linux/drivers/char/ipmi/ipmi_si_intf.c
<<
>>
Prefs
   1/*
   2 * ipmi_si.c
   3 *
   4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
   5 * BT).
   6 *
   7 * Author: MontaVista Software, Inc.
   8 *         Corey Minyard <minyard@mvista.com>
   9 *         source@mvista.com
  10 *
  11 * Copyright 2002 MontaVista Software Inc.
  12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
  13 *
  14 *  This program is free software; you can redistribute it and/or modify it
  15 *  under the terms of the GNU General Public License as published by the
  16 *  Free Software Foundation; either version 2 of the License, or (at your
  17 *  option) any later version.
  18 *
  19 *
  20 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  21 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  22 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  23 *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  24 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  25 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
  26 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  27 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  28 *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  29 *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30 *
  31 *  You should have received a copy of the GNU General Public License along
  32 *  with this program; if not, write to the Free Software Foundation, Inc.,
  33 *  675 Mass Ave, Cambridge, MA 02139, USA.
  34 */
  35
  36/*
  37 * This file holds the "policy" for the interface to the SMI state
  38 * machine.  It does the configuration, handles timers and interrupts,
  39 * and drives the real SMI state machine.
  40 */
  41
  42#include <linux/module.h>
  43#include <linux/moduleparam.h>
  44#include <asm/system.h>
  45#include <linux/sched.h>
  46#include <linux/timer.h>
  47#include <linux/errno.h>
  48#include <linux/spinlock.h>
  49#include <linux/slab.h>
  50#include <linux/delay.h>
  51#include <linux/list.h>
  52#include <linux/pci.h>
  53#include <linux/ioport.h>
  54#include <linux/notifier.h>
  55#include <linux/mutex.h>
  56#include <linux/kthread.h>
  57#include <asm/irq.h>
  58#include <linux/interrupt.h>
  59#include <linux/rcupdate.h>
  60#include <linux/ipmi_smi.h>
  61#include <asm/io.h>
  62#include "ipmi_si_sm.h"
  63#include <linux/init.h>
  64#include <linux/dmi.h>
  65#include <linux/string.h>
  66#include <linux/ctype.h>
  67
  68#ifdef CONFIG_PPC_OF
  69#include <linux/of_device.h>
  70#include <linux/of_platform.h>
  71#endif
  72
  73#define PFX "ipmi_si: "
  74
  75/* Measure times between events in the driver. */
  76#undef DEBUG_TIMING
  77
  78/* Call every 10 ms. */
  79#define SI_TIMEOUT_TIME_USEC    10000
  80#define SI_USEC_PER_JIFFY       (1000000/HZ)
  81#define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
  82#define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
  83                                      short timeout */
  84
  85enum si_intf_state {
  86        SI_NORMAL,
  87        SI_GETTING_FLAGS,
  88        SI_GETTING_EVENTS,
  89        SI_CLEARING_FLAGS,
  90        SI_CLEARING_FLAGS_THEN_SET_IRQ,
  91        SI_GETTING_MESSAGES,
  92        SI_ENABLE_INTERRUPTS1,
  93        SI_ENABLE_INTERRUPTS2,
  94        SI_DISABLE_INTERRUPTS1,
  95        SI_DISABLE_INTERRUPTS2
  96        /* FIXME - add watchdog stuff. */
  97};
  98
  99/* Some BT-specific defines we need here. */
 100#define IPMI_BT_INTMASK_REG             2
 101#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
 102#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
 103
 104enum si_type {
 105    SI_KCS, SI_SMIC, SI_BT
 106};
 107static char *si_to_str[] = { "kcs", "smic", "bt" };
 108
 109#define DEVICE_NAME "ipmi_si"
 110
 111static struct platform_driver ipmi_driver = {
 112        .driver = {
 113                .name = DEVICE_NAME,
 114                .bus = &platform_bus_type
 115        }
 116};
 117
 118
 119/*
 120 * Indexes into stats[] in smi_info below.
 121 */
 122enum si_stat_indexes {
 123        /*
 124         * Number of times the driver requested a timer while an operation
 125         * was in progress.
 126         */
 127        SI_STAT_short_timeouts = 0,
 128
 129        /*
 130         * Number of times the driver requested a timer while nothing was in
 131         * progress.
 132         */
 133        SI_STAT_long_timeouts,
 134
 135        /* Number of times the interface was idle while being polled. */
 136        SI_STAT_idles,
 137
 138        /* Number of interrupts the driver handled. */
 139        SI_STAT_interrupts,
 140
 141        /* Number of time the driver got an ATTN from the hardware. */
 142        SI_STAT_attentions,
 143
 144        /* Number of times the driver requested flags from the hardware. */
 145        SI_STAT_flag_fetches,
 146
 147        /* Number of times the hardware didn't follow the state machine. */
 148        SI_STAT_hosed_count,
 149
 150        /* Number of completed messages. */
 151        SI_STAT_complete_transactions,
 152
 153        /* Number of IPMI events received from the hardware. */
 154        SI_STAT_events,
 155
 156        /* Number of watchdog pretimeouts. */
 157        SI_STAT_watchdog_pretimeouts,
 158
 159        /* Number of asyncronous messages received. */
 160        SI_STAT_incoming_messages,
 161
 162
 163        /* This *must* remain last, add new values above this. */
 164        SI_NUM_STATS
 165};
 166
 167struct smi_info {
 168        int                    intf_num;
 169        ipmi_smi_t             intf;
 170        struct si_sm_data      *si_sm;
 171        struct si_sm_handlers  *handlers;
 172        enum si_type           si_type;
 173        spinlock_t             si_lock;
 174        spinlock_t             msg_lock;
 175        struct list_head       xmit_msgs;
 176        struct list_head       hp_xmit_msgs;
 177        struct ipmi_smi_msg    *curr_msg;
 178        enum si_intf_state     si_state;
 179
 180        /*
 181         * Used to handle the various types of I/O that can occur with
 182         * IPMI
 183         */
 184        struct si_sm_io io;
 185        int (*io_setup)(struct smi_info *info);
 186        void (*io_cleanup)(struct smi_info *info);
 187        int (*irq_setup)(struct smi_info *info);
 188        void (*irq_cleanup)(struct smi_info *info);
 189        unsigned int io_size;
 190        char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
 191        void (*addr_source_cleanup)(struct smi_info *info);
 192        void *addr_source_data;
 193
 194        /*
 195         * Per-OEM handler, called from handle_flags().  Returns 1
 196         * when handle_flags() needs to be re-run or 0 indicating it
 197         * set si_state itself.
 198         */
 199        int (*oem_data_avail_handler)(struct smi_info *smi_info);
 200
 201        /*
 202         * Flags from the last GET_MSG_FLAGS command, used when an ATTN
 203         * is set to hold the flags until we are done handling everything
 204         * from the flags.
 205         */
 206#define RECEIVE_MSG_AVAIL       0x01
 207#define EVENT_MSG_BUFFER_FULL   0x02
 208#define WDT_PRE_TIMEOUT_INT     0x08
 209#define OEM0_DATA_AVAIL     0x20
 210#define OEM1_DATA_AVAIL     0x40
 211#define OEM2_DATA_AVAIL     0x80
 212#define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
 213                             OEM1_DATA_AVAIL | \
 214                             OEM2_DATA_AVAIL)
 215        unsigned char       msg_flags;
 216
 217        /* Does the BMC have an event buffer? */
 218        char                has_event_buffer;
 219
 220        /*
 221         * If set to true, this will request events the next time the
 222         * state machine is idle.
 223         */
 224        atomic_t            req_events;
 225
 226        /*
 227         * If true, run the state machine to completion on every send
 228         * call.  Generally used after a panic to make sure stuff goes
 229         * out.
 230         */
 231        int                 run_to_completion;
 232
 233        /* The I/O port of an SI interface. */
 234        int                 port;
 235
 236        /*
 237         * The space between start addresses of the two ports.  For
 238         * instance, if the first port is 0xca2 and the spacing is 4, then
 239         * the second port is 0xca6.
 240         */
 241        unsigned int        spacing;
 242
 243        /* zero if no irq; */
 244        int                 irq;
 245
 246        /* The timer for this si. */
 247        struct timer_list   si_timer;
 248
 249        /* The time (in jiffies) the last timeout occurred at. */
 250        unsigned long       last_timeout_jiffies;
 251
 252        /* Used to gracefully stop the timer without race conditions. */
 253        atomic_t            stop_operation;
 254
 255        /*
 256         * The driver will disable interrupts when it gets into a
 257         * situation where it cannot handle messages due to lack of
 258         * memory.  Once that situation clears up, it will re-enable
 259         * interrupts.
 260         */
 261        int interrupt_disabled;
 262
 263        /* From the get device id response... */
 264        struct ipmi_device_id device_id;
 265
 266        /* Driver model stuff. */
 267        struct device *dev;
 268        struct platform_device *pdev;
 269
 270        /*
 271         * True if we allocated the device, false if it came from
 272         * someplace else (like PCI).
 273         */
 274        int dev_registered;
 275
 276        /* Slave address, could be reported from DMI. */
 277        unsigned char slave_addr;
 278
 279        /* Counters and things for the proc filesystem. */
 280        atomic_t stats[SI_NUM_STATS];
 281
 282        struct task_struct *thread;
 283
 284        struct list_head link;
 285};
 286
 287#define smi_inc_stat(smi, stat) \
 288        atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
 289#define smi_get_stat(smi, stat) \
 290        ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
 291
 292#define SI_MAX_PARMS 4
 293
 294static int force_kipmid[SI_MAX_PARMS];
 295static int num_force_kipmid;
 296
 297static int unload_when_empty = 1;
 298
 299static int try_smi_init(struct smi_info *smi);
 300static void cleanup_one_si(struct smi_info *to_clean);
 301
 302static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
 303static int register_xaction_notifier(struct notifier_block *nb)
 304{
 305        return atomic_notifier_chain_register(&xaction_notifier_list, nb);
 306}
 307
 308static void deliver_recv_msg(struct smi_info *smi_info,
 309                             struct ipmi_smi_msg *msg)
 310{
 311        /* Deliver the message to the upper layer with the lock
 312           released. */
 313        spin_unlock(&(smi_info->si_lock));
 314        ipmi_smi_msg_received(smi_info->intf, msg);
 315        spin_lock(&(smi_info->si_lock));
 316}
 317
 318static void return_hosed_msg(struct smi_info *smi_info, int cCode)
 319{
 320        struct ipmi_smi_msg *msg = smi_info->curr_msg;
 321
 322        if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
 323                cCode = IPMI_ERR_UNSPECIFIED;
 324        /* else use it as is */
 325
 326        /* Make it a reponse */
 327        msg->rsp[0] = msg->data[0] | 4;
 328        msg->rsp[1] = msg->data[1];
 329        msg->rsp[2] = cCode;
 330        msg->rsp_size = 3;
 331
 332        smi_info->curr_msg = NULL;
 333        deliver_recv_msg(smi_info, msg);
 334}
 335
 336static enum si_sm_result start_next_msg(struct smi_info *smi_info)
 337{
 338        int              rv;
 339        struct list_head *entry = NULL;
 340#ifdef DEBUG_TIMING
 341        struct timeval t;
 342#endif
 343
 344        /*
 345         * No need to save flags, we aleady have interrupts off and we
 346         * already hold the SMI lock.
 347         */
 348        if (!smi_info->run_to_completion)
 349                spin_lock(&(smi_info->msg_lock));
 350
 351        /* Pick the high priority queue first. */
 352        if (!list_empty(&(smi_info->hp_xmit_msgs))) {
 353                entry = smi_info->hp_xmit_msgs.next;
 354        } else if (!list_empty(&(smi_info->xmit_msgs))) {
 355                entry = smi_info->xmit_msgs.next;
 356        }
 357
 358        if (!entry) {
 359                smi_info->curr_msg = NULL;
 360                rv = SI_SM_IDLE;
 361        } else {
 362                int err;
 363
 364                list_del(entry);
 365                smi_info->curr_msg = list_entry(entry,
 366                                                struct ipmi_smi_msg,
 367                                                link);
 368#ifdef DEBUG_TIMING
 369                do_gettimeofday(&t);
 370                printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 371#endif
 372                err = atomic_notifier_call_chain(&xaction_notifier_list,
 373                                0, smi_info);
 374                if (err & NOTIFY_STOP_MASK) {
 375                        rv = SI_SM_CALL_WITHOUT_DELAY;
 376                        goto out;
 377                }
 378                err = smi_info->handlers->start_transaction(
 379                        smi_info->si_sm,
 380                        smi_info->curr_msg->data,
 381                        smi_info->curr_msg->data_size);
 382                if (err)
 383                        return_hosed_msg(smi_info, err);
 384
 385                rv = SI_SM_CALL_WITHOUT_DELAY;
 386        }
 387 out:
 388        if (!smi_info->run_to_completion)
 389                spin_unlock(&(smi_info->msg_lock));
 390
 391        return rv;
 392}
 393
 394static void start_enable_irq(struct smi_info *smi_info)
 395{
 396        unsigned char msg[2];
 397
 398        /*
 399         * If we are enabling interrupts, we have to tell the
 400         * BMC to use them.
