1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
54#include <linux/notifier.h>
55#include <linux/mutex.h>
56#include <linux/kthread.h>
57#include <asm/irq.h>
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
60#include <linux/ipmi_smi.h>
61#include <asm/io.h>
62#include "ipmi_si_sm.h"
63#include <linux/init.h>
64#include <linux/dmi.h>
65#include <linux/string.h>
66#include <linux/ctype.h>
67
68#ifdef CONFIG_PPC_OF
69#include <linux/of_device.h>
70#include <linux/of_platform.h>
71#endif
72
73#define PFX "ipmi_si: "
74
75
76#undef DEBUG_TIMING
77
78
79#define SI_TIMEOUT_TIME_USEC 10000
80#define SI_USEC_PER_JIFFY (1000000/HZ)
81#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82#define SI_SHORT_TIMEOUT_USEC 250
83
84
85enum si_intf_state {
86 SI_NORMAL,
87 SI_GETTING_FLAGS,
88 SI_GETTING_EVENTS,
89 SI_CLEARING_FLAGS,
90 SI_CLEARING_FLAGS_THEN_SET_IRQ,
91 SI_GETTING_MESSAGES,
92 SI_ENABLE_INTERRUPTS1,
93 SI_ENABLE_INTERRUPTS2,
94 SI_DISABLE_INTERRUPTS1,
95 SI_DISABLE_INTERRUPTS2
96
97};
98
99
100#define IPMI_BT_INTMASK_REG 2
101#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
102#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
103
104enum si_type {
105 SI_KCS, SI_SMIC, SI_BT
106};
107static char *si_to_str[] = { "kcs", "smic", "bt" };
108
109#define DEVICE_NAME "ipmi_si"
110
111static struct platform_driver ipmi_driver = {
112 .driver = {
113 .name = DEVICE_NAME,
114 .bus = &platform_bus_type
115 }
116};
117
118
119
120
121
122enum si_stat_indexes {
123
124
125
126
127 SI_STAT_short_timeouts = 0,
128
129
130
131
132
133 SI_STAT_long_timeouts,
134
135
136 SI_STAT_idles,
137
138
139 SI_STAT_interrupts,
140
141
142 SI_STAT_attentions,
143
144
145 SI_STAT_flag_fetches,
146
147
148 SI_STAT_hosed_count,
149
150
151 SI_STAT_complete_transactions,
152
153
154 SI_STAT_events,
155
156
157 SI_STAT_watchdog_pretimeouts,
158
159
160 SI_STAT_incoming_messages,
161
162
163
164 SI_NUM_STATS
165};
166
167struct smi_info {
168 int intf_num;
169 ipmi_smi_t intf;
170 struct si_sm_data *si_sm;
171 struct si_sm_handlers *handlers;
172 enum si_type si_type;
173 spinlock_t si_lock;
174 spinlock_t msg_lock;
175 struct list_head xmit_msgs;
176 struct list_head hp_xmit_msgs;
177 struct ipmi_smi_msg *curr_msg;
178 enum si_intf_state si_state;
179
180
181
182
183
184 struct si_sm_io io;
185 int (*io_setup)(struct smi_info *info);
186 void (*io_cleanup)(struct smi_info *info);
187 int (*irq_setup)(struct smi_info *info);
188 void (*irq_cleanup)(struct smi_info *info);
189 unsigned int io_size;
190 char *addr_source;
191 void (*addr_source_cleanup)(struct smi_info *info);
192 void *addr_source_data;
193
194
195
196
197
198
199 int (*oem_data_avail_handler)(struct smi_info *smi_info);
200
201
202
203
204
205
206#define RECEIVE_MSG_AVAIL 0x01
207#define EVENT_MSG_BUFFER_FULL 0x02
208#define WDT_PRE_TIMEOUT_INT 0x08
209#define OEM0_DATA_AVAIL 0x20
210#define OEM1_DATA_AVAIL 0x40
211#define OEM2_DATA_AVAIL 0x80
212#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
213 OEM1_DATA_AVAIL | \
214 OEM2_DATA_AVAIL)
215 unsigned char msg_flags;
216
217
218 char has_event_buffer;
219
220
221
222
223
224 atomic_t req_events;
225
226
227
228
229
230
231 int run_to_completion;
232
233
234 int port;
235
236
237
238
239
240
241 unsigned int spacing;
242
243
244 int irq;
245
246
247 struct timer_list si_timer;
248
249
250 unsigned long last_timeout_jiffies;
251
252
253 atomic_t stop_operation;
254
255
256
257
258
259
260
261 int interrupt_disabled;
262
263
264 struct ipmi_device_id device_id;
265
266
267 struct device *dev;
268 struct platform_device *pdev;
269
270
271
272
273
274 int dev_registered;
275
276
277 unsigned char slave_addr;
278
279
280 atomic_t stats[SI_NUM_STATS];
281
282 struct task_struct *thread;
283
284 struct list_head link;
285};
286
287#define smi_inc_stat(smi, stat) \
288 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
289#define smi_get_stat(smi, stat) \
290 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
291
292#define SI_MAX_PARMS 4
293
294static int force_kipmid[SI_MAX_PARMS];
295static int num_force_kipmid;
296
297static int unload_when_empty = 1;
298
299static int try_smi_init(struct smi_info *smi);
300static void cleanup_one_si(struct smi_info *to_clean);
301
302static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
303static int register_xaction_notifier(struct notifier_block *nb)
304{
305 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
306}
307
308static void deliver_recv_msg(struct smi_info *smi_info,
309 struct ipmi_smi_msg *msg)
310{
311
312
313 spin_unlock(&(smi_info->si_lock));
314 ipmi_smi_msg_received(smi_info->intf, msg);
315 spin_lock(&(smi_info->si_lock));
316}
317
318static void return_hosed_msg(struct smi_info *smi_info, int cCode)
319{
320 struct ipmi_smi_msg *msg = smi_info->curr_msg;
321
322 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
323 cCode = IPMI_ERR_UNSPECIFIED;
324
325
326
327 msg->rsp[0] = msg->data[0] | 4;
328 msg->rsp[1] = msg->data[1];
329 msg->rsp[2] = cCode;
330 msg->rsp_size = 3;
331
332 smi_info->curr_msg = NULL;
333 deliver_recv_msg(smi_info, msg);
334}
335
336static enum si_sm_result start_next_msg(struct smi_info *smi_info)
337{
338 int rv;
339 struct list_head *entry = NULL;
340#ifdef DEBUG_TIMING
341 struct timeval t;
342#endif
343
344
345
346
347
348 if (!smi_info->run_to_completion)
349 spin_lock(&(smi_info->msg_lock));
350
351
352 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353 entry = smi_info->hp_xmit_msgs.next;
354 } else if (!list_empty(&(smi_info->xmit_msgs))) {
355 entry = smi_info->xmit_msgs.next;
356 }
357
358 if (!entry) {
359 smi_info->curr_msg = NULL;
360 rv = SI_SM_IDLE;
361 } else {
362 int err;
363
364 list_del(entry);
365 smi_info->curr_msg = list_entry(entry,
366 struct ipmi_smi_msg,
367 link);
368#ifdef DEBUG_TIMING
369 do_gettimeofday(&t);
370 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371#endif
372 err = atomic_notifier_call_chain(&xaction_notifier_list,
373 0, smi_info);
374 if (err & NOTIFY_STOP_MASK) {
375 rv = SI_SM_CALL_WITHOUT_DELAY;
376 goto out;
377 }
378 err = smi_info->handlers->start_transaction(
379 smi_info->si_sm,
380 smi_info->curr_msg->data,
381 smi_info->curr_msg->data_size);
382 if (err)
383 return_hosed_msg(smi_info, err);
384
385 rv = SI_SM_CALL_WITHOUT_DELAY;
386 }
387 out:
388 if (!smi_info->run_to_completion)
389 spin_unlock(&(smi_info->msg_lock));
390
391 return rv;
392}
393
394static void start_enable_irq(struct smi_info *smi_info)
395{
396 unsigned char msg[2];
397
398
399
400
401
402 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
403 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
404
405 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
406 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
407}
408
409static void start_disable_irq(struct smi_info *smi_info)
410{
411 unsigned char msg[2];
412
413 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
414 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
415
416 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
417 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
418}
419
420static void start_clear_flags(struct smi_info *smi_info)
421{
422 unsigned char msg[3];
423
424
425 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
426 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
427 msg[2] = WDT_PRE_TIMEOUT_INT;
428
429 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
430 smi_info->si_state = SI_CLEARING_FLAGS;
431}
432
433
434
435
436
437
438
439static inline void disable_si_irq(struct smi_info *smi_info)
440{
441 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
442 start_disable_irq(smi_info);
443 smi_info->interrupt_disabled = 1;
444 }
445}
446
447static inline void enable_si_irq(struct smi_info *smi_info)
448{
449 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450 start_enable_irq(smi_info);
451 smi_info->interrupt_disabled = 0;
452 }
453}
454
455static void handle_flags(struct smi_info *smi_info)
456{
457 retry:
458 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459
460 smi_inc_stat(smi_info, watchdog_pretimeouts);
461
462 start_clear_flags(smi_info);
463 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464 spin_unlock(&(smi_info->si_lock));
465 ipmi_smi_watchdog_pretimeout(smi_info->intf);
466 spin_lock(&(smi_info->si_lock));
467 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
468
469 smi_info->curr_msg = ipmi_alloc_smi_msg();
470 if (!smi_info->curr_msg) {
471 disable_si_irq(smi_info);
472 smi_info->si_state = SI_NORMAL;
473 return;
474 }
475 enable_si_irq(smi_info);
476
477 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
478 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
479 smi_info->curr_msg->data_size = 2;
480
481 smi_info->handlers->start_transaction(
482 smi_info->si_sm,
483 smi_info->curr_msg->data,
484 smi_info->curr_msg->data_size);
485 smi_info->si_state = SI_GETTING_MESSAGES;
486 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
487
488 smi_info->curr_msg = ipmi_alloc_smi_msg();
489 if (!smi_info->curr_msg) {
490 disable_si_irq(smi_info);
491 smi_info->si_state = SI_NORMAL;
492 return;
493 }
494 enable_si_irq(smi_info);
495
496 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
497 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
498 smi_info->curr_msg->data_size = 2;
499
