
 901        card->biotail = &card->bio;
 902
 903        card->queue = blk_alloc_queue(GFP_KERNEL);
 904        if (!card->queue)
 905                goto failed_alloc;
 906
 907        blk_queue_make_request(card->queue, mm_make_request);
 908        card->queue->queue_lock = &card->lock;
 909        card->queue->queuedata = card;
 910        card->queue->unplug_fn = mm_unplug_device;
 911
 912        tasklet_init(&card->tasklet, process_page, (unsigned long)card);
 913
 914        card->check_batteries = 0;
 915
 916        mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
 917        switch (mem_present) {
 918        case MEM_128_MB:
 919                card->mm_size = 1024 * 128;
 920                break;
 921        case MEM_256_MB:
 922                card->mm_size = 1024 * 256;
 923                break;
 924        case MEM_512_MB:
 925                card->mm_size = 1024 * 512;
 926                break;
 927        case MEM_1_GB:
 928                card->mm_size = 1024 * 1024;
 929                break;
 930        case MEM_2_GB:
 931                card->mm_size = 1024 * 2048;
 932                break;
 933        default:
 934                card->mm_size = 0;
 935                break;
 936        }
 937
 938        /* Clear the LED's we control */
 939        set_led(card, LED_REMOVE, LED_OFF);
 940        set_led(card, LED_FAULT, LED_OFF);
 941
 942        batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 943
 944        card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
 945        card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
 946        card->battery[0].last_change = card->battery[1].last_change = jiffies;
 947
 948        if (card->flags & UM_FLAG_NO_BATT)
 949                dev_printk(KERN_INFO, &card->dev->dev,
 950                        "Size %d KB\n", card->mm_size);
 951        else {
 952                dev_printk(KERN_INFO, &card->dev->dev,
 953                        "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
 954                       card->mm_size,
 955                       batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
 956                       card->battery[0].good ? "OK" : "FAILURE",
 957                       batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
 958                       card->battery[1].good ? "OK" : "FAILURE");
 959
 960                set_fault_to_battery_status(card);
 961        }
 962
 963        pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
 964        data = 0xffffffff;
 965        pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
 966        pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
 967        pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
 968        data &= 0xfffffff0;
 969        data = ~data;
 970        data += 1;
 971
 972        if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
 973                        card)) {
 974                dev_printk(KERN_ERR, &card->dev->dev,
 975                        "Unable to allocate IRQ\n");
 976                ret = -ENODEV;
 977                goto failed_req_irq;
 978        }
 979
 980        dev_printk(KERN_INFO, &card->dev->dev,
 981                "Window size %d bytes, IRQ %d\n", data, dev->irq);
 982
 983        spin_lock_init(&card->lock);
 984
 985        pci_set_drvdata(dev, card);
 986
 987        if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
 988                pci_write_cmd = 0x07;   /* then Memory Write command */
 989
 990        if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
 991                unsigned short cfg_command;
 992                pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
 993                cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
 994                pci_write_config_word(dev, PCI_COMMAND, cfg_command);
 995        }
 996        pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
 997
 998        num_cards++;
 999
1000        if (!get_userbit(card, MEMORY_INITIALIZED)) {
1001                dev_printk(KERN_INFO, &card->dev->dev,
1002                  "memory NOT initialized. Consider over-writing whole device.\n");
1003                card->init_size = 0;
1004        } else {
1005                dev_printk(KERN_INFO, &card->dev->dev,
1006                        "memory already initialized\n");
1007                card->init_size = card->mm_size;
1008        }
1009
1010        /* Enable ECC */
1011        writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1012