 401         */
 402        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 403        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
 404
 405        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
 406        smi_info->si_state = SI_ENABLE_INTERRUPTS1;
 407}
 408
 409static void start_disable_irq(struct smi_info *smi_info)
 410{
 411        unsigned char msg[2];
 412
 413        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 414        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
 415
 416        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
 417        smi_info->si_state = SI_DISABLE_INTERRUPTS1;
 418}
 419
 420static void start_clear_flags(struct smi_info *smi_info)
 421{
 422        unsigned char msg[3];
 423
 424        /* Make sure the watchdog pre-timeout flag is not set at startup. */
 425        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 426        msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
 427        msg[2] = WDT_PRE_TIMEOUT_INT;
 428
 429        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
 430        smi_info->si_state = SI_CLEARING_FLAGS;
 431}
 432
 433/*
 434 * When we have a situtaion where we run out of memory and cannot
 435 * allocate messages, we just leave them in the BMC and run the system
 436 * polled until we can allocate some memory.  Once we have some
 437 * memory, we will re-enable the interrupt.
 438 */
 439static inline void disable_si_irq(struct smi_info *smi_info)
 440{
 441        if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
 442                start_disable_irq(smi_info);
 443                smi_info->interrupt_disabled = 1;
 444        }
 445}
 446
 447static inline void enable_si_irq(struct smi_info *smi_info)
 448{
 449        if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
 450                start_enable_irq(smi_info);
 451                smi_info->interrupt_disabled = 0;
 452        }
 453}
 454
 455static void handle_flags(struct smi_info *smi_info)
 456{
 457 retry:
 458        if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
 459                /* Watchdog pre-timeout */
 460                smi_inc_stat(smi_info, watchdog_pretimeouts);
 461
 462                start_clear_flags(smi_info);
 463                smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
 464                spin_unlock(&(smi_info->si_lock));
 465                ipmi_smi_watchdog_pretimeout(smi_info->intf);
 466                spin_lock(&(smi_info->si_lock));
 467        } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
 468                /* Messages available. */
 469                smi_info->curr_msg = ipmi_alloc_smi_msg();
 470                if (!smi_info->curr_msg) {
 471                        disable_si_irq(smi_info);
 472                        smi_info->si_state = SI_NORMAL;
 473                        return;
 474                }
 475                enable_si_irq(smi_info);
 476
 477                smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 478                smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
 479                smi_info->curr_msg->data_size = 2;
 480
 481                smi_info->handlers->start_transaction(
 482                        smi_info->si_sm,
 483                        smi_info->curr_msg->data,
 484                        smi_info->curr_msg->data_size);
 485                smi_info->si_state = SI_GETTING_MESSAGES;
 486        } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
 487                /* Events available. */
 488                smi_info->curr_msg = ipmi_alloc_smi_msg();
 489                if (!smi_info->curr_msg) {
 490                        disable_si_irq(smi_info);
 491                        smi_info->si_state = SI_NORMAL;
 492                        return;
 493                }
 494                enable_si_irq(smi_info);
 495
 496                smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 497                smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
 498                smi_info->curr_msg->data_size = 2;
 499
 500                smi_info->handlers->start_transaction(
 501                        smi_info->si_sm,
 502                        smi_info->curr_msg->data,
 503                        smi_info->curr_msg->data_size);
 504                smi_info->si_state = SI_GETTING_EVENTS;
 505        } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
 506                   smi_info->oem_data_avail_handler) {
 507                if (smi_info->oem_data_avail_handler(smi_info))
 508                        goto retry;
 509        } else
 510                smi_info->si_state = SI_NORMAL;
 511}
 512
 513static void handle_transaction_done(struct smi_info *smi_info)
 514{
 515        struct ipmi_smi_msg *msg;
 516#ifdef DEBUG_TIMING
 517        struct timeval t;
 518
 519        do_gettimeofday(&t);
 520        printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 521#endif
 522        switch (smi_info->si_state) {
 523        case SI_NORMAL:
 524                if (!smi_info->curr_msg)
 525                        break;
 526
 527                smi_info->curr_msg->rsp_size
 528                        = smi_info->handlers->get_result(
 529                                smi_info->si_sm,
 530                                smi_info->curr_msg->rsp,
 531                                IPMI_MAX_MSG_LENGTH);
 532
 533                /*
 534                 * Do this here becase deliver_recv_msg() releases the
 535                 * lock, and a new message can be put in during the
 536                 * time the lock is released.
 537                 */
 538                msg = smi_info->curr_msg;
 539                smi_info->curr_msg = NULL;
 540                deliver_recv_msg(smi_info, msg);
 541                break;
 542
 543        case SI_GETTING_FLAGS:
 544        {
 545                unsigned char msg[4];
 546                unsigned int  len;
 547
 548                /* We got the flags from the SMI, now handle them. */
 549                len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 550                if (msg[2] != 0) {
 551                        /* Error fetching flags, just give up for now. */
 552                        smi_info->si_state = SI_NORMAL;
 553                } else if (len < 4) {
 554                        /*
 555                         * Hmm, no flags.  That's technically illegal, but
 556                         * don't use uninitialized data.
 557                         */
 558                        smi_info->si_state = SI_NORMAL;
 559                } else {
 560                        smi_info->msg_flags = msg[3];
 561                        handle_flags(smi_info);
 562                }
 563                break;
 564        }
 565
 566        case SI_CLEARING_FLAGS:
 567        case SI_CLEARING_FLAGS_THEN_SET_IRQ:
 568        {
 569                unsigned char msg[3];
 570
 571                /* We cleared the flags. */
 572                smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
 573                if (msg[2] != 0) {
 574                        /* Error clearing flags */
 575                        printk(KERN_WARNING
 576                               "ipmi_si: Error clearing flags: %2.2x\n",
 577                               msg[2]);
 578                }
 579                if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
 580                        start_enable_irq(smi_info);
 581                else
 582                        smi_info->si_state = SI_NORMAL;
 583                break;
 584        }
 585
 586        case SI_GETTING_EVENTS:
 587        {
 588                smi_info->curr_msg->rsp_size
 589                        = smi_info->handlers->get_result(
 590                                smi_info->si_sm,
 591                                smi_info->curr_msg->rsp,
 592                                IPMI_MAX_MSG_LENGTH);
 593
 594                /*
 595                 * Do this here becase deliver_recv_msg() releases the
 596                 * lock, and a new message can be put in during the
 597                 * time the lock is released.
 598                 */
 599                msg = smi_info->curr_msg;
 600                smi_info->curr_msg = NULL;
 601                if (msg->rsp[2] != 0) {
 602                        /* Error getting event, probably done. */
 603                        msg->done(msg);
 604
 605                        /* Take off the event flag. */
 606                        smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
 607                        handle_flags(smi_info);
 608                } else {
 609                        smi_inc_stat(smi_info, events);
 610
 611                        /*
 612                         * Do this before we deliver the message
 613                         * because delivering the message releases the
 614                         * lock and something else can mess with the
 615                         * state.
 616                         */
 617                        handle_flags(smi_info);
 618
 619                        deliver_recv_msg(smi_info, msg);
 620                }
 621                break;
 622        }
 623
 624        case SI_GETTING_MESSAGES:
 625        {
 626                smi_info->curr_msg->rsp_size
 627                        = smi_info->handlers->get_result(
 628                                smi_info->si_sm,
 629                                smi_info->curr_msg->rsp,
 630                                IPMI_MAX_MSG_LENGTH);
 631
 632                /*
 633                 * Do this here becase deliver_recv_msg() releases the
 634                 * lock, and a new message can be put in during the
 635                 * time the lock is released.
 636                 */
 637                msg = smi_info->curr_msg;
 638                smi_info->curr_msg = NULL;
 639                if (msg->rsp[2] != 0) {
 640                        /* Error getting event, probably done. */
 641                        msg->done(msg);
 642
 643                        /* Take off the msg flag. */
 644                        smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
 645                        handle_flags(smi_info);
 646                } else {
 647                        smi_inc_stat(smi_info, incoming_messages);
 648
 649                        /*
 650                         * Do this before we deliver the message
 651                         * because delivering the message releases the
 652                         * lock and something else can mess with the
 653                         * state.
 654                         */
 655                        handle_flags(smi_info);
 656
 657                        deliver_recv_msg(smi_info, msg);
 658                }
 659                break;
 660        }
 661
 662        case SI_ENABLE_INTERRUPTS1:
 663        {
 664                unsigned char msg[4];
 665
 666                /* We got the flags from the SMI, now handle them. */
 667                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 668                if (msg[2] != 0) {
 669                        printk(KERN_WARNING
 670                               "ipmi_si: Could not enable interrupts"
 671                               ", failed get, using polled mode.\n");
 672                        smi_info->si_state = SI_NORMAL;
 673                } else {
 674                        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 675                        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
 676                        msg[2] = (msg[3] |
 677                                  IPMI_BMC_RCV_MSG_INTR |
 678                                  IPMI_BMC_EVT_MSG_INTR);
 679                        smi_info->handlers->start_transaction(
 680                                smi_info->si_sm, msg, 3);
 681                        smi_info->si_state = SI_ENABLE_INTERRUPTS2;
 682                }
 683                break;
 684        }
 685
 686        case SI_ENABLE_INTERRUPTS2:
 687        {
 688                unsigned char msg[4];
 689
 690                /* We got the flags from the SMI, now handle them. */
 691                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 692                if (msg[2] != 0) {
 693                        printk(KERN_WARNING
 694                               "ipmi_si: Could not enable interrupts"
 695                               ", failed set, using polled mode.\n");
 696                }
 697                smi_info->si_state = SI_NORMAL;
 698                break;
 699        }
 700
 701        case SI_DISABLE_INTERRUPTS1:
 702        {
 703                unsigned char msg[4];
 704
 705                /* We got the flags from the SMI, now handle them. */
 706                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 707                if (msg[2] != 0) {
 708                        printk(KERN_WARNING
 709                               "ipmi_si: Could not disable interrupts"
 710                               ", failed get.\n");
 711                        smi_info->si_state = SI_NORMAL;
 712                } else {
 713                        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 714                        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
 715                        msg[2] = (msg[3] &
 716                                  ~(IPMI_BMC_RCV_MSG_INTR |
 717                                    IPMI_BMC_EVT_MSG_INTR));
 718                        smi_info->handlers->start_transaction(
 719                                smi_info->si_sm, msg, 3);
 720                        smi_info->si_state = SI_DISABLE_INTERRUPTS2;
 721                }
 722                break;
 723        }
 724
 725        case SI_DISABLE_INTERRUPTS2:
 726        {
 727                unsigned char msg[4];
 728
 729                /* We got the flags from the SMI, now handle them. */
 730                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 731                if (msg[2] != 0) {
 732                        printk(KERN_WARNING
 733                               "ipmi_si: Could not disable interrupts"
 734                               ", failed set.\n");
 735                }
 736                smi_info->si_state = SI_NORMAL;
 737                break;
 738        }
 739        }
 740}
 741
 742/*
 743 * Called on timeouts and events.  Timeouts should pass the elapsed
 744 * time, interrupts should pass in zero.  Must be called with
 745 * si_lock held and interrupts disabled.
 746 */
 747static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
 748                                           int time)
 749{
 750        enum si_sm_result si_sm_result;
 751
 752 restart:
 753        /*
 754         * There used to be a loop here that waited a little while
 755         * (around 25us) before giving up.  That turned out to be
 756         * pointless, the minimum delays I was seeing were in the 300us
 757         * range, which is far too long to wait in an interrupt.  So
 758         * we just run until the state machine tells us something
 759         * happened or it needs a delay.
 760         */
 761        si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
 762        time = 0;
 763        while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
 764                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 765
 766        if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
 767                smi_inc_stat(smi_info, complete_transactions);
 768
 769                handle_transaction_done(smi_info);
 770                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 771        } else if (si_sm_result == SI_SM_HOSED) {
 772                smi_inc_stat(smi_info, hosed_count);
 773
 774                /*
 775                 * Do the before return_hosed_msg, because that
 776                 * releases the lock.
 777                 */
 778                smi_info->si_state = SI_NORMAL;
 779                if (smi_info->curr_msg != NULL) {
 780                        /*
 781                         * If we were handling a user message, format
 782                         * a response to send to the upper layer to
 783                         * tell it about the error.