500 smi_info->handlers->start_transaction(
501 smi_info->si_sm,
502 smi_info->curr_msg->data,
503 smi_info->curr_msg->data_size);
504 smi_info->si_state = SI_GETTING_EVENTS;
505 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
506 smi_info->oem_data_avail_handler) {
507 if (smi_info->oem_data_avail_handler(smi_info))
508 goto retry;
509 } else
510 smi_info->si_state = SI_NORMAL;
511}
512
513static void handle_transaction_done(struct smi_info *smi_info)
514{
515 struct ipmi_smi_msg *msg;
516#ifdef DEBUG_TIMING
517 struct timeval t;
518
519 do_gettimeofday(&t);
520 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
521#endif
522 switch (smi_info->si_state) {
523 case SI_NORMAL:
524 if (!smi_info->curr_msg)
525 break;
526
527 smi_info->curr_msg->rsp_size
528 = smi_info->handlers->get_result(
529 smi_info->si_sm,
530 smi_info->curr_msg->rsp,
531 IPMI_MAX_MSG_LENGTH);
532
533
534
535
536
537
538 msg = smi_info->curr_msg;
539 smi_info->curr_msg = NULL;
540 deliver_recv_msg(smi_info, msg);
541 break;
542
543 case SI_GETTING_FLAGS:
544 {
545 unsigned char msg[4];
546 unsigned int len;
547
548
549 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
550 if (msg[2] != 0) {
551
552 smi_info->si_state = SI_NORMAL;
553 } else if (len < 4) {
554
555
556
557
558 smi_info->si_state = SI_NORMAL;
559 } else {
560 smi_info->msg_flags = msg[3];
561 handle_flags(smi_info);
562 }
563 break;
564 }
565
566 case SI_CLEARING_FLAGS:
567 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
568 {
569 unsigned char msg[3];
570
571
572 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
573 if (msg[2] != 0) {
574
575 printk(KERN_WARNING
576 "ipmi_si: Error clearing flags: %2.2x\n",
577 msg[2]);
578 }
579 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
580 start_enable_irq(smi_info);
581 else
582 smi_info->si_state = SI_NORMAL;
583 break;
584 }
585
586 case SI_GETTING_EVENTS:
587 {
588 smi_info->curr_msg->rsp_size
589 = smi_info->handlers->get_result(
590 smi_info->si_sm,
591 smi_info->curr_msg->rsp,
592 IPMI_MAX_MSG_LENGTH);
593
594
595
596
597
598
599 msg = smi_info->curr_msg;
600 smi_info->curr_msg = NULL;
601 if (msg->rsp[2] != 0) {
602
603 msg->done(msg);
604
605
606 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
607 handle_flags(smi_info);
608 } else {
609 smi_inc_stat(smi_info, events);
610
611
612
613
614
615
616
617 handle_flags(smi_info);
618
619 deliver_recv_msg(smi_info, msg);
620 }
621 break;
622 }
623
624 case SI_GETTING_MESSAGES:
625 {
626 smi_info->curr_msg->rsp_size
627 = smi_info->handlers->get_result(
628 smi_info->si_sm,
629 smi_info->curr_msg->rsp,
630 IPMI_MAX_MSG_LENGTH);
631
632
633
634
635
636
637 msg = smi_info->curr_msg;
638 smi_info->curr_msg = NULL;
639 if (msg->rsp[2] != 0) {
640
641 msg->done(msg);
642
643
644 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
645 handle_flags(smi_info);
646 } else {
647 smi_inc_stat(smi_info, incoming_messages);
648
649
650
651
652
653
654
655 handle_flags(smi_info);
656
657 deliver_recv_msg(smi_info, msg);
658 }
659 break;
660 }
661
662 case SI_ENABLE_INTERRUPTS1:
663 {
664 unsigned char msg[4];
665
666
667 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
668 if (msg[2] != 0) {
669 printk(KERN_WARNING
670 "ipmi_si: Could not enable interrupts"
671 ", failed get, using polled mode.\n");
672 smi_info->si_state = SI_NORMAL;
673 } else {
674 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
675 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
676 msg[2] = (msg[3] |
677 IPMI_BMC_RCV_MSG_INTR |
678 IPMI_BMC_EVT_MSG_INTR);
679 smi_info->handlers->start_transaction(
680 smi_info->si_sm, msg, 3);
681 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
682 }
683 break;
684 }
685
686 case SI_ENABLE_INTERRUPTS2:
687 {
688 unsigned char msg[4];
689
690
691 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
692 if (msg[2] != 0) {
693 printk(KERN_WARNING
694 "ipmi_si: Could not enable interrupts"
695 ", failed set, using polled mode.\n");
696 }
697 smi_info->si_state = SI_NORMAL;
698 break;
699 }
700
701 case SI_DISABLE_INTERRUPTS1:
702 {
703 unsigned char msg[4];
704
705
706 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
707 if (msg[2] != 0) {
708 printk(KERN_WARNING
709 "ipmi_si: Could not disable interrupts"
710 ", failed get.\n");
711 smi_info->si_state = SI_NORMAL;
712 } else {
713 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
714 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
715 msg[2] = (msg[3] &
716 ~(IPMI_BMC_RCV_MSG_INTR |
717 IPMI_BMC_EVT_MSG_INTR));
718 smi_info->handlers->start_transaction(
719 smi_info->si_sm, msg, 3);
720 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
721 }
722 break;
723 }
724
725 case SI_DISABLE_INTERRUPTS2:
726 {
727 unsigned char msg[4];
728
729
730 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
731 if (msg[2] != 0) {
732 printk(KERN_WARNING
733 "ipmi_si: Could not disable interrupts"
734 ", failed set.\n");
735 }
736 smi_info->si_state = SI_NORMAL;
737 break;
738 }
739 }
740}
741
742
743
744
745
746
747static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
748 int time)
749{
750 enum si_sm_result si_sm_result;
751
752 restart:
753
754
755
756
757
758
759
760
761 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
762 time = 0;
763 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
764 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
765
766 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
767 smi_inc_stat(smi_info, complete_transactions);
768
769 handle_transaction_done(smi_info);
770 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
771 } else if (si_sm_result == SI_SM_HOSED) {
772 smi_inc_stat(smi_info, hosed_count);
773
774
775
776
777
778 smi_info->si_state = SI_NORMAL;
779 if (smi_info->curr_msg != NULL) {
780
781
782
783
784
785 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
786 }
787 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
788 }
789
790
791
792
793
794 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
795 unsigned char msg[2];
796
797 smi_inc_stat(smi_info, attentions);
798
799
800
801
802
803
804
805
806 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
807 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
808
809 smi_info->handlers->start_transaction(
810 smi_info->si_sm, msg, 2);
811 smi_info->si_state = SI_GETTING_FLAGS;
812 goto restart;
813 }
814
815
816 if (si_sm_result == SI_SM_IDLE) {
817 smi_inc_stat(smi_info, idles);
818
819 si_sm_result = start_next_msg(smi_info);
820 if (si_sm_result != SI_SM_IDLE)
821 goto restart;
822 }
823
824 if ((si_sm_result == SI_SM_IDLE)
825 && (atomic_read(&smi_info->req_events))) {
826
827
828
829
830 atomic_set(&smi_info->req_events, 0);
831
832 smi_info->curr_msg = ipmi_alloc_smi_msg();
833 if (!smi_info->curr_msg)
834 goto out;
835
836 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
837 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
838 smi_info->curr_msg->data_size = 2;
839
840 smi_info->handlers->start_transaction(
841 smi_info->si_sm,
842 smi_info->curr_msg->data,
843 smi_info->curr_msg->data_size);
844 smi_info->si_state = SI_GETTING_EVENTS;
845 goto restart;
846 }
847 out:
848 return si_sm_result;
849}
850
851static void sender(void *send_info,
852 struct ipmi_smi_msg *msg,
853 int priority)
854{
855 struct smi_info *smi_info = send_info;
856 enum si_sm_result result;
857 unsigned long flags;
858#ifdef DEBUG_TIMING
859 struct timeval t;
860#endif
861
862 if (atomic_read(&smi_info->stop_operation)) {
863 msg->rsp[0] = msg->data[0] | 4;
864 msg->rsp[1] = msg->data[1];
865 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
866 msg->rsp_size = 3;
867 deliver_recv_msg(smi_info, msg);
868 return;
869 }
870
871#ifdef DEBUG_TIMING
872 do_gettimeofday(&t);
873 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
874#endif
875
876 if (smi_info->run_to_completion) {
877
878
879
880
881
882
883
884
885
886
887 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
888
889 result = smi_event_handler(smi_info, 0);
890 while (result != SI_SM_IDLE) {
891 udelay(SI_SHORT_TIMEOUT_USEC);
892 result = smi_event_handler(smi_info,
893 SI_SHORT_TIMEOUT_USEC);
894 }
895 return;
896 }
897
898 spin_lock_irqsave(&smi_info->msg_lock, flags);
899 if (priority > 0)
900 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
901 else
902 list_add_tail(&msg->link, &smi_info->xmit_msgs);
903 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
904
905 spin_lock_irqsave(&smi_info->si_lock, flags);
906 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
907 start_next_msg(smi_info);
908 spin_unlock_irqrestore(&smi_info->si_lock, flags);
909}
910
911static void set_run_to_completion(void *send_info, int i_run_to_completion)
912{
913 struct smi_info *smi_info = send_info;
914 enum si_sm_result result;
915
916 smi_info->run_to_completion = i_run_to_completion;
917 if (i_run_to_completion) {
918 result = smi_event_handler(smi_info, 0);
919 while (result != SI_SM_IDLE) {
920 udelay(SI_SHORT_TIMEOUT_USEC);
921 result = smi_event_handler(smi_info,
922 SI_SHORT_TIMEOUT_USEC);
923 }
924 }
925}
926
927static int ipmi_thread(void *data)
928{
929 struct smi_info *smi_info = data;
930 unsigned long flags;
931 enum si_sm_result smi_result;
932
933 set_user_nice(current, 19);
934 while (!kthread_should_stop()) {
935 spin_lock_irqsave(&(smi_info->si_lock), flags);