1013        return 0;
1014
1015 failed_req_irq:
1016 failed_alloc:
1017        if (card->mm_pages[0].desc)
1018                pci_free_consistent(card->dev, PAGE_SIZE*2,
1019                                    card->mm_pages[0].desc,
1020                                    card->mm_pages[0].page_dma);
1021        if (card->mm_pages[1].desc)
1022                pci_free_consistent(card->dev, PAGE_SIZE*2,
1023                                    card->mm_pages[1].desc,
1024                                    card->mm_pages[1].page_dma);
1025 failed_magic:
1026        iounmap(card->csr_remap);
1027 failed_remap_csr:
1028        pci_release_regions(dev);
1029 failed_req_csr:
1030
1031        return ret;
1032}
1033
1034static void mm_pci_remove(struct pci_dev *dev)
1035{
1036        struct cardinfo *card = pci_get_drvdata(dev);
1037
1038        tasklet_kill(&card->tasklet);
1039        free_irq(dev->irq, card);
1040        iounmap(card->csr_remap);
1041
1042        if (card->mm_pages[0].desc)
1043                pci_free_consistent(card->dev, PAGE_SIZE*2,
1044                                    card->mm_pages[0].desc,
1045                                    card->mm_pages[0].page_dma);
1046        if (card->mm_pages[1].desc)
1047                pci_free_consistent(card->dev, PAGE_SIZE*2,
1048                                    card->mm_pages[1].desc,
1049                                    card->mm_pages[1].page_dma);
1050        blk_cleanup_queue(card->queue);
1051
1052        pci_release_regions(dev);
1053        pci_disable_device(dev);
1054}
1055
1056static const struct pci_device_id mm_pci_ids[] = {
1057    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1058    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1059    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1060    {
1061        .vendor =       0x8086,
1062        .device =       0xB555,
1063        .subvendor =    0x1332,
1064        .subdevice =    0x5460,
1065        .class =        0x050000,
1066        .class_mask =   0,
1067    }, { /* end: all zeroes */ }
1068};
1069
1070MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1071
1072static struct pci_driver mm_pci_driver = {
1073        .name           = DRIVER_NAME,
1074        .id_table       = mm_pci_ids,
1075        .probe          = mm_pci_probe,
1076        .remove         = mm_pci_remove,
1077};
1078
1079static int __init mm_init(void)
1080{
1081        int retval, i;
1082        int err;
1083
1084        retval = pci_register_driver(&mm_pci_driver);
1085        if (retval)
1086                return -ENOMEM;
1087
1088        err = major_nr = register_blkdev(0, DRIVER_NAME);
1089        if (err < 0) {
1090                pci_unregister_driver(&mm_pci_driver);
1091                return -EIO;
1092        }
1093
1094        for (i = 0; i < num_cards; i++) {
1095                mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1096                if (!mm_gendisk[i])
1097                        goto out;
1098        }
1099
1100        for (i = 0; i < num_cards; i++) {
1101                struct gendisk *disk = mm_gendisk[i];
1102                sprintf(disk->disk_name, "umem%c", 'a'+i);
1103                spin_lock_init(&cards[i].lock);
1104                disk->major = major_nr;
1105                disk->first_minor  = i << MM_SHIFT;
1106                disk->fops = &mm_fops;
1107                disk->private_data = &cards[i];
1108                disk->queue = cards[i].queue;
1109                set_capacity(disk, cards[i].mm_size << 1);
1110                add_disk(disk);
1111        }
1112
1113        init_battery_timer();
1114        printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1115/* printk("mm_init: Done. 10-19-01 9:00\n"); */
1116        return 0;
1117
1118out:
1119        pci_unregister_driver(&mm_pci_driver);
1120        unregister_blkdev(major_nr, DRIVER_NAME);
1121        while (i--)
1122                put_disk(mm_gendisk[i]);
1123        return -ENOMEM;
1124}
1125
1126static void __exit mm_cleanup(void)
1127{
1128        int i;
1129
1130        del_battery_timer();
1131
1132        for (i = 0; i < num_cards ; i++) {
1133                del_gendisk(mm_gendisk[i]);
1134                put_disk(mm_gendisk[i]);
1135        }
1136
1137        pci_unregister_driver(&mm_pci_driver);
1138
1139        unregister_blkdev(major_nr, DRIVER_NAME);
1140}
1141
1142module_init(mm_init);
1143module_exit(mm_cleanup);
1144
1145MODULE_AUTHOR(DRIVER_AUTHOR);
1146MODULE_DESCRIPTION(DRIVER_DESC);
1147MODULE_LICENSE("GPL");
1148