 784                         */
 785                        return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
 786                }
 787                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 788        }
 789
 790        /*
 791         * We prefer handling attn over new messages.  But don't do
 792         * this if there is not yet an upper layer to handle anything.
 793         */
 794        if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
 795                unsigned char msg[2];
 796
 797                smi_inc_stat(smi_info, attentions);
 798
 799                /*
 800                 * Got a attn, send down a get message flags to see
 801                 * what's causing it.  It would be better to handle
 802                 * this in the upper layer, but due to the way
 803                 * interrupts work with the SMI, that's not really
 804                 * possible.
 805                 */
 806                msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 807                msg[1] = IPMI_GET_MSG_FLAGS_CMD;
 808
 809                smi_info->handlers->start_transaction(
 810                        smi_info->si_sm, msg, 2);
 811                smi_info->si_state = SI_GETTING_FLAGS;
 812                goto restart;
 813        }
 814
 815        /* If we are currently idle, try to start the next message. */
 816        if (si_sm_result == SI_SM_IDLE) {
 817                smi_inc_stat(smi_info, idles);
 818
 819                si_sm_result = start_next_msg(smi_info);
 820                if (si_sm_result != SI_SM_IDLE)
 821                        goto restart;
 822        }
 823
 824        if ((si_sm_result == SI_SM_IDLE)
 825            && (atomic_read(&smi_info->req_events))) {
 826                /*
 827                 * We are idle and the upper layer requested that I fetch
 828                 * events, so do so.
 829                 */
 830                atomic_set(&smi_info->req_events, 0);
 831
 832                smi_info->curr_msg = ipmi_alloc_smi_msg();
 833                if (!smi_info->curr_msg)
 834                        goto out;
 835
 836                smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 837                smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
 838                smi_info->curr_msg->data_size = 2;
 839
 840                smi_info->handlers->start_transaction(
 841                        smi_info->si_sm,
 842                        smi_info->curr_msg->data,
 843                        smi_info->curr_msg->data_size);
 844                smi_info->si_state = SI_GETTING_EVENTS;
 845                goto restart;
 846        }
 847 out:
 848        return si_sm_result;
 849}
 850
 851static void sender(void                *send_info,
 852                   struct ipmi_smi_msg *msg,
 853                   int                 priority)
 854{
 855        struct smi_info   *smi_info = send_info;
 856        enum si_sm_result result;
 857        unsigned long     flags;
 858#ifdef DEBUG_TIMING
 859        struct timeval    t;
 860#endif
 861
 862        if (atomic_read(&smi_info->stop_operation)) {
 863                msg->rsp[0] = msg->data[0] | 4;
 864                msg->rsp[1] = msg->data[1];
 865                msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
 866                msg->rsp_size = 3;
 867                deliver_recv_msg(smi_info, msg);
 868                return;
 869        }
 870
 871#ifdef DEBUG_TIMING
 872        do_gettimeofday(&t);
 873        printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 874#endif
 875
 876        if (smi_info->run_to_completion) {
 877                /*
 878                 * If we are running to completion, then throw it in
 879                 * the list and run transactions until everything is
 880                 * clear.  Priority doesn't matter here.
 881                 */
 882
 883                /*
 884                 * Run to completion means we are single-threaded, no
 885                 * need for locks.
 886                 */
 887                list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
 888
 889                result = smi_event_handler(smi_info, 0);
 890                while (result != SI_SM_IDLE) {
 891                        udelay(SI_SHORT_TIMEOUT_USEC);
 892                        result = smi_event_handler(smi_info,
 893                                                   SI_SHORT_TIMEOUT_USEC);
 894                }
 895                return;
 896        }
 897
 898        spin_lock_irqsave(&smi_info->msg_lock, flags);
 899        if (priority > 0)
 900                list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
 901        else
 902                list_add_tail(&msg->link, &smi_info->xmit_msgs);
 903        spin_unlock_irqrestore(&smi_info->msg_lock, flags);
 904
 905        spin_lock_irqsave(&smi_info->si_lock, flags);
 906        if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
 907                start_next_msg(smi_info);
 908        spin_unlock_irqrestore(&smi_info->si_lock, flags);
 909}
 910
 911static void set_run_to_completion(void *send_info, int i_run_to_completion)
 912{
 913        struct smi_info   *smi_info = send_info;
 914        enum si_sm_result result;
 915
 916        smi_info->run_to_completion = i_run_to_completion;
 917        if (i_run_to_completion) {
 918                result = smi_event_handler(smi_info, 0);
 919                while (result != SI_SM_IDLE) {
 920                        udelay(SI_SHORT_TIMEOUT_USEC);
 921                        result = smi_event_handler(smi_info,
 922                                                   SI_SHORT_TIMEOUT_USEC);
 923                }
 924        }
 925}
 926
 927static int ipmi_thread(void *data)
 928{
 929        struct smi_info *smi_info = data;
 930        unsigned long flags;
 931        enum si_sm_result smi_result;
 932
 933        set_user_nice(current, 19);
 934        while (!kthread_should_stop()) {
 935                spin_lock_irqsave(&(smi_info->si_lock), flags);
 936                smi_result = smi_event_handler(smi_info, 0);
 937                spin_unlock_irqrestore(&(smi_info->si_lock), flags);
 938                if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
 939                        ; /* do nothing */
 940                else if (smi_result == SI_SM_CALL_WITH_DELAY)
 941                        schedule();
 942                else
 943                        schedule_timeout_interruptible(1);
 944        }
 945        return 0;
 946}
 947
 948
 949static void poll(void *send_info)
 950{
 951        struct smi_info *smi_info = send_info;
 952        unsigned long flags;
 953
 954        /*
 955         * Make sure there is some delay in the poll loop so we can
 956         * drive time forward and timeout things.
 957         */
 958        udelay(10);
 959        spin_lock_irqsave(&smi_info->si_lock, flags);
 960        smi_event_handler(smi_info, 10);
 961        spin_unlock_irqrestore(&smi_info->si_lock, flags);
 962}
 963
 964static void request_events(void *send_info)
 965{
 966        struct smi_info *smi_info = send_info;
 967
 968        if (atomic_read(&smi_info->stop_operation) ||
 969                                !smi_info->has_event_buffer)
 970                return;
 971
 972        atomic_set(&smi_info->req_events, 1);
 973}
 974
 975static int initialized;
 976
 977static void smi_timeout(unsigned long data)
 978{
 979        struct smi_info   *smi_info = (struct smi_info *) data;
 980        enum si_sm_result smi_result;
 981        unsigned long     flags;
 982        unsigned long     jiffies_now;
 983        long              time_diff;
 984#ifdef DEBUG_TIMING
 985        struct timeval    t;
 986#endif
 987
 988        spin_lock_irqsave(&(smi_info->si_lock), flags);
 989#ifdef DEBUG_TIMING
 990        do_gettimeofday(&t);
 991        printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 992#endif
 993        jiffies_now = jiffies;
 994        time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
 995                     * SI_USEC_PER_JIFFY);
 996        smi_result = smi_event_handler(smi_info, time_diff);
 997
 998        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
 999
1000        smi_info->last_timeout_jiffies = jiffies_now;
1001
1002        if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1003                /* Running with interrupts, only do long timeouts. */
1004                smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1005                smi_inc_stat(smi_info, long_timeouts);
1006                goto do_add_timer;
1007        }
1008
1009        /*
1010         * If the state machine asks for a short delay, then shorten
1011         * the timer timeout.
1012         */
1013        if (smi_result == SI_SM_CALL_WITH_DELAY) {
1014                smi_inc_stat(smi_info, short_timeouts);
1015                smi_info->si_timer.expires = jiffies + 1;
1016        } else {
1017                smi_inc_stat(smi_info, long_timeouts);
1018                smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1019        }
1020
1021 do_add_timer:
1022        add_timer(&(smi_info->si_timer));
1023}
1024
1025static irqreturn_t si_irq_handler(int irq, void *data)
1026{
1027        struct smi_info *smi_info = data;
1028        unsigned long   flags;
1029#ifdef DEBUG_TIMING
1030        struct timeval  t;
1031#endif
1032
1033        spin_lock_irqsave(&(smi_info->si_lock), flags);
1034
1035        smi_inc_stat(smi_info, interrupts);
1036
1037#ifdef DEBUG_TIMING
1038        do_gettimeofday(&t);
1039        printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1040#endif
1041        smi_event_handler(smi_info, 0);
1042        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1043        return IRQ_HANDLED;
1044}
1045
1046static irqreturn_t si_bt_irq_handler(int irq, void *data)
1047{
1048        struct smi_info *smi_info = data;
1049        /* We need to clear the IRQ flag for the BT interface. */
1050        smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1051                             IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1052                             | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1053        return si_irq_handler(irq, data);
1054}
1055
1056static int smi_start_processing(void       *send_info,
1057                                ipmi_smi_t intf)
1058{
1059        struct smi_info *new_smi = send_info;
1060        int             enable = 0;
1061
1062        new_smi->intf = intf;
1063
1064        /* Try to claim any interrupts. */
1065        if (new_smi->irq_setup)
1066                new_smi->irq_setup(new_smi);
1067
1068        /* Set up the timer that drives the interface. */
1069        setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1070        new_smi->last_timeout_jiffies = jiffies;
1071        mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1072
1073        /*
1074         * Check if the user forcefully enabled the daemon.
1075         */
1076        if (new_smi->intf_num < num_force_kipmid)
1077                enable = force_kipmid[new_smi->intf_num];
1078        /*
1079         * The BT interface is efficient enough to not need a thread,
1080         * and there is no need for a thread if we have interrupts.