936 smi_result = smi_event_handler(smi_info, 0);
937 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
938 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
939 ;
940 else if (smi_result == SI_SM_CALL_WITH_DELAY)
941 schedule();
942 else
943 schedule_timeout_interruptible(1);
944 }
945 return 0;
946}
947
948
949static void poll(void *send_info)
950{
951 struct smi_info *smi_info = send_info;
952 unsigned long flags;
953
954
955
956
957
958 udelay(10);
959 spin_lock_irqsave(&smi_info->si_lock, flags);
960 smi_event_handler(smi_info, 10);
961 spin_unlock_irqrestore(&smi_info->si_lock, flags);
962}
963
964static void request_events(void *send_info)
965{
966 struct smi_info *smi_info = send_info;
967
968 if (atomic_read(&smi_info->stop_operation) ||
969 !smi_info->has_event_buffer)
970 return;
971
972 atomic_set(&smi_info->req_events, 1);
973}
974
975static int initialized;
976
977static void smi_timeout(unsigned long data)
978{
979 struct smi_info *smi_info = (struct smi_info *) data;
980 enum si_sm_result smi_result;
981 unsigned long flags;
982 unsigned long jiffies_now;
983 long time_diff;
984#ifdef DEBUG_TIMING
985 struct timeval t;
986#endif
987
988 spin_lock_irqsave(&(smi_info->si_lock), flags);
989#ifdef DEBUG_TIMING
990 do_gettimeofday(&t);
991 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
992#endif
993 jiffies_now = jiffies;
994 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
995 * SI_USEC_PER_JIFFY);
996 smi_result = smi_event_handler(smi_info, time_diff);
997
998 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
999
1000 smi_info->last_timeout_jiffies = jiffies_now;
1001
1002 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1003
1004 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1005 smi_inc_stat(smi_info, long_timeouts);
1006 goto do_add_timer;
1007 }
1008
1009
1010
1011
1012
1013 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1014 smi_inc_stat(smi_info, short_timeouts);
1015 smi_info->si_timer.expires = jiffies + 1;
1016 } else {
1017 smi_inc_stat(smi_info, long_timeouts);
1018 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1019 }
1020
1021 do_add_timer:
1022 add_timer(&(smi_info->si_timer));
1023}
1024
1025static irqreturn_t si_irq_handler(int irq, void *data)
1026{
1027 struct smi_info *smi_info = data;
1028 unsigned long flags;
1029#ifdef DEBUG_TIMING
1030 struct timeval t;
1031#endif
1032
1033 spin_lock_irqsave(&(smi_info->si_lock), flags);
1034
1035 smi_inc_stat(smi_info, interrupts);
1036
1037#ifdef DEBUG_TIMING
1038 do_gettimeofday(&t);
1039 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1040#endif
1041 smi_event_handler(smi_info, 0);
1042 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1043 return IRQ_HANDLED;
1044}
1045
1046static irqreturn_t si_bt_irq_handler(int irq, void *data)
1047{
1048 struct smi_info *smi_info = data;
1049
1050 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1051 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1052 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1053 return si_irq_handler(irq, data);
1054}
1055
1056static int smi_start_processing(void *send_info,
1057 ipmi_smi_t intf)
1058{
1059 struct smi_info *new_smi = send_info;
1060 int enable = 0;
1061
1062 new_smi->intf = intf;
1063
1064
1065 if (new_smi->irq_setup)
1066 new_smi->irq_setup(new_smi);
1067
1068
1069 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1070 new_smi->last_timeout_jiffies = jiffies;
1071 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1072
1073
1074
1075
1076 if (new_smi->intf_num < num_force_kipmid)
1077 enable = force_kipmid[new_smi->intf_num];
1078
1079
1080
1081
1082 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1083 enable = 1;
1084
1085 if (enable) {
1086 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1087 "kipmi%d", new_smi->intf_num);
1088 if (IS_ERR(new_smi->thread)) {
1089 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1090 " kernel thread due to error %ld, only using"
1091 " timers to drive the interface\n",
1092 PTR_ERR(new_smi->thread));
1093 new_smi->thread = NULL;
1094 }
1095 }
1096
1097 return 0;
1098}
1099
1100static void set_maintenance_mode(void *send_info, int enable)
1101{
1102 struct smi_info *smi_info = send_info;
1103
1104 if (!enable)
1105 atomic_set(&smi_info->req_events, 0);
1106}
1107
1108static struct ipmi_smi_handlers handlers = {
1109 .owner = THIS_MODULE,
1110 .start_processing = smi_start_processing,
1111 .sender = sender,
1112 .request_events = request_events,
1113 .set_maintenance_mode = set_maintenance_mode,
1114 .set_run_to_completion = set_run_to_completion,
1115 .poll = poll,
1116};
1117
1118
1119
1120
1121
1122
1123static LIST_HEAD(smi_infos);
1124static DEFINE_MUTEX(smi_infos_lock);
1125static int smi_num;
1126
1127#define DEFAULT_REGSPACING 1
1128#define DEFAULT_REGSIZE 1
1129
1130static int si_trydefaults = 1;
1131static char *si_type[SI_MAX_PARMS];
1132#define MAX_SI_TYPE_STR 30
1133static char si_type_str[MAX_SI_TYPE_STR];
1134static unsigned long addrs[SI_MAX_PARMS];
1135static unsigned int num_addrs;
1136static unsigned int ports[SI_MAX_PARMS];
1137static unsigned int num_ports;
1138static int irqs[SI_MAX_PARMS];
1139static unsigned int num_irqs;
1140static int regspacings[SI_MAX_PARMS];
1141static unsigned int num_regspacings;
1142static int regsizes[SI_MAX_PARMS];
1143static unsigned int num_regsizes;
1144static int regshifts[SI_MAX_PARMS];
1145static unsigned int num_regshifts;
1146static int slave_addrs[SI_MAX_PARMS];
1147static unsigned int num_slave_addrs;
1148
1149#define IPMI_IO_ADDR_SPACE 0
1150#define IPMI_MEM_ADDR_SPACE 1
1151static char *addr_space_to_str[] = { "i/o", "mem" };
1152
1153static int hotmod_handler(const char *val, struct kernel_param *kp);
1154
1155module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1156MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1157 " Documentation/IPMI.txt in the kernel sources for the"
1158 " gory details.");
1159
1160module_param_named(trydefaults, si_trydefaults, bool, 0);
1161MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1162 " default scan of the KCS and SMIC interface at the standard"
1163 " address");
1164module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1165MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1166 " interface separated by commas. The types are 'kcs',"
1167 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1168 " the first interface to kcs and the second to bt");
1169module_param_array(addrs, ulong, &num_addrs, 0);
1170MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1171 " addresses separated by commas. Only use if an interface"
1172 " is in memory. Otherwise, set it to zero or leave"
1173 " it blank.");
1174module_param_array(ports, uint, &num_ports, 0);
1175MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1176 " addresses separated by commas. Only use if an interface"
1177 " is a port. Otherwise, set it to zero or leave"
1178 " it blank.");
1179module_param_array(irqs, int, &num_irqs, 0);
1180MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1181 " addresses separated by commas. Only use if an interface"
1182 " has an interrupt. Otherwise, set it to zero or leave"
1183 " it blank.");
1184module_param_array(regspacings, int, &num_regspacings, 0);
1185MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1186 " and each successive register used by the interface. For"
1187 " instance, if the start address is 0xca2 and the spacing"
1188 " is 2, then the second address is at 0xca4. Defaults"
1189 " to 1.");
1190module_param_array(regsizes, int, &num_regsizes, 0);
1191MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1192 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1193 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1194 " the 8-bit IPMI register has to be read from a larger"
1195 " register.");
1196module_param_array(regshifts, int, &num_regshifts, 0);
1197MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1198 " IPMI register, in bits. For instance, if the data"
1199 " is read from a 32-bit word and the IPMI data is in"
1200 " bit 8-15, then the shift would be 8");
1201module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1202MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1203 " the controller. Normally this is 0x20, but can be"
1204 " overridden by this parm. This is an array indexed"
1205 " by interface number.");
1206module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1207MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1208 " disabled(0). Normally the IPMI driver auto-detects"
1209 " this, but the value may be overridden by this parm.");
1210module_param(unload_when_empty, int, 0);
1211MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1212 " specified or found, default is 1. Setting to 0"
1213 " is useful for hot add of devices using hotmod.");
1214
1215
1216static void std_irq_cleanup(struct smi_info *info)
1217{
1218 if (info->si_type == SI_BT)
1219
1220 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1221 free_irq(info->irq, info);
1222}
1223
1224static int std_irq_setup(struct smi_info *info)
1225{
1226 int rv;
1227
1228 if (!info->irq)
1229 return 0;
1230
1231 if (info->si_type == SI_BT) {
1232 rv = request_irq(info->irq,
1233 si_bt_irq_handler,
1234 IRQF_SHARED | IRQF_DISABLED,
1235 DEVICE_NAME,
1236 info);
1237 if (!rv)
1238
1239 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1240 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1241 } else
1242 rv = request_irq(info->irq,
1243 si_irq_handler,
1244 IRQF_SHARED | IRQF_DISABLED,
1245 DEVICE_NAME,
1246 info);
1247 if (rv) {
1248 printk(KERN_WARNING
1249 "ipmi_si: %s unable to claim interrupt %d,"
1250 " running polled\n",
1251 DEVICE_NAME, info->irq);
1252 info->irq = 0;
1253 } else {
1254 info->irq_cleanup = std_irq_cleanup;
1255 printk(" Using irq %d\n", info->irq);
1256 }
1257
1258 return rv;
1259}
1260
1261static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1262{
1263 unsigned int addr = io->addr_data;
1264
1265 return inb(addr + (offset * io->regspacing));
1266}
1267
1268static void port_outb(struct si_sm_io *io, unsigned int offset,
1269 unsigned char b)
1270{
1271 unsigned int addr = io->addr_data;
1272
1273 outb(b, addr + (offset * io->regspacing));
1274}
1275
1276static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1277{
1278 unsigned int addr = io->addr_data;
1279
1280 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1281}
1282
1283static void port_outw(struct si_sm_io *io, unsigned int offset,
1284 unsigned char b)
1285{
1286 unsigned int addr = io->addr_data;
1287
1288 outw(b << io->regshift, addr + (offset * io->regspacing));
1289}
1290
1291static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1292{
1293 unsigned int addr = io->addr_data;
1294
1295 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1296}
1297
1298static void port_outl(struct si_sm_io *io, unsigned int offset,
1299 unsigned char b)
1300{
1301 unsigned int addr = io->addr_data;
1302
1303 outl(b << io->regshift, addr+(offset * io->regspacing));
1304}
1305
1306static void port_cleanup(struct smi_info *info)
1307{
1308 unsigned int addr = info->io.addr_data;
1309 int idx;
1310
1311 if (addr) {
1312 for (idx = 0; idx < info->io_size; idx++)
1313 release_region(addr + idx * info->io.regspacing,
1314 info->io.regsize);
1315 }
1316}
1317
1318static int port_setup(struct smi_info *info)
1319{
1320 unsigned int addr = info->io.addr_data;
1321 int idx;
1322
1323 if (!addr)
1324 return -ENODEV;
1325
1326 info->io_cleanup = port_cleanup;
1327
1328
1329
1330
1331
1332 switch (info->io.regsize) {
1333 case 1:
1334 info->io.inputb = port_inb;
1335 info->io.outputb = port_outb;
1336 break;
1337 case 2:
1338 info->io.inputb = port_inw;
1339 info->io.outputb = port_outw;
1340 break;
1341 case 4:
1342 info->io.inputb = port_inl;
1343 info->io.outputb = port_outl;
1344 break;
1345 default:
1346 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1347 info->io.regsize);
1348 return -EINVAL;
1349 }
1350
1351
1352
1353
1354
1355
1356
1357 for (idx = 0; idx < info->io_size; idx++) {
1358 if (request_region(addr + idx * info->io.regspacing,
1359 info->io.regsize, DEVICE_NAME) == NULL) {
1360
1361 while (idx--) {
1362 release_region(addr + idx * info->io.regspacing,
1363 info->io.regsize);
1364 }
1365 return -EIO;
1366 }
1367 }
1368 return 0;
1369}
1370
1371static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1372{
1373 return readb((io->addr)+(offset * io->regspacing));
1374}
1375
1376static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1377 unsigned char b)
1378{
1379 writeb(b, (io->addr)+(offset * io->regspacing));
1380}
1381
1382static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1383{
1384 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1385 & 0xff;
1386}
1387
1388static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1389 unsigned char b)
1390{
1391 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1392}
1393
1394static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1395{
1396 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1397 & 0xff;
1398}
1399
1400static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1401 unsigned char b)
1402{
1403 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1404}
1405
1406#ifdef readq
1407static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1408{
1409 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1410 & 0xff;
1411}
1412
1413static void mem_outq(struct si_sm_io *io, unsigned int offset,
1414 unsigned char b)
1415{
1416 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1417}
1418#endif
1419
1420static void mem_cleanup(struct smi_info *info)
1421{
1422 unsigned long addr = info->io.addr_data;
1423 int mapsize;
1424
1425 if (info->io.addr) {
1426 iounmap(info->io.addr);
1427
1428 mapsize = ((info->io_size * info->io.regspacing)
1429 - (info->io.regspacing - info->io.regsize));
1430
1431 release_mem_region(addr, mapsize);
1432 }
1433}
1434
1435static int mem_setup(struct smi_info *info)
1436{
1437 unsigned long addr = info->io.addr_data;
1438 int mapsize;
1439
1440 if (!addr)
1441 return -ENODEV;
1442
1443 info->io_cleanup = mem_cleanup;
1444
1445
1446
1447
1448
1449 switch (info->io.regsize) {
1450 case 1:
1451 info->io.inputb = intf_mem_inb;
1452 info->io.outputb = intf_mem_outb;
1453 break;
1454 case 2:
1455 info->io.inputb = intf_mem_inw;
1456 info->io.outputb = intf_mem_outw;
1457 break;
1458 case 4:
1459 info->io.inputb = intf_mem_inl;
1460 info->io.outputb = intf_mem_outl;
1461 break;
1462#ifdef readq
1463 case 8:
1464 info->io.inputb = mem_inq;
1465 info->io.outputb = mem_outq;
1466 break;
1467#endif
1468 default:
1469 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1470 info->io.regsize);
1471 return -EINVAL;
1472 }
1473
1474
1475
1476
1477
1478
1479
1480
1481 mapsize = ((info->io_size * info->io.regspacing)
1482 - (info->io.regspacing - info->io.regsize));
1483
1484 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1485 return -EIO;
1486
1487 info->io.addr = ioremap(addr, mapsize);
1488 if (info->io.addr == NULL) {
1489 release_mem_region(addr, mapsize);
1490 return -EIO;
1491 }
1492 return 0;
1493}
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505enum hotmod_op { HM_ADD, HM_REMOVE };
1506struct hotmod_vals {
1507 char *name;
1508 int val;
1509};
1510static struct hotmod_vals hotmod_ops[] = {
1511 { "add", HM_ADD },
1512 { "remove", HM_REMOVE },
1513 { NULL }
1514};
1515static struct hotmod_vals hotmod_si[] = {
1516 { "kcs", SI_KCS },
1517 { "smic", SI_SMIC },
1518 { "bt", SI_BT },
1519 { NULL }
1520};
1521static struct hotmod_vals hotmod_as[] = {
1522 { "mem", IPMI_MEM_ADDR_SPACE },
1523 { "i/o", IPMI_IO_ADDR_SPACE },
1524 { NULL }
1525};
1526
1527static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1528{
1529 char *s;
1530 int i;
1531
1532 s = strchr(*curr, ',');
1533 if (!s) {
1534 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1535 return -EINVAL;
1536 }
1537 *s = '\0';
1538 s++;
1539 for (i = 0; hotmod_ops[i].name; i++) {
1540 if (strcmp(*curr, v[i].name) == 0) {
1541 *val = v[i].val;
1542 *curr = s;
1543 return 0;
1544 }
1545 }
1546
1547 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1548 return -EINVAL;
1549}
1550
1551static int check_hotmod_int_op(const char *curr, const char *option,
1552 const char *name, int *val)
1553{
1554 char *n;
1555
1556 if (strcmp(curr, name) == 0) {
1557 if (!option) {
1558 printk(KERN_WARNING PFX
1559 "No option given for '%s'\n",
1560 curr);
1561 return -EINVAL;
1562 }
1563 *val = simple_strtoul(option, &n, 0);
1564 if ((*n != '\0') || (*option == '\0')) {
1565 printk(KERN_WARNING PFX
1566 "Bad option given for '%s'\n",
1567 curr);
1568 return -EINVAL;
1569 }
1570 return 1;
1571 }
1572 return 0;
1573}
1574
1575static int hotmod_handler(const char *val, struct kernel_param *kp)
1576{
1577 char *str = kstrdup(val, GFP_KERNEL);
1578 int rv;
1579 char *next, *curr, *s, *n, *o;
1580 enum hotmod_op op;
1581 enum si_type si_type;
1582 int addr_space;
1583 unsigned long addr;
1584 int regspacing;
1585 int regsize;
1586 int regshift;
1587 int irq;
1588 int ipmb;
1589 int ival;
1590 int len;
1591 struct smi_info *info;
1592
1593 if (!str)
1594 return -ENOMEM;
1595
1596
1597 len = strlen(str);
1598 ival = len - 1;
1599 while ((ival >= 0) && isspace(str[ival])) {
1600 str[ival] = '\0';
1601 ival--;
1602 }
1603
1604 for (curr = str; curr; curr = next) {
1605 regspacing = 1;
1606 regsize = 1;
1607 regshift = 0;
1608 irq = 0;
1609 ipmb = 0x20;
1610
1611 next = strchr(curr, ':');
1612 if (next) {
1613 *next = '\0';
1614 next++;
1615 }
1616
1617 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1618 if (rv)
1619 break;
1620 op = ival;
1621
1622 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1623 if (rv)
1624 break;
1625 si_type = ival;
1626
1627 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1628 if (rv)
1629 break;
1630
1631 s = strchr(curr, ',');
1632 if (s) {
1633 *s = '\0';
1634 s++;
1635 }
1636 addr = simple_strtoul(curr, &n, 0);
1637 if ((*n != '\0') || (*curr == '\0')) {
1638 printk(KERN_WARNING PFX "Invalid hotmod address"
1639 " '%s'\n", curr);
1640 break;
1641 }
1642
1643 while (s) {
1644 curr = s;
1645 s = strchr(curr, ',');
1646 if (s) {
1647 *s = '\0';
1648 s++;
1649 }
1650 o = strchr(curr, '=');
1651 if (o) {
1652 *o = '\0';
1653 o++;
1654 }
1655 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing);
1656 if (rv < 0)
1657 goto out;
1658 else if (rv)
1659 continue;
1660 rv = check_hotmod_int_op(curr, o, "rsi", ®size);
1661 if (rv < 0)
1662 goto out;
1663 else if (rv)
1664 continue;
1665 rv = check_hotmod_int_op(curr, o, "rsh", ®shift);
1666 if (rv < 0)
1667 goto out;
1668 else if (rv)