1081         */
1082        else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1083                enable = 1;
1084
1085        if (enable) {
1086                new_smi->thread = kthread_run(ipmi_thread, new_smi,
1087                                              "kipmi%d", new_smi->intf_num);
1088                if (IS_ERR(new_smi->thread)) {
1089                        printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1090                               " kernel thread due to error %ld, only using"
1091                               " timers to drive the interface\n",
1092                               PTR_ERR(new_smi->thread));
1093                        new_smi->thread = NULL;
1094                }
1095        }
1096
1097        return 0;
1098}
1099
1100static void set_maintenance_mode(void *send_info, int enable)
1101{
1102        struct smi_info   *smi_info = send_info;
1103
1104        if (!enable)
1105                atomic_set(&smi_info->req_events, 0);
1106}
1107
1108static struct ipmi_smi_handlers handlers = {
1109        .owner                  = THIS_MODULE,
1110        .start_processing       = smi_start_processing,
1111        .sender                 = sender,
1112        .request_events         = request_events,
1113        .set_maintenance_mode   = set_maintenance_mode,
1114        .set_run_to_completion  = set_run_to_completion,
1115        .poll                   = poll,
1116};
1117
1118/*
1119 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1120 * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1121 */
1122
1123static LIST_HEAD(smi_infos);
1124static DEFINE_MUTEX(smi_infos_lock);
1125static int smi_num; /* Used to sequence the SMIs */
1126
1127#define DEFAULT_REGSPACING      1
1128#define DEFAULT_REGSIZE         1
1129
1130static int           si_trydefaults = 1;
1131static char          *si_type[SI_MAX_PARMS];
1132#define MAX_SI_TYPE_STR 30
1133static char          si_type_str[MAX_SI_TYPE_STR];
1134static unsigned long addrs[SI_MAX_PARMS];
1135static unsigned int num_addrs;
1136static unsigned int  ports[SI_MAX_PARMS];
1137static unsigned int num_ports;
1138static int           irqs[SI_MAX_PARMS];
1139static unsigned int num_irqs;
1140static int           regspacings[SI_MAX_PARMS];
1141static unsigned int num_regspacings;
1142static int           regsizes[SI_MAX_PARMS];
1143static unsigned int num_regsizes;
1144static int           regshifts[SI_MAX_PARMS];
1145static unsigned int num_regshifts;
1146static int slave_addrs[SI_MAX_PARMS];
1147static unsigned int num_slave_addrs;
1148
1149#define IPMI_IO_ADDR_SPACE  0
1150#define IPMI_MEM_ADDR_SPACE 1
1151static char *addr_space_to_str[] = { "i/o", "mem" };
1152
1153static int hotmod_handler(const char *val, struct kernel_param *kp);
1154
1155module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1156MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1157                 " Documentation/IPMI.txt in the kernel sources for the"
1158                 " gory details.");
1159
1160module_param_named(trydefaults, si_trydefaults, bool, 0);
1161MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1162                 " default scan of the KCS and SMIC interface at the standard"
1163                 " address");
1164module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1165MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1166                 " interface separated by commas.  The types are 'kcs',"
1167                 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1168                 " the first interface to kcs and the second to bt");
1169module_param_array(addrs, ulong, &num_addrs, 0);
1170MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1171                 " addresses separated by commas.  Only use if an interface"
1172                 " is in memory.  Otherwise, set it to zero or leave"
1173                 " it blank.");
1174module_param_array(ports, uint, &num_ports, 0);
1175MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1176                 " addresses separated by commas.  Only use if an interface"
1177                 " is a port.  Otherwise, set it to zero or leave"
1178                 " it blank.");
1179module_param_array(irqs, int, &num_irqs, 0);
1180MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1181                 " addresses separated by commas.  Only use if an interface"
1182                 " has an interrupt.  Otherwise, set it to zero or leave"
1183                 " it blank.");
1184module_param_array(regspacings, int, &num_regspacings, 0);
1185MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1186                 " and each successive register used by the interface.  For"
1187                 " instance, if the start address is 0xca2 and the spacing"
1188                 " is 2, then the second address is at 0xca4.  Defaults"
1189                 " to 1.");
1190module_param_array(regsizes, int, &num_regsizes, 0);
1191MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1192                 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1193                 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1194                 " the 8-bit IPMI register has to be read from a larger"
1195                 " register.");
1196module_param_array(regshifts, int, &num_regshifts, 0);
1197MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1198                 " IPMI register, in bits.  For instance, if the data"
1199                 " is read from a 32-bit word and the IPMI data is in"
1200                 " bit 8-15, then the shift would be 8");
1201module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1202MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1203                 " the controller.  Normally this is 0x20, but can be"
1204                 " overridden by this parm.  This is an array indexed"
1205                 " by interface number.");
1206module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1207MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1208                 " disabled(0).  Normally the IPMI driver auto-detects"
1209                 " this, but the value may be overridden by this parm.");
1210module_param(unload_when_empty, int, 0);
1211MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1212                 " specified or found, default is 1.  Setting to 0"
1213                 " is useful for hot add of devices using hotmod.");
1214
1215
1216static void std_irq_cleanup(struct smi_info *info)
1217{
1218        if (info->si_type == SI_BT)
1219                /* Disable the interrupt in the BT interface. */
1220                info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1221        free_irq(info->irq, info);
1222}
1223
1224static int std_irq_setup(struct smi_info *info)
1225{
1226        int rv;
1227
1228        if (!info->irq)
1229                return 0;
1230
1231        if (info->si_type == SI_BT) {
1232                rv = request_irq(info->irq,
1233                                 si_bt_irq_handler,
1234                                 IRQF_SHARED | IRQF_DISABLED,
1235                                 DEVICE_NAME,
1236                                 info);
1237                if (!rv)
1238                        /* Enable the interrupt in the BT interface. */
1239                        info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1240                                         IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1241        } else
1242                rv = request_irq(info->irq,
1243                                 si_irq_handler,
1244                                 IRQF_SHARED | IRQF_DISABLED,
1245                                 DEVICE_NAME,
1246                                 info);
1247        if (rv) {
1248                printk(KERN_WARNING
1249                       "ipmi_si: %s unable to claim interrupt %d,"
1250                       " running polled\n",
1251                       DEVICE_NAME, info->irq);
1252                info->irq = 0;
1253        } else {
1254                info->irq_cleanup = std_irq_cleanup;
1255                printk("  Using irq %d\n", info->irq);
1256        }
1257
1258        return rv;
1259}
1260
1261static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1262{
1263        unsigned int addr = io->addr_data;
1264
1265        return inb(addr + (offset * io->regspacing));
1266}
1267
1268static void port_outb(struct si_sm_io *io, unsigned int offset,
1269                      unsigned char b)
1270{
1271        unsigned int addr = io->addr_data;
1272
1273        outb(b, addr + (offset * io->regspacing));
1274}
1275
1276static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1277{
1278        unsigned int addr = io->addr_data;
1279
1280        return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1281}
1282
1283static void port_outw(struct si_sm_io *io, unsigned int offset,
1284                      unsigned char b)
1285{
1286        unsigned int addr = io->addr_data;
1287
1288        outw(b << io->regshift, addr + (offset * io->regspacing));
1289}
1290
1291static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1292{
1293        unsigned int addr = io->addr_data;
1294
1295        return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1296}
1297
1298static void port_outl(struct si_sm_io *io, unsigned int offset,
1299                      unsigned char b)
1300{
1301        unsigned int addr = io->addr_data;
1302
1303        outl(b << io->regshift, addr+(offset * io->regspacing));
1304}
1305
1306static void port_cleanup(struct smi_info *info)
1307{
1308        unsigned int addr = info->io.addr_data;
1309        int          idx;
1310
1311        if (addr) {
1312                for (idx = 0; idx < info->io_size; idx++)
1313                        release_region(addr + idx * info->io.regspacing,
1314                                       info->io.regsize);
1315        }
1316}
1317
1318static int port_setup(struct smi_info *info)
1319{
1320        unsigned int addr = info->io.addr_data;
1321        int          idx;
1322
1323        if (!addr)
1324                return -ENODEV;
1325
1326        info->io_cleanup = port_cleanup;
1327
1328        /*
1329         * Figure out the actual inb/inw/inl/etc routine to use based
1330         * upon the register size.
1331         */
1332        switch (info->io.regsize) {
1333        case 1:
1334                info->io.inputb = port_inb;
1335                info->io.outputb = port_outb;
1336                break;
1337        case 2:
1338                info->io.inputb = port_inw;
1339                info->io.outputb = port_outw;
1340                break;
1341        case 4:
1342                info->io.inputb = port_inl;
1343                info->io.outputb = port_outl;
1344                break;
1345        default:
1346                printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1347                       info->io.regsize);
1348                return -EINVAL;
1349        }
1350
1351        /*
1352         * Some BIOSes reserve disjoint I/O regions in their ACPI
1353         * tables.  This causes problems when trying to register the
1354         * entire I/O region.  Therefore we must register each I/O
1355         * port separately.
1356         */
1357        for (idx = 0; idx < info->io_size; idx++) {
1358                if (request_region(addr + idx * info->io.regspacing,
1359                                   info->io.regsize, DEVICE_NAME) == NULL) {
1360                        /* Undo allocations */
1361                        while (idx--) {
1362                                release_region(addr + idx * info->io.regspacing,
1363                                               info->io.regsize);
1364                        }
1365                        return -EIO;
1366                }
1367        }
1368        return 0;
1369}
1370
1371static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1372{
1373        return readb((io->addr)+(offset * io->regspacing));
1374}
1375
1376static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1377                     unsigned char b)
1378{
1379        writeb(b, (io->addr)+(offset * io->regspacing));
1380}
1381
1382static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1383{
1384        return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1385                & 0xff;
1386}
1387
1388static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1389                     unsigned char b)
1390{
1391        writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1392}
1393
1394static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1395{
1396        return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1397                & 0xff;
1398}
1399
1400static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1401                     unsigned char b)
1402{
1403        writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1404}
1405
1406#ifdef readq
1407static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1408{
1409        return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1410                & 0xff;
1411}
1412
1413static void mem_outq(struct si_sm_io *io, unsigned int offset,
1414                     unsigned char b)
1415{
1416        writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1417}
1418#endif
1419
1420static void mem_cleanup(struct smi_info *info)
1421{
1422        unsigned long addr = info->io.addr_data;
1423        int           mapsize;
1424
1425        if (info->io.addr) {
1426                iounmap(info->io.addr);
1427
1428                mapsize = ((info->io_size * info->io.regspacing)
1429                           - (info->io.regspacing - info->io.regsize));
1430
1431                release_mem_region(addr, mapsize);
1432        }
1433}
1434
1435static int mem_setup(struct smi_info *info)
1436{
1437        unsigned long addr = info->io.addr_data;
1438        int           mapsize;
1439
1440        if (!addr)
1441                return -ENODEV;
1442
1443        info->io_cleanup = mem_cleanup;
1444
1445        /*
1446         * Figure out the actual readb/readw/readl/etc routine to use based
1447         * upon the register size.
1448         */
1449        switch (info->io.regsize) {
1450        case 1:
1451                info->io.inputb = intf_mem_inb;
1452                info->io.outputb = intf_mem_outb;
1453                break;
1454        case 2:
1455                info->io.inputb = intf_mem_inw;
1456                info->io.outputb = intf_mem_outw;
1457                break;
1458        case 4:
1459                info->io.inputb = intf_mem_inl;
1460                info->io.outputb = intf_mem_outl;
1461                break;
1462#ifdef readq
1463        case 8:
1464                info->io.inputb = mem_inq;
1465                info->io.outputb = mem_outq;
1466                break;
1467#endif
1468        default:
1469                printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1470                       info->io.regsize);
1471                return -EINVAL;
1472        }
1473
1474        /*
1475         * Calculate the total amount of memory to claim.  This is an
1476         * unusual looking calculation, but it avoids claiming any
1477         * more memory than it has to.  It will claim everything
1478         * between the first address to the end of the last full
1479         * register.