1669 continue;
1670 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1671 if (rv < 0)
1672 goto out;
1673 else if (rv)
1674 continue;
1675 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1676 if (rv < 0)
1677 goto out;
1678 else if (rv)
1679 continue;
1680
1681 rv = -EINVAL;
1682 printk(KERN_WARNING PFX
1683 "Invalid hotmod option '%s'\n",
1684 curr);
1685 goto out;
1686 }
1687
1688 if (op == HM_ADD) {
1689 info = kzalloc(sizeof(*info), GFP_KERNEL);
1690 if (!info) {
1691 rv = -ENOMEM;
1692 goto out;
1693 }
1694
1695 info->addr_source = "hotmod";
1696 info->si_type = si_type;
1697 info->io.addr_data = addr;
1698 info->io.addr_type = addr_space;
1699 if (addr_space == IPMI_MEM_ADDR_SPACE)
1700 info->io_setup = mem_setup;
1701 else
1702 info->io_setup = port_setup;
1703
1704 info->io.addr = NULL;
1705 info->io.regspacing = regspacing;
1706 if (!info->io.regspacing)
1707 info->io.regspacing = DEFAULT_REGSPACING;
1708 info->io.regsize = regsize;
1709 if (!info->io.regsize)
1710 info->io.regsize = DEFAULT_REGSPACING;
1711 info->io.regshift = regshift;
1712 info->irq = irq;
1713 if (info->irq)
1714 info->irq_setup = std_irq_setup;
1715 info->slave_addr = ipmb;
1716
1717 try_smi_init(info);
1718 } else {
1719
1720 struct smi_info *e, *tmp_e;
1721
1722 mutex_lock(&smi_infos_lock);
1723 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1724 if (e->io.addr_type != addr_space)
1725 continue;
1726 if (e->si_type != si_type)
1727 continue;
1728 if (e->io.addr_data == addr)
1729 cleanup_one_si(e);
1730 }
1731 mutex_unlock(&smi_infos_lock);
1732 }
1733 }
1734 rv = len;
1735 out:
1736 kfree(str);
1737 return rv;
1738}
1739
1740static __devinit void hardcode_find_bmc(void)
1741{
1742 int i;
1743 struct smi_info *info;
1744
1745 for (i = 0; i < SI_MAX_PARMS; i++) {
1746 if (!ports[i] && !addrs[i])
1747 continue;
1748
1749 info = kzalloc(sizeof(*info), GFP_KERNEL);
1750 if (!info)
1751 return;
1752
1753 info->addr_source = "hardcoded";
1754
1755 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1756 info->si_type = SI_KCS;
1757 } else if (strcmp(si_type[i], "smic") == 0) {
1758 info->si_type = SI_SMIC;
1759 } else if (strcmp(si_type[i], "bt") == 0) {
1760 info->si_type = SI_BT;
1761 } else {
1762 printk(KERN_WARNING
1763 "ipmi_si: Interface type specified "
1764 "for interface %d, was invalid: %s\n",
1765 i, si_type[i]);
1766 kfree(info);
1767 continue;
1768 }
1769
1770 if (ports[i]) {
1771
1772 info->io_setup = port_setup;
1773 info->io.addr_data = ports[i];
1774 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1775 } else if (addrs[i]) {
1776
1777 info->io_setup = mem_setup;
1778 info->io.addr_data = addrs[i];
1779 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1780 } else {
1781 printk(KERN_WARNING
1782 "ipmi_si: Interface type specified "
1783 "for interface %d, "
1784 "but port and address were not set or "
1785 "set to zero.\n", i);
1786 kfree(info);
1787 continue;
1788 }
1789
1790 info->io.addr = NULL;
1791 info->io.regspacing = regspacings[i];
1792 if (!info->io.regspacing)
1793 info->io.regspacing = DEFAULT_REGSPACING;
1794 info->io.regsize = regsizes[i];
1795 if (!info->io.regsize)
1796 info->io.regsize = DEFAULT_REGSPACING;
1797 info->io.regshift = regshifts[i];
1798 info->irq = irqs[i];
1799 if (info->irq)
1800 info->irq_setup = std_irq_setup;
1801
1802 try_smi_init(info);
1803 }
1804}
1805
1806#ifdef CONFIG_ACPI
1807
1808#include <linux/acpi.h>
1809
1810
1811
1812
1813
1814
1815static int acpi_failure;
1816
1817
1818static u32 ipmi_acpi_gpe(void *context)
1819{
1820 struct smi_info *smi_info = context;
1821 unsigned long flags;
1822#ifdef DEBUG_TIMING
1823 struct timeval t;
1824#endif
1825
1826 spin_lock_irqsave(&(smi_info->si_lock), flags);
1827
1828 smi_inc_stat(smi_info, interrupts);
1829
1830#ifdef DEBUG_TIMING
1831 do_gettimeofday(&t);
1832 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1833#endif
1834 smi_event_handler(smi_info, 0);
1835 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1836
1837 return ACPI_INTERRUPT_HANDLED;
1838}
1839
1840static void acpi_gpe_irq_cleanup(struct smi_info *info)
1841{
1842 if (!info->irq)
1843 return;
1844
1845 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1846}
1847
1848static int acpi_gpe_irq_setup(struct smi_info *info)
1849{
1850 acpi_status status;
1851
1852 if (!info->irq)
1853 return 0;
1854
1855
1856 status = acpi_install_gpe_handler(NULL,
1857 info->irq,
1858 ACPI_GPE_LEVEL_TRIGGERED,
1859 &ipmi_acpi_gpe,
1860 info);
1861 if (status != AE_OK) {
1862 printk(KERN_WARNING
1863 "ipmi_si: %s unable to claim ACPI GPE %d,"
1864 " running polled\n",
1865 DEVICE_NAME, info->irq);
1866 info->irq = 0;
1867 return -EINVAL;
1868 } else {
1869 info->irq_cleanup = acpi_gpe_irq_cleanup;
1870 printk(" Using ACPI GPE %d\n", info->irq);
1871 return 0;
1872 }
1873}
1874
1875
1876
1877
1878
1879
1880struct SPMITable {
1881 s8 Signature[4];
1882 u32 Length;
1883 u8 Revision;
1884 u8 Checksum;
1885 s8 OEMID[6];
1886 s8 OEMTableID[8];
1887 s8 OEMRevision[4];
1888 s8 CreatorID[4];
1889 s8 CreatorRevision[4];
1890 u8 InterfaceType;
1891 u8 IPMIlegacy;
1892 s16 SpecificationRevision;
1893
1894
1895
1896
1897
1898 u8 InterruptType;
1899
1900
1901
1902
1903
1904 u8 GPE;
1905
1906 s16 Reserved;
1907
1908
1909
1910
1911
1912 u32 GlobalSystemInterrupt;
1913
1914
1915 struct acpi_generic_address addr;
1916
1917 u8 UID[4];
1918
1919 s8 spmi_id[1];
1920};
1921
1922static __devinit int try_init_acpi(struct SPMITable *spmi)
1923{
1924 struct smi_info *info;
1925 u8 addr_space;
1926
1927 if (spmi->IPMIlegacy != 1) {
1928 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1929 return -ENODEV;
1930 }
1931
1932 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1933 addr_space = IPMI_MEM_ADDR_SPACE;
1934 else
1935 addr_space = IPMI_IO_ADDR_SPACE;
1936
1937 info = kzalloc(sizeof(*info), GFP_KERNEL);
1938 if (!info) {
1939 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1940 return -ENOMEM;
1941 }
1942
1943 info->addr_source = "ACPI";
1944
1945
1946 switch (spmi->InterfaceType) {
1947 case 1:
1948 info->si_type = SI_KCS;
1949 break;
1950 case 2:
1951 info->si_type = SI_SMIC;
1952 break;
1953 case 3:
1954 info->si_type = SI_BT;
1955 break;
1956 default:
1957 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1958 spmi->InterfaceType);
1959 kfree(info);
1960 return -EIO;
1961 }
1962
1963 if (spmi->InterruptType & 1) {
1964
1965 info->irq = spmi->GPE;
1966 info->irq_setup = acpi_gpe_irq_setup;
1967 } else if (spmi->InterruptType & 2) {
1968
1969 info->irq = spmi->GlobalSystemInterrupt;
1970 info->irq_setup = std_irq_setup;
1971 } else {
1972
1973 info->irq = 0;
1974 info->irq_setup = NULL;
1975 }
1976
1977 if (spmi->addr.bit_width) {
1978
1979 info->io.regspacing = spmi->addr.bit_width / 8;
1980 } else {
1981 info->io.regspacing = DEFAULT_REGSPACING;
1982 }
1983 info->io.regsize = info->io.regspacing;
1984 info->io.regshift = spmi->addr.bit_offset;
1985
1986 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1987 info->io_setup = mem_setup;
1988 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1989 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1990 info->io_setup = port_setup;
1991 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1992 } else {
1993 kfree(info);
1994 printk(KERN_WARNING
1995 "ipmi_si: Unknown ACPI I/O Address type\n");
1996 return -EIO;
1997 }
1998 info->io.addr_data = spmi->addr.address;
1999
2000 try_smi_init(info);
2001
2002 return 0;
2003}
2004
2005static __devinit void acpi_find_bmc(void)
2006{
2007 acpi_status status;
2008 struct SPMITable *spmi;
2009 int i;
2010
2011 if (acpi_disabled)
2012 return;
2013
2014 if (acpi_failure)
2015 return;
2016
2017 for (i = 0; ; i++) {
2018 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2019 (struct acpi_table_header **)&spmi);
2020 if (status != AE_OK)
2021 return;
2022
2023 try_init_acpi(spmi);
2024 }
2025}
2026#endif
2027
2028#ifdef CONFIG_DMI
2029struct dmi_ipmi_data {
2030 u8 type;
2031 u8 addr_space;
2032 unsigned long base_addr;
2033 u8 irq;
2034 u8 offset;
2035 u8 slave_addr;
2036};
2037
2038static int __devinit decode_dmi(const struct dmi_header *dm,
2039 struct dmi_ipmi_data *dmi)
2040{
2041 const u8 *data = (const u8 *)dm;
2042 unsigned long base_addr;
2043 u8 reg_spacing;
2044 u8 len = dm->length;
2045
2046 dmi->type = data[4];
2047
2048 memcpy(&base_addr, data+8, sizeof(unsigned long));
2049 if (len >= 0x11) {
2050 if (base_addr & 1) {
2051
2052 base_addr &= 0xFFFE;
2053 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2054 } else
2055
2056 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2057
2058
2059
2060 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2061
2062 dmi->irq = data[0x11];
2063
2064
2065 reg_spacing = (data[0x10] & 0xC0) >> 6;
2066 switch (reg_spacing) {
2067 case 0x00:
2068 dmi->offset = 1;
2069 break;
2070 case 0x01:
2071 dmi->offset = 4;
2072 break;
2073 case 0x02:
2074 dmi->offset = 16;
2075 break;
2076 default:
2077
2078 return -EIO;
2079 }
2080 } else {
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090 dmi->base_addr = base_addr & 0xfffe;
2091 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2092 dmi->offset = 1;
2093 }
2094
2095 dmi->slave_addr = data[6];
2096
2097 return 0;
2098}
2099
2100static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2101{
2102 struct smi_info *info;
2103