1480         */
1481        mapsize = ((info->io_size * info->io.regspacing)
1482                   - (info->io.regspacing - info->io.regsize));
1483
1484        if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1485                return -EIO;
1486
1487        info->io.addr = ioremap(addr, mapsize);
1488        if (info->io.addr == NULL) {
1489                release_mem_region(addr, mapsize);
1490                return -EIO;
1491        }
1492        return 0;
1493}
1494
1495/*
1496 * Parms come in as <op1>[:op2[:op3...]].  ops are:
1497 *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1498 * Options are:
1499 *   rsp=<regspacing>
1500 *   rsi=<regsize>
1501 *   rsh=<regshift>
1502 *   irq=<irq>
1503 *   ipmb=<ipmb addr>
1504 */
1505enum hotmod_op { HM_ADD, HM_REMOVE };
1506struct hotmod_vals {
1507        char *name;
1508        int  val;
1509};
1510static struct hotmod_vals hotmod_ops[] = {
1511        { "add",        HM_ADD },
1512        { "remove",     HM_REMOVE },
1513        { NULL }
1514};
1515static struct hotmod_vals hotmod_si[] = {
1516        { "kcs",        SI_KCS },
1517        { "smic",       SI_SMIC },
1518        { "bt",         SI_BT },
1519        { NULL }
1520};
1521static struct hotmod_vals hotmod_as[] = {
1522        { "mem",        IPMI_MEM_ADDR_SPACE },
1523        { "i/o",        IPMI_IO_ADDR_SPACE },
1524        { NULL }
1525};
1526
1527static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1528{
1529        char *s;
1530        int  i;
1531
1532        s = strchr(*curr, ',');
1533        if (!s) {
1534                printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1535                return -EINVAL;
1536        }
1537        *s = '\0';
1538        s++;
1539        for (i = 0; hotmod_ops[i].name; i++) {
1540                if (strcmp(*curr, v[i].name) == 0) {
1541                        *val = v[i].val;
1542                        *curr = s;
1543                        return 0;
1544                }
1545        }
1546
1547        printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1548        return -EINVAL;
1549}
1550
1551static int check_hotmod_int_op(const char *curr, const char *option,
1552                               const char *name, int *val)
1553{
1554        char *n;
1555
1556        if (strcmp(curr, name) == 0) {
1557                if (!option) {
1558                        printk(KERN_WARNING PFX
1559                               "No option given for '%s'\n",
1560                               curr);
1561                        return -EINVAL;
1562                }
1563                *val = simple_strtoul(option, &n, 0);
1564                if ((*n != '\0') || (*option == '\0')) {
1565                        printk(KERN_WARNING PFX
1566                               "Bad option given for '%s'\n",
1567                               curr);
1568                        return -EINVAL;
1569                }
1570                return 1;
1571        }
1572        return 0;
1573}
1574
1575static int hotmod_handler(const char *val, struct kernel_param *kp)
1576{
1577        char *str = kstrdup(val, GFP_KERNEL);
1578        int  rv;
1579        char *next, *curr, *s, *n, *o;
1580        enum hotmod_op op;
1581        enum si_type si_type;
1582        int  addr_space;
1583        unsigned long addr;
1584        int regspacing;
1585        int regsize;
1586        int regshift;
1587        int irq;
1588        int ipmb;
1589        int ival;
1590        int len;
1591        struct smi_info *info;
1592
1593        if (!str)
1594                return -ENOMEM;
1595
1596        /* Kill any trailing spaces, as we can get a "\n" from echo. */
1597        len = strlen(str);
1598        ival = len - 1;
1599        while ((ival >= 0) && isspace(str[ival])) {
1600                str[ival] = '\0';
1601                ival--;
1602        }
1603
1604        for (curr = str; curr; curr = next) {
1605                regspacing = 1;
1606                regsize = 1;
1607                regshift = 0;
1608                irq = 0;
1609                ipmb = 0x20;
1610
1611                next = strchr(curr, ':');
1612                if (next) {
1613                        *next = '\0';
1614                        next++;
1615                }
1616
1617                rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1618                if (rv)
1619                        break;
1620                op = ival;
1621
1622                rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1623                if (rv)
1624                        break;
1625                si_type = ival;
1626
1627                rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1628                if (rv)
1629                        break;
1630
1631                s = strchr(curr, ',');
1632                if (s) {
1633                        *s = '\0';
1634                        s++;
1635                }
1636                addr = simple_strtoul(curr, &n, 0);
1637                if ((*n != '\0') || (*curr == '\0')) {
1638                        printk(KERN_WARNING PFX "Invalid hotmod address"
1639                               " '%s'\n", curr);
1640                        break;
1641                }
1642
1643                while (s) {
1644                        curr = s;
1645                        s = strchr(curr, ',');
1646                        if (s) {
1647                                *s = '\0';
1648                                s++;
1649                        }
1650                        o = strchr(curr, '=');
1651                        if (o) {
1652                                *o = '\0';
1653                                o++;
1654                        }
1655                        rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1656                        if (rv < 0)
1657                                goto out;
1658                        else if (rv)
1659                                continue;
1660                        rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1661                        if (rv < 0)
1662                                goto out;
1663                        else if (rv)
1664                                continue;
1665                        rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1666                        if (rv < 0)
1667                                goto out;
1668                        else if (rv)
1669                                continue;
1670                        rv = check_hotmod_int_op(curr, o, "irq", &irq);
1671                        if (rv < 0)
1672                                goto out;
1673                        else if (rv)
1674                                continue;
1675                        rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1676                        if (rv < 0)
1677                                goto out;
1678                        else if (rv)
1679                                continue;
1680
1681                        rv = -EINVAL;
1682                        printk(KERN_WARNING PFX
1683                               "Invalid hotmod option '%s'\n",
1684                               curr);
1685                        goto out;
1686                }
1687
1688                if (op == HM_ADD) {
1689                        info = kzalloc(sizeof(*info), GFP_KERNEL);
1690                        if (!info) {
1691                                rv = -ENOMEM;
1692                                goto out;
1693                        }
1694
1695                        info->addr_source = "hotmod";
1696                        info->si_type = si_type;
1697                        info->io.addr_data = addr;
1698                        info->io.addr_type = addr_space;
1699                        if (addr_space == IPMI_MEM_ADDR_SPACE)
1700                                info->io_setup = mem_setup;
1701                        else
1702                                info->io_setup = port_setup;
1703
1704                        info->io.addr = NULL;
1705                        info->io.regspacing = regspacing;
1706                        if (!info->io.regspacing)
1707                                info->io.regspacing = DEFAULT_REGSPACING;
1708                        info->io.regsize = regsize;
1709                        if (!info->io.regsize)
1710                                info->io.regsize = DEFAULT_REGSPACING;
1711                        info->io.regshift = regshift;
1712                        info->irq = irq;
1713                        if (info->irq)
1714                                info->irq_setup = std_irq_setup;
1715                        info->slave_addr = ipmb;
1716
1717                        try_smi_init(info);
1718                } else {
1719                        /* remove */
1720                        struct smi_info *e, *tmp_e;
1721
1722                        mutex_lock(&smi_infos_lock);
1723                        list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1724                                if (e->io.addr_type != addr_space)
1725                                        continue;
1726                                if (e->si_type != si_type)
1727                                        continue;
1728                                if (e->io.addr_data == addr)
1729                                        cleanup_one_si(e);
1730                        }
1731                        mutex_unlock(&smi_infos_lock);
1732                }
1733        }
1734        rv = len;
1735 out:
1736        kfree(str);
1737        return rv;
1738}
1739
1740static __devinit void hardcode_find_bmc(void)
1741{
1742        int             i;
1743        struct smi_info *info;
1744
1745        for (i = 0; i < SI_MAX_PARMS; i++) {
1746                if (!ports[i] && !addrs[i])
1747                        continue;
1748
1749                info = kzalloc(sizeof(*info), GFP_KERNEL);
1750                if (!info)
1751                        return;
1752
1753                info->addr_source = "hardcoded";
1754
1755                if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1756                        info->si_type = SI_KCS;
1757                } else if (strcmp(si_type[i], "smic") == 0) {
1758                        info->si_type = SI_SMIC;
1759                } else if (strcmp(si_type[i], "bt") == 0) {
1760                        info->si_type = SI_BT;
1761                } else {
1762                        printk(KERN_WARNING
1763                               "ipmi_si: Interface type specified "
1764                               "for interface %d, was invalid: %s\n",
1765                               i, si_type[i]);
1766                        kfree(info);
1767                        continue;
1768                }
1769
1770                if (ports[i]) {
1771                        /* An I/O port */
1772                        info->io_setup = port_setup;
1773                        info->io.addr_data = ports[i];
1774                        info->io.addr_type = IPMI_IO_ADDR_SPACE;
1775                } else if (addrs[i]) {
1776                        /* A memory port */
1777                        info->io_setup = mem_setup;
1778                        info->io.addr_data = addrs[i];
1779                        info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1780                } else {
1781                        printk(KERN_WARNING
1782                               "ipmi_si: Interface type specified "
1783                               "for interface %d, "
1784                               "but port and address were not set or "
1785                               "set to zero.\n", i);
1786                        kfree(info);
1787                        continue;
1788                }
1789
1790                info->io.addr = NULL;
1791                info->io.regspacing = regspacings[i];
1792                if (!info->io.regspacing)
1793                        info->io.regspacing = DEFAULT_REGSPACING;
1794                info->io.regsize = regsizes[i];
1795                if (!info->io.regsize)
1796                        info->io.regsize = DEFAULT_REGSPACING;
1797                info->io.regshift = regshifts[i];
1798                info->irq = irqs[i];
1799                if (info->irq)
1800                        info->irq_setup = std_irq_setup;
1801
1802                try_smi_init(info);
1803        }
1804}
1805
1806#ifdef CONFIG_ACPI
1807
1808#include <linux/acpi.h>
1809
1810/*
1811 * Once we get an ACPI failure, we don't try any more, because we go
1812 * through the tables sequentially.  Once we don't find a table, there
1813 * are no more.
1814 */
1815static int acpi_failure;
1816
1817/* For GPE-type interrupts. */
1818static u32 ipmi_acpi_gpe(void *context)
1819{
1820        struct smi_info *smi_info = context;
1821        unsigned long   flags;
1822#ifdef DEBUG_TIMING
1823        struct timeval t;
1824#endif
1825
1826        spin_lock_irqsave(&(smi_info->si_lock), flags);
1827
1828        smi_inc_stat(smi_info, interrupts);
1829
1830#ifdef DEBUG_TIMING
1831        do_gettimeofday(&t);
1832        printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1833#endif
1834        smi_event_handler(smi_info, 0);
1835        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1836
1837        return ACPI_INTERRUPT_HANDLED;
1838}
1839
1840static void acpi_gpe_irq_cleanup(struct smi_info *info)
1841{
1842        if (!info->irq)
1843                return;
1844
1845        acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1846}
1847
1848static int acpi_gpe_irq_setup(struct smi_info *info)
1849{
1850        acpi_status status;
1851
1852        if (!info->irq)
1853                return 0;
1854
1855        /* FIXME - is level triggered right? */
1856        status = acpi_install_gpe_handler(NULL,
1857                                          info->irq,
1858                                          ACPI_GPE_LEVEL_TRIGGERED,
1859                                          &ipmi_acpi_gpe,
1860                                          info);
1861        if (status != AE_OK) {
1862                printk(KERN_WARNING
1863                       "ipmi_si: %s unable to claim ACPI GPE %d,"
1864                       " running polled\n",
1865                       DEVICE_NAME, info->irq);
1866                info->irq = 0;
1867                return -EINVAL;
1868        } else {
1869                info->irq_cleanup = acpi_gpe_irq_cleanup;
1870                printk("  Using ACPI GPE %d\n", info->irq);
1871                return 0;
1872        }
1873}
1874
1875/*
1876 * Defined at
1877 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1878 * Docs/TechPapers/IA64/hpspmi.pdf
1879 */
1880struct SPMITable {
1881        s8      Signature[4];
1882        u32     Length;
1883        u8      Revision;
1884        u8      Checksum;
1885        s8      OEMID[6];
1886        s8      OEMTableID[8];
1887        s8      OEMRevision[4];
1888        s8      CreatorID[4];
1889        s8      CreatorRevision[4];
1890        u8      InterfaceType;
1891        u8      IPMIlegacy;
1892        s16     SpecificationRevision;
1893
1894        /*
1895         * Bit 0 - SCI interrupt supported
1896         * Bit 1 - I/O APIC/SAPIC
1897         */
1898        u8      InterruptType;
1899
1900        /*
1901         * If bit 0 of InterruptType is set, then this is the SCI
1902         * interrupt in the GPEx_STS register.
1903         */
1904        u8      GPE;
1905
1906        s16     Reserved;
1907
1908        /*
1909         * If bit 1 of InterruptType is set, then this is the I/O
1910         * APIC/SAPIC interrupt.
1911         */
1912        u32     GlobalSystemInterrupt;
1913
1914        /* The actual register address. */
1915        struct acpi_generic_address addr;
1916
1917        u8      UID[4];
1918
1919        s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1920};
1921
1922static __devinit int try_init_acpi(struct SPMITable *spmi)
1923{
1924        struct smi_info  *info;
1925        u8               addr_space;
1926
1927        if (spmi->IPMIlegacy != 1) {
1928            printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1929            return -ENODEV;
1930        }
1931
1932        if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1933                addr_space = IPMI_MEM_ADDR_SPACE;
1934        else
1935                addr_space = IPMI_IO_ADDR_SPACE;
1936
1937        info = kzalloc(sizeof(*info), GFP_KERNEL);
1938        if (!info) {
1939                printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1940                return -ENOMEM;
1941        }
1942
1943        info->addr_source = "ACPI";
1944
1945        /* Figure out the interface type. */
1946        switch (spmi->InterfaceType) {
1947        case 1: /* KCS */
1948                info->si_type = SI_KCS;
1949                break;
1950        case 2: /* SMIC */
1951                info->si_type = SI_SMIC;
1952                break;
1953        case 3: /* BT */
1954                info->si_type = SI_BT;
1955                break;
1956        default:
1957                printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1958                        spmi->InterfaceType);
1959                kfree(info);
1960                return -EIO;
1961        }
1962
1963        if (spmi->InterruptType & 1) {
1964                /* We've got a GPE interrupt. */
1965                info->irq = spmi->GPE;
1966                info->irq_setup = acpi_gpe_irq_setup;
1967        } else if (spmi->InterruptType & 2) {
1968                /* We've got an APIC/SAPIC interrupt. */
1969                info->irq = spmi->GlobalSystemInterrupt;
1970                info->irq_setup = std_irq_setup;
1971        } else {
1972                /* Use the default interrupt setting. */
1973                info->irq = 0;
1974                info->irq_setup = NULL;
1975        }
1976
1977        if (spmi->addr.bit_width) {
1978                /* A (hopefully) properly formed register bit width. */
1979                info->io.regspacing = spmi->addr.bit_width / 8;
1980        } else {
1981                info->io.regspacing = DEFAULT_REGSPACING;
1982        }
1983        info->io.regsize = info->io.regspacing;
1984        info->io.regshift = spmi->addr.bit_offset;
1985
1986        if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1987                info->io_setup = mem_setup;
1988                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1989        } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1990                info->io_setup = port_setup;
1991                info->io.addr_type = IPMI_IO_ADDR_SPACE;
1992        } else {
1993                kfree(info);
1994                printk(KERN_WARNING
1995                       "ipmi_si: Unknown ACPI I/O Address type\n");
1996                return -EIO;
1997        }
1998        info->io.addr_data = spmi->addr.address;
1999
2000        try_smi_init(info);
2001
2002        return 0;
2003}
2004
2005static __devinit void acpi_find_bmc(void)
2006{
2007        acpi_status      status;
2008        struct SPMITable *spmi;
2009        int              i;
2010
2011        if (acpi_disabled)
2012                return;
2013
2014        if (acpi_failure)
2015                return;
2016
2017        for (i = 0; ; i++) {
2018                status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2019                                        (struct acpi_table_header **)&spmi);
2020                if (status != AE_OK)
2021                        return;
2022
2023                try_init_acpi(spmi);
2024        }
2025}
2026#endif
2027
2028#ifdef CONFIG_DMI
2029struct dmi_ipmi_data {
2030        u8              type;
2031        u8              addr_space;
2032        unsigned long   base_addr;
2033        u8              irq;
2034        u8              offset;
2035        u8              slave_addr;
2036};
2037
2038static int __devinit decode_dmi(const struct dmi_header *dm,
2039                                struct dmi_ipmi_data *dmi)
2040{
2041        const u8        *data = (const u8 *)dm;
2042        unsigned long   base_addr;
2043        u8              reg_spacing;
2044        u8              len = dm->length;
2045
2046        dmi->type = data[4];
2047
2048        memcpy(&base_addr, data+8, sizeof(unsigned long));
2049        if (len >= 0x11) {
2050                if (base_addr & 1) {
2051                        /* I/O */
2052                        base_addr &= 0xFFFE;
2053                        dmi->addr_space = IPMI_IO_ADDR_SPACE;
2054                } else
2055                        /* Memory */
2056                        dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2057
2058                /* If bit 4 of byte 0x10 is set, then the lsb for the address
2059                   is odd. */
2060                dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2061
2062                dmi->irq = data[0x11];
2063
2064                /* The top two bits of byte 0x10 hold the register spacing. */
2065                reg_spacing = (data[0x10] & 0xC0) >> 6;
2066                switch (reg_spacing) {
2067                case 0x00: /* Byte boundaries */
2068                    dmi->offset = 1;
2069                    break;
2070                case 0x01: /* 32-bit boundaries */
2071                    dmi->offset = 4;
2072                    break;
2073                case 0x02: /* 16-byte boundaries */
2074                    dmi->offset = 16;
2075                    break;
2076                default:
2077                    /* Some other interface, just ignore it. */
2078                    return -EIO;
2079                }
2080        } else {
2081                /* Old DMI spec. */
2082                /*
2083                 * Note that technically, the lower bit of the base
2084                 * address should be 1 if the address is I/O and 0 if
2085                 * the address is in memory.  So many systems get that
2086                 * wrong (and all that I have seen are I/O) so we just
2087                 * ignore that bit and assume I/O.  Systems that use
2088                 * memory should use the newer spec, anyway.
2089                 */
2090                dmi->base_addr = base_addr & 0xfffe;
2091                dmi->addr_space = IPMI_IO_ADDR_SPACE;
2092                dmi->offset = 1;
2093        }
2094
2095        dmi->slave_addr = data[6];
2096
2097        return 0;
2098}
2099
2100static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2101{
2102        struct smi_info *info;
2103
2104        info = kzalloc(sizeof(*info), GFP_KERNEL);
2105        if (!info) {
2106                printk(KERN_ERR
2107                       "ipmi_si: Could not allocate SI data\n");
2108                return;
2109        }
2110
2111        info->addr_source = "SMBIOS";
2112
2113        switch (ipmi_data->type) {
2114        case 0x01: /* KCS */
2115                info->si_type = SI_KCS;
2116                break;
2117        case 0x02: /* SMIC */
2118                info->si_type = SI_SMIC;
2119                break;
2120        case 0x03: /* BT */
2121                info->si_type = SI_BT;
2122                break;
2123        default:
2124                kfree(info);
2125                return;
2126        }
2127
2128        switch (ipmi_data->addr_space) {
2129        case IPMI_MEM_ADDR_SPACE:
2130                info->io_setup = mem_setup;
2131                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2132                break;
2133
2134        case IPMI_IO_ADDR_SPACE:
2135                info->io_setup = port_setup;
2136                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2137                break;
2138
2139        default:
2140                kfree(info);
2141                printk(KERN_WARNING
2142                       "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2143                       ipmi_data->addr_space);
2144                return;
2145        }
2146        info->io.addr_data = ipmi_data->base_addr;
2147
2148        info->io.regspacing = ipmi_data->offset;
2149        if (!info->io.regspacing)
2150                info->io.regspacing = DEFAULT_REGSPACING;
2151        info->io.regsize = DEFAULT_REGSPACING;
2152        info->io.regshift = 0;
2153
2154        info->slave_addr = ipmi_data->slave_addr;
2155
2156        info->irq = ipmi_data->irq;
2157        if (info->irq)
2158                info->irq_setup = std_irq_setup;
2159
2160        try_smi_init(info);
2161}
2162
2163static void __devinit dmi_find_bmc(void)
2164{
2165        const struct dmi_device *dev = NULL;
2166        struct dmi_ipmi_data data;
2167        int                  rv;
2168
2169        while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2170                memset(&data, 0, sizeof(data));
2171                rv = decode_dmi((const struct dmi_header *) dev->device_data,
2172                                &data);
2173                if (!rv)
2174                        try_init_dmi(&data);
2175        }
2176}
2177#endif /* CONFIG_DMI */
2178
2179#ifdef CONFIG_PCI
2180
2181#define PCI_ERMC_CLASSCODE              0x0C0700
2182#define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2183#define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2184#define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2185#define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2186#define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2187
2188#define PCI_HP_VENDOR_ID    0x103C
2189#define PCI_MMC_DEVICE_ID   0x121A
2190#define PCI_MMC_ADDR_CW     0x10
2191
2192static void ipmi_pci_cleanup(struct smi_info *info)
2193{
2194        struct pci_dev *pdev = info->addr_source_data;
2195
2196        pci_disable_device(pdev);
2197}
2198
2199static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2200                                    const struct pci_device_id *ent)
2201{
2202        int rv;
2203        int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2204        struct smi_info *info;
2205        int first_reg_offset = 0;
2206
2207        info = kzalloc(sizeof(*info), GFP_KERNEL);
2208        if (!info)
2209                return -ENOMEM;
2210
2211        info->addr_source = "PCI";
2212
2213        switch (class_type) {
2214        case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2215                info->si_type = SI_SMIC;
2216                break;
2217
2218        case PCI_ERMC_CLASSCODE_TYPE_KCS:
2219                info->si_type = SI_KCS;
2220                break;
2221
2222        case PCI_ERMC_CLASSCODE_TYPE_BT:
2223                info->si_type = SI_BT;
2224                break;
2225
2226        default:
2227                kfree(info);
2228                printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2229                       pci_name(pdev), class_type);
2230                return -ENOMEM;
2231        }
2232
2233        rv = pci_enable_device(pdev);
2234        if (rv) {
2235                printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2236                       pci_name(pdev));
2237                kfree(info);
2238                return rv;
2239        }
2240
2241        info->addr_source_cleanup = ipmi_pci_cleanup;
2242        info->addr_source_data = pdev;
2243
2244        if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2245                first_reg_offset = 1;
2246
2247        if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2248                info->io_setup = port_setup;
2249                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2250        } else {
2251                info->io_setup = mem_setup;
2252                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2253        }
2254        info->io.addr_data = pci_resource_start(pdev, 0);
2255
2256        info->io.regspacing = DEFAULT_REGSPACING;
2257        info->io.regsize = DEFAULT_REGSPACING;
2258        info->io.regshift = 0;
2259
2260        info->irq = pdev->irq;
2261        if (info->irq)
2262                info->irq_setup = std_irq_setup;
2263
2264        info->dev = &pdev->dev;
2265        pci_set_drvdata(pdev, info);
2266
2267        return try_smi_init(info);
2268}
2269
2270static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2271{
2272        struct smi_info *info = pci_get_drvdata(pdev);
2273        cleanup_one_si(info);
2274}
2275
2276#ifdef CONFIG_PM
2277static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2278{
2279        return 0;
2280}
2281
2282static int ipmi_pci_resume(struct pci_dev *pdev)
2283{
2284        return 0;
2285}
2286#endif
2287
2288static struct pci_device_id ipmi_pci_devices[] = {
2289        { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2290        { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2291        { 0, }
2292};
2293MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2294
2295static struct pci_driver ipmi_pci_driver = {
2296        .name =         DEVICE_NAME,
2297        .id_table =     ipmi_pci_devices,
2298        .probe =        ipmi_pci_probe,
2299        .remove =       __devexit_p(ipmi_pci_remove),
2300#ifdef CONFIG_PM
2301        .suspend =      ipmi_pci_suspend,
2302        .resume =       ipmi_pci_resume,
2303#endif
2304};
2305#endif /* CONFIG_PCI */
2306
2307
2308#ifdef CONFIG_PPC_OF
2309static int __devinit ipmi_of_probe(struct of_device *dev,
2310                         const struct of_device_id *match)
2311{
2312        struct smi_info *info;
2313        struct resource resource;
2314        const int *regsize, *regspacing, *regshift;
2315        struct device_node *np = dev->node;
2316        int ret;
2317        int proplen;
2318
2319        dev_info(&dev->dev, PFX "probing via device tree\n");
2320
2321        ret = of_address_to_resource(np, 0, &resource);
2322        if (ret) {
2323                dev_warn(&dev->dev, PFX "invalid address from OF\n");
2324                return ret;
2325        }
2326
2327        regsize = of_get_property(np, "reg-size", &proplen);
2328        if (regsize && proplen != 4) {
2329                dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2330                return -EINVAL;
2331        }
2332
2333        regspacing = of_get_property(np, "reg-spacing", &proplen);
2334        if (regspacing && proplen != 4) {
2335                dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2336                return -EINVAL;
2337        }
2338
2339        regshift = of_get_property(np, "reg-shift", &proplen);
2340        if (regshift && proplen != 4) {
2341                dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2342                return -EINVAL;
2343        }
2344
2345        info = kzalloc(sizeof(*info), GFP_KERNEL);
2346
2347        if (!info) {
2348                dev_err(&dev->dev,
2349                        PFX "could not allocate memory for OF probe\n");
2350                return -ENOMEM;
2351        }
2352
2353        info->si_type           = (enum si_type) match->data;
2354        info->addr_source       = "device-tree";
2355        info->irq_setup         = std_irq_setup;
2356
2357        if (resource.flags & IORESOURCE_IO) {
2358                info->io_setup          = port_setup;
2359                info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2360        } else {
2361                info->io_setup          = mem_setup;
2362                info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2363        }
2364
2365        info->io.addr_data      = resource.start;
2366
2367        info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2368        info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
2369        info->io.regshift       = regshift ? *regshift : 0;
2370
2371        info->irq               = irq_of_parse_and_map(dev->node, 0);
2372        info->dev               = &dev->dev;
2373
2374        dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2375                info->io.addr_data, info->io.regsize, info->io.regspacing,
2376                info->irq);
2377
2378        dev_set_drvdata(&dev->dev, info);
2379
2380        return try_smi_init(info);
2381}
2382
2383static int __devexit ipmi_of_remove(struct of_device *dev)
2384{
2385        cleanup_one_si(dev_get_drvdata(&dev->dev));
2386        return 0;
2387}
2388
2389static struct of_device_id ipmi_match[] =
2390{
2391        { .type = "ipmi", .compatible = "ipmi-kcs",
2392          .data = (void *)(unsigned long) SI_KCS },
2393        { .type = "ipmi", .compatible = "ipmi-smic",
2394          .data = (void *)(unsigned long) SI_SMIC },
2395        { .type = "ipmi", .compatible = "ipmi-bt",
2396          .data = (void *)(unsigned long) SI_BT },
2397        {},
2398};
2399
2400static struct of_platform_driver ipmi_of_platform_driver = {
2401        .name           = "ipmi",
2402        .match_table    = ipmi_match,
2403        .probe          = ipmi_of_probe,
2404        .remove         = __devexit_p(ipmi_of_remove),
2405};
2406#endif /* CONFIG_PPC_OF */
2407
2408static int wait_for_msg_done(struct smi_info *smi_info)
2409{
2410        enum si_sm_result     smi_result;
2411
2412        smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2413        for (;;) {
2414                if (smi_result == SI_SM_CALL_WITH_DELAY ||
2415                    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2416                        schedule_timeout_uninterruptible(1);
2417                        smi_result = smi_info->handlers->event(
2418                                smi_info->si_sm, 100);
2419                } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2420                        smi_result = smi_info->handlers->event(
2421                                smi_info->si_sm, 0);
2422                } else
2423                        break;
2424        }
2425        if (smi_result == SI_SM_HOSED)
2426                /*
2427                 * We couldn't get the state machine to run, so whatever's at
2428                 * the port is probably not an IPMI SMI interface.
2429                 */
2430                return -ENODEV;
2431
2432        return 0;
2433}
2434
2435static int try_get_dev_id(struct smi_info *smi_info)
2436{
2437        unsigned char         msg[2];
2438        unsigned char         *resp;
2439        unsigned long         resp_len;
2440        int                   rv = 0;
2441
2442        resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2443        if (!resp)
2444                return -ENOMEM;
2445
2446        /*
2447         * Do a Get Device ID command, since it comes back with some
2448         * useful info.