2104 info = kzalloc(sizeof(*info), GFP_KERNEL);
2105 if (!info) {
2106 printk(KERN_ERR
2107 "ipmi_si: Could not allocate SI data\n");
2108 return;
2109 }
2110
2111 info->addr_source = "SMBIOS";
2112
2113 switch (ipmi_data->type) {
2114 case 0x01:
2115 info->si_type = SI_KCS;
2116 break;
2117 case 0x02:
2118 info->si_type = SI_SMIC;
2119 break;
2120 case 0x03:
2121 info->si_type = SI_BT;
2122 break;
2123 default:
2124 kfree(info);
2125 return;
2126 }
2127
2128 switch (ipmi_data->addr_space) {
2129 case IPMI_MEM_ADDR_SPACE:
2130 info->io_setup = mem_setup;
2131 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2132 break;
2133
2134 case IPMI_IO_ADDR_SPACE:
2135 info->io_setup = port_setup;
2136 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2137 break;
2138
2139 default:
2140 kfree(info);
2141 printk(KERN_WARNING
2142 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2143 ipmi_data->addr_space);
2144 return;
2145 }
2146 info->io.addr_data = ipmi_data->base_addr;
2147
2148 info->io.regspacing = ipmi_data->offset;
2149 if (!info->io.regspacing)
2150 info->io.regspacing = DEFAULT_REGSPACING;
2151 info->io.regsize = DEFAULT_REGSPACING;
2152 info->io.regshift = 0;
2153
2154 info->slave_addr = ipmi_data->slave_addr;
2155
2156 info->irq = ipmi_data->irq;
2157 if (info->irq)
2158 info->irq_setup = std_irq_setup;
2159
2160 try_smi_init(info);
2161}
2162
2163static void __devinit dmi_find_bmc(void)
2164{
2165 const struct dmi_device *dev = NULL;
2166 struct dmi_ipmi_data data;
2167 int rv;
2168
2169 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2170 memset(&data, 0, sizeof(data));
2171 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2172 &data);
2173 if (!rv)
2174 try_init_dmi(&data);
2175 }
2176}
2177#endif
2178
2179#ifdef CONFIG_PCI
2180
2181#define PCI_ERMC_CLASSCODE 0x0C0700
2182#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2183#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2184#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2185#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2186#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2187
2188#define PCI_HP_VENDOR_ID 0x103C
2189#define PCI_MMC_DEVICE_ID 0x121A
2190#define PCI_MMC_ADDR_CW 0x10
2191
2192static void ipmi_pci_cleanup(struct smi_info *info)
2193{
2194 struct pci_dev *pdev = info->addr_source_data;
2195
2196 pci_disable_device(pdev);
2197}
2198
2199static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2200 const struct pci_device_id *ent)
2201{
2202 int rv;
2203 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2204 struct smi_info *info;
2205 int first_reg_offset = 0;
2206
2207 info = kzalloc(sizeof(*info), GFP_KERNEL);
2208 if (!info)
2209 return -ENOMEM;
2210
2211 info->addr_source = "PCI";
2212
2213 switch (class_type) {
2214 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2215 info->si_type = SI_SMIC;
2216 break;
2217
2218 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2219 info->si_type = SI_KCS;
2220 break;
2221
2222 case PCI_ERMC_CLASSCODE_TYPE_BT:
2223 info->si_type = SI_BT;
2224 break;
2225
2226 default:
2227 kfree(info);
2228 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2229 pci_name(pdev), class_type);
2230 return -ENOMEM;
2231 }
2232
2233 rv = pci_enable_device(pdev);
2234 if (rv) {
2235 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2236 pci_name(pdev));
2237 kfree(info);
2238 return rv;
2239 }
2240
2241 info->addr_source_cleanup = ipmi_pci_cleanup;
2242 info->addr_source_data = pdev;
2243
2244 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2245 first_reg_offset = 1;
2246
2247 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2248 info->io_setup = port_setup;
2249 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2250 } else {
2251 info->io_setup = mem_setup;
2252 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2253 }
2254 info->io.addr_data = pci_resource_start(pdev, 0);
2255
2256 info->io.regspacing = DEFAULT_REGSPACING;
2257 info->io.regsize = DEFAULT_REGSPACING;
2258 info->io.regshift = 0;
2259
2260 info->irq = pdev->irq;
2261 if (info->irq)
2262 info->irq_setup = std_irq_setup;
2263
2264 info->dev = &pdev->dev;
2265 pci_set_drvdata(pdev, info);
2266
2267 return try_smi_init(info);
2268}
2269
2270static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2271{
2272 struct smi_info *info = pci_get_drvdata(pdev);
2273 cleanup_one_si(info);
2274}
2275
2276#ifdef CONFIG_PM
2277static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2278{
2279 return 0;
2280}
2281
2282static int ipmi_pci_resume(struct pci_dev *pdev)
2283{
2284 return 0;
2285}
2286#endif
2287
2288static struct pci_device_id ipmi_pci_devices[] = {
2289 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2290 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2291 { 0, }
2292};
2293MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2294
2295static struct pci_driver ipmi_pci_driver = {
2296 .name = DEVICE_NAME,
2297 .id_table = ipmi_pci_devices,
2298 .probe = ipmi_pci_probe,
2299 .remove = __devexit_p(ipmi_pci_remove),
2300#ifdef CONFIG_PM
2301 .suspend = ipmi_pci_suspend,
2302 .resume = ipmi_pci_resume,
2303#endif
2304};
2305#endif
2306
2307
2308#ifdef CONFIG_PPC_OF
2309static int __devinit ipmi_of_probe(struct of_device *dev,
2310 const struct of_device_id *match)
2311{
2312 struct smi_info *info;
2313 struct resource resource;
2314 const int *regsize, *regspacing, *regshift;
2315 struct device_node *np = dev->node;
2316 int ret;
2317 int proplen;
2318
2319 dev_info(&dev->dev, PFX "probing via device tree\n");
2320
2321 ret = of_address_to_resource(np, 0, &resource);
2322 if (ret) {
2323 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2324 return ret;
2325 }
2326
2327 regsize = of_get_property(np, "reg-size", &proplen);
2328 if (regsize && proplen != 4) {
2329 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2330 return -EINVAL;
2331 }
2332
2333 regspacing = of_get_property(np, "reg-spacing", &proplen);
2334 if (regspacing && proplen != 4) {
2335 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2336 return -EINVAL;
2337 }
2338
2339 regshift = of_get_property(np, "reg-shift", &proplen);
2340 if (regshift && proplen != 4) {
2341 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2342 return -EINVAL;
2343 }
2344
2345 info = kzalloc(sizeof(*info), GFP_KERNEL);
2346
2347 if (!info) {
2348 dev_err(&dev->dev,
2349 PFX "could not allocate memory for OF probe\n");
2350 return -ENOMEM;
2351 }
2352
2353 info->si_type = (enum si_type) match->data;
2354 info->addr_source = "device-tree";
2355 info->irq_setup = std_irq_setup;
2356
2357 if (resource.flags & IORESOURCE_IO) {
2358 info->io_setup = port_setup;
2359 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2360 } else {
2361 info->io_setup = mem_setup;
2362 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2363 }
2364
2365 info->io.addr_data = resource.start;
2366
2367 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2368 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2369 info->io.regshift = regshift ? *regshift : 0;
2370
2371 info->irq = irq_of_parse_and_map(dev->node, 0);
2372 info->dev = &dev->dev;
2373
2374 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2375 info->io.addr_data, info->io.regsize, info->io.regspacing,
2376 info->irq);
2377
2378 dev_set_drvdata(&dev->dev, info);
2379
2380 return try_smi_init(info);
2381}
2382
2383static int __devexit ipmi_of_remove(struct of_device *dev)
2384{
2385 cleanup_one_si(dev_get_drvdata(&dev->dev));
2386 return 0;
2387}
2388
2389static struct of_device_id ipmi_match[] =
2390{
2391 { .type = "ipmi", .compatible = "ipmi-kcs",
2392 .data = (void *)(unsigned long) SI_KCS },
2393 { .type = "ipmi", .compatible = "ipmi-smic",
2394 .data = (void *)(unsigned long) SI_SMIC },
2395 { .type = "ipmi", .compatible = "ipmi-bt",
2396 .data = (void *)(unsigned long) SI_BT },
2397 {},
2398};
2399
2400static struct of_platform_driver ipmi_of_platform_driver = {
2401 .name = "ipmi",
2402 .match_table = ipmi_match,
2403 .probe = ipmi_of_probe,
2404 .remove = __devexit_p(ipmi_of_remove),
2405};
2406#endif
2407
2408static int wait_for_msg_done(struct smi_info *smi_info)
2409{
2410 enum si_sm_result smi_result;
2411
2412 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2413 for (;;) {
2414 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2415 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2416 schedule_timeout_uninterruptible(1);
2417 smi_result = smi_info->handlers->event(
2418 smi_info->si_sm, 100);
2419 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2420 smi_result = smi_info->handlers->event(
2421 smi_info->si_sm, 0);
2422 } else
2423 break;
2424 }
2425 if (smi_result == SI_SM_HOSED)
2426
2427
2428
2429
2430 return -ENODEV;
2431
2432 return 0;
2433}
2434
2435static int try_get_dev_id(struct smi_info *smi_info)
2436{
2437 unsigned char msg[2];
2438 unsigned char *resp;
2439 unsigned long resp_len;
2440 int rv = 0;
2441
2442 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2443 if (!resp)
2444 return -ENOMEM;
2445
2446
2447
2448
2449
2450 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2451 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2452 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2453
2454 rv = wait_for_msg_done(smi_info);
2455 if (rv)
2456 goto out;
2457
2458 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2459 resp, IPMI_MAX_MSG_LENGTH);