2449         */
2450        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2451        msg[1] = IPMI_GET_DEVICE_ID_CMD;
2452        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2453
2454        rv = wait_for_msg_done(smi_info);
2455        if (rv)
2456                goto out;
2457
2458        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2459                                                  resp, IPMI_MAX_MSG_LENGTH);
2460
2461        /* Check and record info from the get device id, in case we need it. */
2462        rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2463
2464 out:
2465        kfree(resp);
2466        return rv;
2467}
2468
2469static int try_enable_event_buffer(struct smi_info *smi_info)
2470{
2471        unsigned char         msg[3];
2472        unsigned char         *resp;
2473        unsigned long         resp_len;
2474        int                   rv = 0;
2475
2476        resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2477        if (!resp)
2478                return -ENOMEM;
2479
2480        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2481        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2482        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2483
2484        rv = wait_for_msg_done(smi_info);
2485        if (rv) {
2486                printk(KERN_WARNING
2487                       "ipmi_si: Error getting response from get global,"
2488                       " enables command, the event buffer is not"
2489                       " enabled.\n");
2490                goto out;
2491        }
2492
2493        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2494                                                  resp, IPMI_MAX_MSG_LENGTH);
2495
2496        if (resp_len < 4 ||
2497                        resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2498                        resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2499                        resp[2] != 0) {
2500                printk(KERN_WARNING
2501                       "ipmi_si: Invalid return from get global"
2502                       " enables command, cannot enable the event"
2503                       " buffer.\n");
2504                rv = -EINVAL;
2505                goto out;
2506        }
2507
2508        if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2509                /* buffer is already enabled, nothing to do. */
2510                goto out;
2511
2512        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2513        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2514        msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2515        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2516
2517        rv = wait_for_msg_done(smi_info);
2518        if (rv) {
2519                printk(KERN_WARNING
2520                       "ipmi_si: Error getting response from set global,"
2521                       " enables command, the event buffer is not"
2522                       " enabled.\n");
2523                goto out;
2524        }
2525
2526        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2527                                                  resp, IPMI_MAX_MSG_LENGTH);
2528
2529        if (resp_len < 3 ||
2530                        resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2531                        resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2532                printk(KERN_WARNING
2533                       "ipmi_si: Invalid return from get global,"
2534                       "enables command, not enable the event"
2535                       " buffer.\n");
2536                rv = -EINVAL;
2537                goto out;
2538        }
2539
2540        if (resp[2] != 0)
2541                /*
2542                 * An error when setting the event buffer bit means
2543                 * that the event buffer is not supported.
2544                 */
2545                rv = -ENOENT;
2546 out:
2547        kfree(resp);
2548        return rv;
2549}
2550
2551static int type_file_read_proc(char *page, char **start, off_t off,
2552                               int count, int *eof, void *data)
2553{
2554        struct smi_info *smi = data;
2555
2556        return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2557}
2558
2559static int stat_file_read_proc(char *page, char **start, off_t off,
2560                               int count, int *eof, void *data)
2561{
2562        char            *out = (char *) page;
2563        struct smi_info *smi = data;
2564
2565        out += sprintf(out, "interrupts_enabled:    %d\n",
2566                       smi->irq && !smi->interrupt_disabled);
2567        out += sprintf(out, "short_timeouts:        %u\n",
2568                       smi_get_stat(smi, short_timeouts));
2569        out += sprintf(out, "long_timeouts:         %u\n",
2570                       smi_get_stat(smi, long_timeouts));
2571        out += sprintf(out, "idles:                 %u\n",
2572                       smi_get_stat(smi, idles));
2573        out += sprintf(out, "interrupts:            %u\n",
2574                       smi_get_stat(smi, interrupts));
2575        out += sprintf(out, "attentions:            %u\n",
2576                       smi_get_stat(smi, attentions));
2577        out += sprintf(out, "flag_fetches:          %u\n",
2578                       smi_get_stat(smi, flag_fetches));
2579        out += sprintf(out, "hosed_count:           %u\n",
2580                       smi_get_stat(smi, hosed_count));
2581        out += sprintf(out, "complete_transactions: %u\n",
2582                       smi_get_stat(smi, complete_transactions));
2583        out += sprintf(out, "events:                %u\n",
2584                       smi_get_stat(smi, events));
2585        out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2586                       smi_get_stat(smi, watchdog_pretimeouts));
2587        out += sprintf(out, "incoming_messages:     %u\n",
2588                       smi_get_stat(smi, incoming_messages));
2589
2590        return out - page;
2591}
2592
2593static int param_read_proc(char *page, char **start, off_t off,
2594                           int count, int *eof, void *data)
2595{
2596        struct smi_info *smi = data;
2597
2598        return sprintf(page,
2599                       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2600                       si_to_str[smi->si_type],
2601                       addr_space_to_str[smi->io.addr_type],
2602                       smi->io.addr_data,
2603                       smi->io.regspacing,
2604                       smi->io.regsize,
2605                       smi->io.regshift,
2606                       smi->irq,
2607                       smi->slave_addr);
2608}
2609
2610/*
2611 * oem_data_avail_to_receive_msg_avail
2612 * @info - smi_info structure with msg_flags set
2613 *
2614 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2615 * Returns 1 indicating need to re-run handle_flags().
2616 */
2617static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2618{
2619        smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2620                               RECEIVE_MSG_AVAIL);
2621        return 1;
2622}
2623
2624/*
2625 * setup_dell_poweredge_oem_data_handler
2626 * @info - smi_info.device_id must be populated
2627 *
2628 * Systems that match, but have firmware version < 1.40 may assert
2629 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2630 * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2631 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2632 * as RECEIVE_MSG_AVAIL instead.
2633 *
2634 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2635 * assert the OEM[012] bits, and if it did, the driver would have to
2636 * change to handle that properly, we don't actually check for the
2637 * firmware version.
2638 * Device ID = 0x20                BMC on PowerEdge 8G servers
2639 * Device Revision = 0x80
2640 * Firmware Revision1 = 0x01       BMC version 1.40
2641 * Firmware Revision2 = 0x40       BCD encoded
2642 * IPMI Version = 0x51             IPMI 1.5
2643 * Manufacturer ID = A2 02 00      Dell IANA
2644 *
2645 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2646 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2647 *
2648 */
2649#define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2650#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2651#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2652#define DELL_IANA_MFR_ID 0x0002a2
2653static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2654{
2655        struct ipmi_device_id *id = &smi_info->device_id;
2656        if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2657                if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2658                    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2659                    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2660                        smi_info->oem_data_avail_handler =
2661                                oem_data_avail_to_receive_msg_avail;
2662                } else if (ipmi_version_major(id) < 1 ||
2663                           (ipmi_version_major(id) == 1 &&
2664                            ipmi_version_minor(id) < 5)) {
2665                        smi_info->oem_data_avail_handler =
2666                                oem_data_avail_to_receive_msg_avail;
2667                }
2668        }
2669}
2670
2671#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2672static void return_hosed_msg_badsize(struct smi_info *smi_info)
2673{
2674        struct ipmi_smi_msg *msg = smi_info->curr_msg;
2675
2676        /* Make it a reponse */
2677        msg->rsp[0] = msg->data[0] | 4;
2678        msg->rsp[1] = msg->data[1];
2679        msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2680        msg->rsp_size = 3;
2681        smi_info->curr_msg = NULL;
2682        deliver_recv_msg(smi_info, msg);
2683}
2684
2685/*
2686 * dell_poweredge_bt_xaction_handler
2687 * @info - smi_info.device_id must be populated
2688 *
2689 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2690 * not respond to a Get SDR command if the length of the data
2691 * requested is exactly 0x3A, which leads to command timeouts and no
2692 * data returned.  This intercepts such commands, and causes userspace
2693 * callers to try again with a different-sized buffer, which succeeds.
2694 */
2695
2696#define STORAGE_NETFN 0x0A
2697#define STORAGE_CMD_GET_SDR 0x23
2698static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2699                                             unsigned long unused,
2700                                             void *in)
2701{
2702        struct smi_info *smi_info = in;
2703        unsigned char *data = smi_info->curr_msg->data;
2704        unsigned int size   = smi_info->curr_msg->data_size;
2705        if (size >= 8 &&
2706            (data[0]>>2) == STORAGE_NETFN &&
2707            data[1] == STORAGE_CMD_GET_SDR &&
2708            data[7] == 0x3A) {
2709                return_hosed_msg_badsize(smi_info);
2710                return NOTIFY_STOP;
2711        }
2712        return NOTIFY_DONE;
2713}
2714
2715static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2716        .notifier_call  = dell_poweredge_bt_xaction_handler,
2717};
2718
2719/*
2720 * setup_dell_poweredge_bt_xaction_handler
2721 * @info - smi_info.device_id must be filled in already
2722 *
2723 * Fills in smi_info.device_id.start_transaction_pre_hook
2724 * when we know what function to use there.
2725 */
2726static void
2727setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2728{
2729        struct ipmi_device_id *id = &smi_info->device_id;
2730        if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2731            smi_info->si_type == SI_BT)
2732                register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2733}
2734
2735/*
2736 * setup_oem_data_handler
2737 * @info - smi_info.device_id must be filled in already
2738 *
2739 * Fills in smi_info.device_id.oem_data_available_handler
2740 * when we know what function to use there.
2741 */
2742
2743static void setup_oem_data_handler(struct smi_info *smi_info)
2744{
2745        setup_dell_poweredge_oem_data_handler(smi_info);
2746}
2747
2748static void setup_xaction_handlers(struct smi_info *smi_info)
2749{
2750        setup_dell_poweredge_bt_xaction_handler(smi_info);
2751}
2752
2753static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2754{
2755        if (smi_info->intf) {
2756                /*
2757                 * The timer and thread are only running if the
2758                 * interface has been started up and registered.
2759                 */
2760                if (smi_info->thread != NULL)
2761                        kthread_stop(smi_info->thread);
2762                del_timer_sync(&smi_info->si_timer);
2763        }
2764}
2765
2766static __devinitdata struct ipmi_default_vals
2767{
2768        int type;
2769        int port;
2770} ipmi_defaults[] =
2771{
2772        { .type = SI_KCS, .port = 0xca2 },
2773        { .type = SI_SMIC, .port = 0xca9 },
2774        { .type = SI_BT, .port = 0xe4 },
2775        { .port = 0 }
2776};
2777
2778static __devinit void default_find_bmc(void)
2779{
2780        struct smi_info *info;
2781        int             i;
2782
2783        for (i = 0; ; i++) {
2784                if (!ipmi_defaults[i].port)
2785                        break;
2786#ifdef CONFIG_PPC
2787                if (check_legacy_ioport(ipmi_defaults[i].port))
2788                        continue;
2789#endif
2790                info = kzalloc(sizeof(*info), GFP_KERNEL);
2791                if (!info)
2792                        return;
2793
2794                info->addr_source = NULL;
2795
2796                info->si_type = ipmi_defaults[i].type;
2797                info->io_setup = port_setup;
2798                info->io.addr_data = ipmi_defaults[i].port;
2799                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2800
2801                info->io.addr = NULL;
2802                info->io.regspacing = DEFAULT_REGSPACING;
2803                info->io.regsize = DEFAULT_REGSPACING;
2804                info->io.regshift = 0;
2805
2806                if (try_smi_init(info) == 0) {
2807                        /* Found one... */
2808                        printk(KERN_INFO "ipmi_si: Found default %s state"
2809                               " machine at %s address 0x%lx\n",
2810                               si_to_str[info->si_type],
2811                               addr_space_to_str[info->io.addr_type],
2812                               info->io.addr_data);
2813                        return;
2814                }
2815        }
2816}
2817
2818static int is_new_interface(struct smi_info *info)
2819{
2820        struct smi_info *e;
2821
2822        list_for_each_entry(e, &smi_infos, link) {
2823                if (e->io.addr_type != info->io.addr_type)
2824                        continue;
2825                if (e->io.addr_data == info->io.addr_data)
2826                        return 0;
2827        }
2828
2829        return 1;
2830}
2831
2832static int try_smi_init(struct smi_info *new_smi)
2833{
2834        int rv;
2835        int i;
2836
2837        if (new_smi->addr_source) {
2838                printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2839                       " machine at %s address 0x%lx, slave address 0x%x,"
2840                       " irq %d\n",
2841                       new_smi->addr_source,
2842                       si_to_str[new_smi->si_type],
2843                       addr_space_to_str[new_smi->io.addr_type],
2844                       new_smi->io.addr_data,
2845                       new_smi->slave_addr, new_smi->irq);
2846        }
2847
2848        mutex_lock(&smi_infos_lock);
2849        if (!is_new_interface(new_smi)) {
2850                printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2851                rv = -EBUSY;
2852                goto out_err;
2853        }
2854
2855        /* So we know not to free it unless we have allocated one. */
2856        new_smi->intf = NULL;
2857        new_smi->si_sm = NULL;
2858        new_smi->handlers = NULL;
2859
2860        switch (new_smi->si_type) {
2861        case SI_KCS:
2862                new_smi->handlers = &kcs_smi_handlers;
2863                break;
2864
2865        case SI_SMIC:
2866                new_smi->handlers = &smic_smi_handlers;
2867                break;
2868
2869        case SI_BT:
2870                new_smi->handlers = &bt_smi_handlers;
2871                break;
2872
2873        default:
2874                /* No support for anything else yet. */
2875                rv = -EIO;
2876                goto out_err;
2877        }
2878
2879        /* Allocate the state machine's data and initialize it. */
2880        new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2881        if (!new_smi->si_sm) {
2882                printk(KERN_ERR "Could not allocate state machine memory\n");
2883                rv = -ENOMEM;
2884                goto out_err;
2885        }
2886        new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2887                                                        &new_smi->io);
2888
2889        /* Now that we know the I/O size, we can set up the I/O. */
2890        rv = new_smi->io_setup(new_smi);
2891        if (rv) {
2892                printk(KERN_ERR "Could not set up I/O space\n");
2893                goto out_err;
2894        }
2895
2896        spin_lock_init(&(new_smi->si_lock));
2897        spin_lock_init(&(new_smi->msg_lock));
2898
2899        /* Do low-level detection first. */
2900        if (new_smi->handlers->detect(new_smi->si_sm)) {
2901                if (new_smi->addr_source)
2902                        printk(KERN_INFO "ipmi_si: Interface detection"
2903                               " failed\n");
2904                rv = -ENODEV;
2905                goto out_err;
2906        }
2907
2908        /*
2909         * Attempt a get device id command.  If it fails, we probably
2910         * don't have a BMC here.
2911         */
2912        rv = try_get_dev_id(new_smi);
2913        if (rv) {
2914                if (new_smi->addr_source)
2915                        printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2916                               " at this location\n");
2917                goto out_err;
2918        }
2919
2920        setup_oem_data_handler(new_smi);
2921        setup_xaction_handlers(new_smi);
2922
2923        INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2924        INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2925        new_smi->curr_msg = NULL;
2926        atomic_set(&new_smi->req_events, 0);
2927        new_smi->run_to_completion = 0;
2928        for (i = 0; i < SI_NUM_STATS; i++)
2929                atomic_set(&new_smi->stats[i], 0);
2930
2931        new_smi->interrupt_disabled = 0;
2932        atomic_set(&new_smi->stop_operation, 0);
2933        new_smi->intf_num = smi_num;
2934        smi_num++;
2935
2936        rv = try_enable_event_buffer(new_smi);
2937        if (rv == 0)
2938                new_smi->has_event_buffer = 1;
2939
2940        /*
2941         * Start clearing the flags before we enable interrupts or the
2942         * timer to avoid racing with the timer.
2943         */
2944        start_clear_flags(new_smi);
2945        /* IRQ is defined to be set when non-zero. */
2946        if (new_smi->irq)
2947                new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2948
2949        if (!new_smi->dev) {
2950                /*
2951                 * If we don't already have a device from something
2952                 * else (like PCI), then register a new one.
2953                 */
2954                new_smi->pdev = platform_device_alloc("ipmi_si",
2955                                                      new_smi->intf_num);
2956                if (!new_smi->pdev) {
2957                        printk(KERN_ERR
2958                               "ipmi_si_intf:"
2959                               " Unable to allocate platform device\n");
2960                        goto out_err;
2961                }
2962                new_smi->dev = &new_smi->pdev->dev;
2963                new_smi->dev->driver = &ipmi_driver.driver;
2964
2965                rv = platform_device_add(new_smi->pdev);
2966                if (rv) {
2967                        printk(KERN_ERR
2968                               "ipmi_si_intf:"
2969                               " Unable to register system interface device:"
2970                               " %d\n",
2971                               rv);
2972                        goto out_err;
2973                }
2974                new_smi->dev_registered = 1;
2975        }
2976
2977        rv = ipmi_register_smi(&handlers,
2978                               new_smi,
2979                               &new_smi->device_id,
2980                               new_smi->dev,
2981                               "bmc",
2982                               new_smi->slave_addr);
2983        if (rv) {
2984                printk(KERN_ERR
2985                       "ipmi_si: Unable to register device: error %d\n",
2986                       rv);
2987                goto out_err_stop_timer;
2988        }
2989
2990        rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2991                                     type_file_read_proc,
2992                                     new_smi);
2993        if (rv) {
2994                printk(KERN_ERR
2995                       "ipmi_si: Unable to create proc entry: %d\n",
2996                       rv);
2997                goto out_err_stop_timer;
2998        }
2999
3000        rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3001                                     stat_file_read_proc,
3002                                     new_smi);
3003        if (rv) {
3004                printk(KERN_ERR
3005                       "ipmi_si: Unable to create proc entry: %d\n",
3006                       rv);
3007                goto out_err_stop_timer;
3008        }
3009
3010        rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3011                                     param_read_proc,
3012                                     new_smi);
3013        if (rv) {
3014                printk(KERN_ERR
3015                       "ipmi_si: Unable to create proc entry: %d\n",
3016                       rv);
3017                goto out_err_stop_timer;
3018        }
3019
3020        list_add_tail(&new_smi->link, &smi_infos);
3021
3022        mutex_unlock(&smi_infos_lock);
3023
3024        printk(KERN_INFO "IPMI %s interface initialized\n",
3025               si_to_str[new_smi->si_type]);
3026
3027        return 0;
3028
3029 out_err_stop_timer:
3030        atomic_inc(&new_smi->stop_operation);
3031        wait_for_timer_and_thread(new_smi);
3032
3033 out_err:
3034        if (new_smi->intf)
3035                ipmi_unregister_smi(new_smi->intf);
3036
3037        if (new_smi->irq_cleanup)
3038                new_smi->irq_cleanup(new_smi);
3039
3040        /*
3041         * Wait until we know that we are out of any interrupt
3042         * handlers might have been running before we freed the
3043         * interrupt.
3044         */
3045        synchronize_sched();
3046
3047        if (new_smi->si_sm) {
3048                if (new_smi->handlers)
3049                        new_smi->handlers->cleanup(new_smi->si_sm);
3050                kfree(new_smi->si_sm);
3051        }
3052        if (new_smi->addr_source_cleanup)
3053                new_smi->addr_source_cleanup(new_smi);
3054        if (new_smi->io_cleanup)
3055                new_smi->io_cleanup(new_smi);
3056
3057        if (new_smi->dev_registered)
3058                platform_device_unregister(new_smi->pdev);
3059
3060        kfree(new_smi);
3061
3062        mutex_unlock(&smi_infos_lock);
3063
3064        return rv;
3065}
3066
3067static __devinit int init_ipmi_si(void)
3068{
3069        int  i;
3070        char *str;
3071        int  rv;
3072
3073        if (initialized)
3074                return 0;
3075        initialized = 1;
3076
3077        /* Register the device drivers. */
3078        rv = driver_register(&ipmi_driver.driver);
3079        if (rv) {
3080                printk(KERN_ERR
3081                       "init_ipmi_si: Unable to register driver: %d\n",
3082                       rv);
3083                return rv;
3084        }
3085
3086
3087        /* Parse out the si_type string into its components. */
3088        str = si_type_str;
3089        if (*str != '\0') {
3090                for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3091                        si_type[i] = str;
3092                        str = strchr(str, ',');
3093                        if (str) {
3094                                *str = '\0';
3095                                str++;
3096                        } else {
3097                                break;
3098                        }
3099                }
3100        }
3101
3102        printk(KERN_INFO "IPMI System Interface driver.\n");
3103
3104        hardcode_find_bmc();
3105
3106#ifdef CONFIG_DMI
3107        dmi_find_bmc();
3108#endif
3109
3110#ifdef CONFIG_ACPI
3111        acpi_find_bmc();
3112#endif
3113
3114#ifdef CONFIG_PCI
3115        rv = pci_register_driver(&ipmi_pci_driver);
3116        if (rv)
3117                printk(KERN_ERR
3118                       "init_ipmi_si: Unable to register PCI driver: %d\n",
3119                       rv);
3120#endif
3121
3122#ifdef CONFIG_PPC_OF
3123        of_register_platform_driver(&ipmi_of_platform_driver);
3124#endif
3125
3126        if (si_trydefaults) {
3127                mutex_lock(&smi_infos_lock);
3128                if (list_empty(&smi_infos)) {
3129                        /* No BMC was found, try defaults. */
3130                        mutex_unlock(&smi_infos_lock);
3131                        default_find_bmc();
3132                } else {
3133                        mutex_unlock(&smi_infos_lock);
3134                }
3135        }
3136
3137        mutex_lock(&smi_infos_lock);
3138        if (unload_when_empty && list_empty(&smi_infos)) {
3139                mutex_unlock(&smi_infos_lock);
3140#ifdef CONFIG_PCI
3141                pci_unregister_driver(&ipmi_pci_driver);
3142#endif
3143
3144#ifdef CONFIG_PPC_OF
3145                of_unregister_platform_driver(&ipmi_of_platform_driver);
3146#endif
3147                driver_unregister(&ipmi_driver.driver);
3148                printk(KERN_WARNING
3149                       "ipmi_si: Unable to find any System Interface(s)\n");
3150                return -ENODEV;
3151        } else {
3152                mutex_unlock(&smi_infos_lock);
3153                return 0;
3154        }
3155}
3156module_init(init_ipmi_si);
3157
3158static void cleanup_one_si(struct smi_info *to_clean)
3159{
3160        int           rv;
3161        unsigned long flags;
3162
3163        if (!to_clean)
3164                return;
3165
3166        list_del(&to_clean->link);
3167
3168        /* Tell the driver that we are shutting down. */
3169        atomic_inc(&to_clean->stop_operation);
3170
3171        /*
3172         * Make sure the timer and thread are stopped and will not run
3173         * again.
3174         */
3175        wait_for_timer_and_thread(to_clean);
3176
3177        /*
3178         * Timeouts are stopped, now make sure the interrupts are off
3179         * for the device.  A little tricky with locks to make sure
3180         * there are no races.
3181         */
3182        spin_lock_irqsave(&to_clean->si_lock, flags);
3183        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3184                spin_unlock_irqrestore(&to_clean->si_lock, flags);
3185                poll(to_clean);
3186                schedule_timeout_uninterruptible(1);
3187                spin_lock_irqsave(&to_clean->si_lock, flags);
3188        }
3189        disable_si_irq(to_clean);
3190        spin_unlock_irqrestore(&to_clean->si_lock, flags);
3191        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3192                poll(to_clean);
3193                schedule_timeout_uninterruptible(1);
3194        }
3195
3196        /* Clean up interrupts and make sure that everything is done. */
3197        if (to_clean->irq_cleanup)
3198                to_clean->irq_cleanup(to_clean);
3199        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3200                poll(to_clean);
3201                schedule_timeout_uninterruptible(1);
3202        }
3203
3204        rv = ipmi_unregister_smi(to_clean->intf);
3205        if (rv) {
3206                printk(KERN_ERR
3207                       "ipmi_si: Unable to unregister device: errno=%d\n",
3208                       rv);
3209        }
3210
3211        to_clean->handlers->cleanup(to_clean->si_sm);
3212
3213        kfree(to_clean->si_sm);
3214
3215        if (to_clean->addr_source_cleanup)
3216                to_clean->addr_source_cleanup(to_clean);
3217        if (to_clean->io_cleanup)
3218                to_clean->io_cleanup(to_clean);
3219
3220        if (to_clean->dev_registered)
3221                platform_device_unregister(to_clean->pdev);
3222
3223        kfree(to_clean);
3224}
3225
3226static __exit void cleanup_ipmi_si(void)
3227{
3228        struct smi_info *e, *tmp_e;
3229
3230        if (!initialized)
3231                return;
3232
3233#ifdef CONFIG_PCI
3234        pci_unregister_driver(&ipmi_pci_driver);
3235#endif
3236
3237#ifdef CONFIG_PPC_OF
3238        of_unregister_platform_driver(&ipmi_of_platform_driver);
3239#endif
3240
3241        mutex_lock(&smi_infos_lock);
3242        list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3243                cleanup_one_si(e);
3244        mutex_unlock(&smi_infos_lock);
3245
3246        driver_unregister(&ipmi_driver.driver);
3247}
3248module_exit(cleanup_ipmi_si);
3249
3250MODULE_LICENSE("GPL");
3251MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3252MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3253                   " system interfaces.");
3254