2460
2461
2462 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2463
2464 out:
2465 kfree(resp);
2466 return rv;
2467}
2468
2469static int try_enable_event_buffer(struct smi_info *smi_info)
2470{
2471 unsigned char msg[3];
2472 unsigned char *resp;
2473 unsigned long resp_len;
2474 int rv = 0;
2475
2476 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2477 if (!resp)
2478 return -ENOMEM;
2479
2480 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2481 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2482 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2483
2484 rv = wait_for_msg_done(smi_info);
2485 if (rv) {
2486 printk(KERN_WARNING
2487 "ipmi_si: Error getting response from get global,"
2488 " enables command, the event buffer is not"
2489 " enabled.\n");
2490 goto out;
2491 }
2492
2493 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2494 resp, IPMI_MAX_MSG_LENGTH);
2495
2496 if (resp_len < 4 ||
2497 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2498 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2499 resp[2] != 0) {
2500 printk(KERN_WARNING
2501 "ipmi_si: Invalid return from get global"
2502 " enables command, cannot enable the event"
2503 " buffer.\n");
2504 rv = -EINVAL;
2505 goto out;
2506 }
2507
2508 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2509
2510 goto out;
2511
2512 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2513 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2514 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2515 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2516
2517 rv = wait_for_msg_done(smi_info);
2518 if (rv) {
2519 printk(KERN_WARNING
2520 "ipmi_si: Error getting response from set global,"
2521 " enables command, the event buffer is not"
2522 " enabled.\n");
2523 goto out;
2524 }
2525
2526 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2527 resp, IPMI_MAX_MSG_LENGTH);
2528
2529 if (resp_len < 3 ||
2530 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2531 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2532 printk(KERN_WARNING
2533 "ipmi_si: Invalid return from get global,"
2534 "enables command, not enable the event"
2535 " buffer.\n");
2536 rv = -EINVAL;
2537 goto out;
2538 }
2539
2540 if (resp[2] != 0)
2541
2542
2543
2544
2545 rv = -ENOENT;
2546 out:
2547 kfree(resp);
2548 return rv;
2549}
2550
2551static int type_file_read_proc(char *page, char **start, off_t off,
2552 int count, int *eof, void *data)
2553{
2554 struct smi_info *smi = data;
2555
2556 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2557}
2558
2559static int stat_file_read_proc(char *page, char **start, off_t off,
2560 int count, int *eof, void *data)
2561{
2562 char *out = (char *) page;
2563 struct smi_info *smi = data;
2564
2565 out += sprintf(out, "interrupts_enabled: %d\n",
2566 smi->irq && !smi->interrupt_disabled);
2567 out += sprintf(out, "short_timeouts: %u\n",
2568 smi_get_stat(smi, short_timeouts));
2569 out += sprintf(out, "long_timeouts: %u\n",
2570 smi_get_stat(smi, long_timeouts));
2571 out += sprintf(out, "idles: %u\n",
2572 smi_get_stat(smi, idles));
2573 out += sprintf(out, "interrupts: %u\n",
2574 smi_get_stat(smi, interrupts));
2575 out += sprintf(out, "attentions: %u\n",
2576 smi_get_stat(smi, attentions));
2577 out += sprintf(out, "flag_fetches: %u\n",
2578 smi_get_stat(smi, flag_fetches));
2579 out += sprintf(out, "hosed_count: %u\n",
2580 smi_get_stat(smi, hosed_count));
2581 out += sprintf(out, "complete_transactions: %u\n",
2582 smi_get_stat(smi, complete_transactions));
2583 out += sprintf(out, "events: %u\n",
2584 smi_get_stat(smi, events));
2585 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2586 smi_get_stat(smi, watchdog_pretimeouts));
2587 out += sprintf(out, "incoming_messages: %u\n",
2588 smi_get_stat(smi, incoming_messages));
2589
2590 return out - page;
2591}
2592
2593static int param_read_proc(char *page, char **start, off_t off,
2594 int count, int *eof, void *data)
2595{
2596 struct smi_info *smi = data;
2597
2598 return sprintf(page,
2599 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2600 si_to_str[smi->si_type],
2601 addr_space_to_str[smi->io.addr_type],
2602 smi->io.addr_data,
2603 smi->io.regspacing,
2604 smi->io.regsize,
2605 smi->io.regshift,
2606 smi->irq,
2607 smi->slave_addr);
2608}
2609
2610
2611
2612
2613
2614
2615
2616
2617static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2618{
2619 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2620 RECEIVE_MSG_AVAIL);
2621 return 1;
2622}
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2650#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2651#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2652#define DELL_IANA_MFR_ID 0x0002a2
2653static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2654{
2655 struct ipmi_device_id *id = &smi_info->device_id;
2656 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2657 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2658 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2659 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2660 smi_info->oem_data_avail_handler =
2661 oem_data_avail_to_receive_msg_avail;
2662 } else if (ipmi_version_major(id) < 1 ||
2663 (ipmi_version_major(id) == 1 &&
2664 ipmi_version_minor(id) < 5)) {
2665 smi_info->oem_data_avail_handler =
2666 oem_data_avail_to_receive_msg_avail;
2667 }
2668 }
2669}
2670
2671#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2672static void return_hosed_msg_badsize(struct smi_info *smi_info)
2673{
2674 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2675
2676
2677 msg->rsp[0] = msg->data[0] | 4;
2678 msg->rsp[1] = msg->data[1];
2679 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2680 msg->rsp_size = 3;
2681 smi_info->curr_msg = NULL;
2682 deliver_recv_msg(smi_info, msg);
2683}
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696#define STORAGE_NETFN 0x0A
2697#define STORAGE_CMD_GET_SDR 0x23
2698static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2699 unsigned long unused,
2700 void *in)
2701{
2702 struct smi_info *smi_info = in;
2703 unsigned char *data = smi_info->curr_msg->data;
2704 unsigned int size = smi_info->curr_msg->data_size;
2705 if (size >= 8 &&
2706 (data[0]>>2) == STORAGE_NETFN &&
2707 data[1] == STORAGE_CMD_GET_SDR &&
2708 data[7] == 0x3A) {
2709 return_hosed_msg_badsize(smi_info);
2710 return NOTIFY_STOP;
2711 }
2712 return NOTIFY_DONE;
2713}
2714
2715static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2716 .notifier_call = dell_poweredge_bt_xaction_handler,
2717};
2718
2719
2720
2721
2722
2723
2724
2725
2726static void
2727setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2728{
2729 struct ipmi_device_id *id = &smi_info->device_id;
2730 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2731 smi_info->si_type == SI_BT)
2732 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2733}
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743static void setup_oem_data_handler(struct smi_info *smi_info)
2744{
2745 setup_dell_poweredge_oem_data_handler(smi_info);
2746}
2747
2748static void setup_xaction_handlers(struct smi_info *smi_info)
2749{
2750 setup_dell_poweredge_bt_xaction_handler(smi_info);
2751}
2752
2753static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2754{
2755 if (smi_info->intf) {
2756
2757
2758
2759
2760 if (smi_info->thread != NULL)
2761 kthread_stop(smi_info->thread);
2762 del_timer_sync(&smi_info->si_timer);
2763 }
2764}
2765
2766static __devinitdata struct ipmi_default_vals
2767{
2768 int type;
2769 int port;
2770} ipmi_defaults[] =
2771{
2772 { .type = SI_KCS, .port = 0xca2 },
2773 { .type = SI_SMIC, .port = 0xca9 },
2774 { .type = SI_BT, .port = 0xe4 },
2775 { .port = 0 }
2776};
2777
2778static __devinit void default_find_bmc(void)
2779{
2780 struct smi_info *info;
2781 int i;
2782
2783 for (i = 0; ; i++) {
2784 if (!ipmi_defaults[i].port)
2785 break;
2786#ifdef CONFIG_PPC
2787 if (check_legacy_ioport(ipmi_defaults[i].port))
2788 continue;
2789#endif
2790 info = kzalloc(sizeof(*info), GFP_KERNEL);
2791 if (!info)
2792 return;
2793
2794 info->addr_source = NULL;
2795
2796 info->si_type = ipmi_defaults[i].type;
2797 info->io_setup = port_setup;
2798 info->io.addr_data = ipmi_defaults[i].port;
2799 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2800
2801 info->io.addr = NULL;
2802 info->io.regspacing = DEFAULT_REGSPACING;
2803 info->io.regsize = DEFAULT_REGSPACING;
2804 info->io.regshift = 0;
2805
2806 if (try_smi_init(info) == 0) {
2807
2808 printk(KERN_INFO "ipmi_si: Found default %s state"
2809 " machine at %s address 0x%lx\n",
2810 si_to_str[info->si_type],
2811 addr_space_to_str[info->io.addr_type],
2812 info->io.addr_data);
2813 return;
2814 }
2815 }
2816}
2817
2818static int is_new_interface(struct smi_info *info)
2819{
2820 struct smi_info *e;
2821
2822 list_for_each_entry(e, &smi_infos, link) {
2823 if (e->io.addr_type != info->io.addr_type)
2824 continue;
2825 if (e->io.addr_data == info->io.addr_data)
2826 return 0;
2827 }
2828
2829 return 1;
2830}
2831
2832static int try_smi_init(struct smi_info *new_smi)
2833{
2834 int rv;
2835 int i;
2836
2837 if (new_smi->addr_source) {
2838 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2839 " machine at %s address 0x%lx, slave address 0x%x,"
2840 " irq %d\n",
2841 new_smi->addr_source,
2842 si_to_str[new_smi->si_type],
2843 addr_space_to_str[new_smi->io.addr_type],
2844 new_smi->io.addr_data,
2845 new_smi->slave_addr, new_smi->irq);
2846 }
2847
2848 mutex_lock(&smi_infos_lock);
2849 if (!is_new_interface(new_smi)) {
2850 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2851 rv = -EBUSY;
2852 goto out_err;
2853 }
2854
2855
2856 new_smi->intf = NULL;
2857 new_smi->si_sm = NULL;
2858 new_smi->handlers = NULL;
2859
2860 switch (new_smi->si_type) {
2861 case SI_KCS:
2862 new_smi->handlers = &kcs_smi_handlers;
2863 break;
2864
2865 case SI_SMIC:
2866 new_smi->handlers = &smic_smi_handlers;
2867 break;
2868
2869 case SI_BT:
2870 new_smi->handlers = &bt_smi_handlers;
2871 break;
2872
2873 default:
2874
2875 rv = -EIO;
2876 goto out_err;
2877 }
2878
2879
2880 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2881 if (!new_smi->si_sm) {
2882 printk(KERN_ERR "Could not allocate state machine memory\n");
2883 rv = -ENOMEM;
2884 goto out_err;
2885 }
2886 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2887 &new_smi->io);
2888
2889
2890 rv = new_smi->io_setup(new_smi);
2891 if (rv) {
2892 printk(KERN_ERR "Could not set up I/O space\n");
2893 goto out_err;
2894 }
2895
2896 spin_lock_init(&(new_smi->si_lock));
2897 spin_lock_init(&(new_smi->msg_lock));
2898
2899
2900 if (new_smi->handlers->detect(new_smi->si_sm)) {
2901 if (new_smi->addr_source)
2902 printk(KERN_INFO "ipmi_si: Interface detection"
2903 " failed\n");
2904 rv = -ENODEV;
2905 goto out_err;
2906 }
2907
2908
2909
2910
2911
2912 rv = try_get_dev_id(new_smi);
2913 if (rv) {
2914 if (new_smi->addr_source)
2915 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2916 " at this location\n");
2917 goto out_err;
2918 }
2919
2920 setup_oem_data_handler(new_smi);
2921 setup_xaction_handlers(new_smi);
2922
2923 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2924 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2925 new_smi->curr_msg = NULL;
2926 atomic_set(&new_smi->req_events, 0);
2927 new_smi->run_to_completion = 0;
2928 for (i = 0; i < SI_NUM_STATS; i++)
2929 atomic_set(&new_smi->stats[i], 0);
2930
2931 new_smi->interrupt_disabled = 0;
2932 atomic_set(&new_smi->stop_operation, 0);
2933 new_smi->intf_num = smi_num;
2934 smi_num++;
2935
2936 rv = try_enable_event_buffer(new_smi);
2937 if (rv == 0)
2938 new_smi->has_event_buffer = 1;
2939
2940
2941
2942
2943
2944 start_clear_flags(new_smi);
2945
2946 if (new_smi->irq)
2947 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2948
2949 if (!new_smi->dev) {
2950
2951
2952
2953
2954 new_smi->pdev = platform_device_alloc("ipmi_si",
2955 new_smi->intf_num);
2956 if (!new_smi->pdev) {
2957 printk(KERN_ERR
2958 "ipmi_si_intf:"
2959 " Unable to allocate platform device\n");
2960 goto out_err;
2961 }
2962 new_smi->dev = &new_smi->pdev->dev;
2963 new_smi->dev->driver = &ipmi_driver.driver;
2964
2965 rv = platform_device_add(new_smi->pdev);
2966 if (rv) {
2967 printk(KERN_ERR
2968 "ipmi_si_intf:"
2969 " Unable to register system interface device:"
2970 " %d\n",
2971 rv);
2972 goto out_err;
2973 }
2974 new_smi->dev_registered = 1;
2975 }
2976
2977 rv = ipmi_register_smi(&handlers,
2978 new_smi,
2979 &new_smi->device_id,
2980 new_smi->dev,
2981 "bmc",
2982 new_smi->slave_addr);
2983 if (rv) {
2984 printk(KERN_ERR
2985 "ipmi_si: Unable to register device: error %d\n",
2986 rv);
2987 goto out_err_stop_timer;
2988 }
2989
2990 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2991 type_file_read_proc,
2992 new_smi);
2993 if (rv) {
2994 printk(KERN_ERR
2995 "ipmi_si: Unable to create proc entry: %d\n",
2996 rv);
2997 goto out_err_stop_timer;
2998 }
2999
3000 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3001 stat_file_read_proc,
3002 new_smi);
3003 if (rv) {
3004 printk(KERN_ERR
3005 "ipmi_si: Unable to create proc entry: %d\n",
3006 rv);
3007 goto out_err_stop_timer;
3008 }
3009
3010 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3011 param_read_proc,
3012 new_smi);
3013 if (rv) {
3014 printk(KERN_ERR
3015 "ipmi_si: Unable to create proc entry: %d\n",
3016 rv);
3017 goto out_err_stop_timer;
3018 }
3019
3020 list_add_tail(&new_smi->link, &smi_infos);
3021
3022 mutex_unlock(&smi_infos_lock);
3023
3024 printk(KERN_INFO "IPMI %s interface initialized\n",
3025 si_to_str[new_smi->si_type]);
3026
3027 return 0;
3028
3029 out_err_stop_timer:
3030 atomic_inc(&new_smi->stop_operation);
3031 wait_for_timer_and_thread(new_smi);
3032
3033 out_err:
3034 if (new_smi->intf)
3035 ipmi_unregister_smi(new_smi->intf);
3036
3037 if (new_smi->irq_cleanup)
3038 new_smi->irq_cleanup(new_smi);
3039
3040
3041
3042
3043
3044
3045 synchronize_sched();
3046
3047 if (new_smi->si_sm) {
3048 if (new_smi->handlers)
3049 new_smi->handlers->cleanup(new_smi->si_sm);
3050 kfree(new_smi->si_sm);
3051 }
3052 if (new_smi->addr_source_cleanup)
3053 new_smi->addr_source_cleanup(new_smi);
3054 if (new_smi->io_cleanup)
3055 new_smi->io_cleanup(new_smi);
3056
3057 if (new_smi->dev_registered)
3058 platform_device_unregister(new_smi->pdev);
3059
3060 kfree(new_smi);
3061
3062 mutex_unlock(&smi_infos_lock);
3063
3064 return rv;
3065}
3066
3067static __devinit int init_ipmi_si(void)
3068{
3069 int i;
3070 char *str;
3071 int rv;
3072
3073 if (initialized)
3074 return 0;
3075 initialized = 1;
3076
3077
3078 rv = driver_register(&ipmi_driver.driver);
3079 if (rv) {
3080 printk(KERN_ERR
3081 "init_ipmi_si: Unable to register driver: %d\n",
3082 rv);
3083 return rv;
3084 }
3085
3086
3087
3088 str = si_type_str;
3089 if (*str != '\0') {
3090 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3091 si_type[i] = str;
3092 str = strchr(str, ',');
3093 if (str) {
3094 *str = '\0';
3095 str++;
3096 } else {
3097 break;
3098 }
3099 }
3100 }
3101
3102 printk(KERN_INFO "IPMI System Interface driver.\n");
3103
3104 hardcode_find_bmc();
3105
3106#ifdef CONFIG_DMI
3107 dmi_find_bmc();
3108#endif
3109
3110#ifdef CONFIG_ACPI
3111 acpi_find_bmc();
3112#endif
3113
3114#ifdef CONFIG_PCI
3115 rv = pci_register_driver(&ipmi_pci_driver);
3116 if (rv)
3117 printk(KERN_ERR
3118 "init_ipmi_si: Unable to register PCI driver: %d\n",
3119 rv);
3120#endif
3121
3122#ifdef CONFIG_PPC_OF
3123 of_register_platform_driver(&ipmi_of_platform_driver);
3124#endif
3125
3126 if (si_trydefaults) {
3127 mutex_lock(&smi_infos_lock);
3128 if (list_empty(&smi_infos)) {
3129
3130 mutex_unlock(&smi_infos_lock);
3131 default_find_bmc();
3132 } else {
3133 mutex_unlock(&smi_infos_lock);
3134 }
3135 }
3136
3137 mutex_lock(&smi_infos_lock);
3138 if (unload_when_empty && list_empty(&smi_infos)) {
3139 mutex_unlock(&smi_infos_lock);
3140#ifdef CONFIG_PCI
3141 pci_unregister_driver(&ipmi_pci_driver);
3142#endif
3143
3144#ifdef CONFIG_PPC_OF
3145 of_unregister_platform_driver(&ipmi_of_platform_driver);
3146#endif
3147 driver_unregister(&ipmi_driver.driver);
3148 printk(KERN_WARNING
3149 "ipmi_si: Unable to find any System Interface(s)\n");
3150 return -ENODEV;
3151 } else {
3152 mutex_unlock(&smi_infos_lock);
3153 return 0;
3154 }
3155}
3156module_init(init_ipmi_si);
3157
3158static void cleanup_one_si(struct smi_info *to_clean)
3159{
3160 int rv;
3161 unsigned long flags;
3162
3163 if (!to_clean)
3164 return;
3165
3166 list_del(&to_clean->link);
3167
3168
3169 atomic_inc(&to_clean->stop_operation);
3170
3171
3172
3173
3174
3175 wait_for_timer_and_thread(to_clean);
3176
3177
3178
3179
3180
3181
3182 spin_lock_irqsave(&to_clean->si_lock, flags);
3183 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3184 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3185 poll(to_clean);
3186 schedule_timeout_uninterruptible(1);
3187 spin_lock_irqsave(&to_clean->si_lock, flags);
3188 }
3189 disable_si_irq(to_clean);
3190 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3191 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3192 poll(to_clean);
3193 schedule_timeout_uninterruptible(1);
3194 }
3195
3196
3197 if (to_clean->irq_cleanup)
3198 to_clean->irq_cleanup(to_clean);
3199 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3200 poll(to_clean);
3201 schedule_timeout_uninterruptible(1);
3202 }
3203
3204 rv = ipmi_unregister_smi(to_clean->intf);
3205 if (rv) {
3206 printk(KERN_ERR
3207 "ipmi_si: Unable to unregister device: errno=%d\n",
3208 rv);
3209 }
3210
3211 to_clean->handlers->cleanup(to_clean->si_sm);
3212
3213 kfree(to_clean->si_sm);
3214
3215 if (to_clean->addr_source_cleanup)
3216 to_clean->addr_source_cleanup(to_clean);
3217 if (to_clean->io_cleanup)
3218 to_clean->io_cleanup(to_clean);
3219
3220 if (to_clean->dev_registered)
3221 platform_device_unregister(to_clean->pdev);
3222
3223 kfree(to_clean);
3224}
3225
3226static __exit void cleanup_ipmi_si(void)
3227{
3228 struct smi_info *e, *tmp_e;
3229
3230 if (!initialized)
3231 return;
3232
3233#ifdef CONFIG_PCI
3234 pci_unregister_driver(&ipmi_pci_driver);
3235#endif
3236
3237#ifdef CONFIG_PPC_OF
3238 of_unregister_platform_driver(&ipmi_of_platform_driver);
3239#endif
3240
3241 mutex_lock(&smi_infos_lock);
3242 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3243 cleanup_one_si(e);
3244 mutex_unlock(&smi_infos_lock);
3245
3246 driver_unregister(&ipmi_driver.driver);
3247}
3248module_exit(cleanup_ipmi_si);
3249
3250MODULE_LICENSE("GPL");
3251MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3252MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3253 " system interfaces.");
3254