linux/drivers/char/istallion.c
<<
>>
Prefs
   1/*****************************************************************************/
   2
   3/*
   4 *      istallion.c  -- stallion intelligent multiport serial driver.
   5 *
   6 *      Copyright (C) 1996-1999  Stallion Technologies
   7 *      Copyright (C) 1994-1996  Greg Ungerer.
   8 *
   9 *      This code is loosely based on the Linux serial driver, written by
  10 *      Linus Torvalds, Theodore T'so and others.
  11 *
  12 *      This program is free software; you can redistribute it and/or modify
  13 *      it under the terms of the GNU General Public License as published by
  14 *      the Free Software Foundation; either version 2 of the License, or
  15 *      (at your option) any later version.
  16 *
  17 */
  18
  19/*****************************************************************************/
  20
  21#include <linux/module.h>
  22#include <linux/sched.h>
  23#include <linux/slab.h>
  24#include <linux/smp_lock.h>
  25#include <linux/interrupt.h>
  26#include <linux/tty.h>
  27#include <linux/tty_flip.h>
  28#include <linux/serial.h>
  29#include <linux/seq_file.h>
  30#include <linux/cdk.h>
  31#include <linux/comstats.h>
  32#include <linux/istallion.h>
  33#include <linux/ioport.h>
  34#include <linux/delay.h>
  35#include <linux/init.h>
  36#include <linux/device.h>
  37#include <linux/wait.h>
  38#include <linux/eisa.h>
  39#include <linux/ctype.h>
  40
  41#include <asm/io.h>
  42#include <asm/uaccess.h>
  43
  44#include <linux/pci.h>
  45
  46/*****************************************************************************/
  47
  48/*
  49 *      Define different board types. Not all of the following board types
  50 *      are supported by this driver. But I will use the standard "assigned"
  51 *      board numbers. Currently supported boards are abbreviated as:
  52 *      ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
  53 *      STAL = Stallion.
  54 */
  55#define BRD_UNKNOWN     0
  56#define BRD_STALLION    1
  57#define BRD_BRUMBY4     2
  58#define BRD_ONBOARD2    3
  59#define BRD_ONBOARD     4
  60#define BRD_ONBOARDE    7
  61#define BRD_ECP         23
  62#define BRD_ECPE        24
  63#define BRD_ECPMC       25
  64#define BRD_ECPPCI      29
  65
  66#define BRD_BRUMBY      BRD_BRUMBY4
  67
  68/*
  69 *      Define a configuration structure to hold the board configuration.
  70 *      Need to set this up in the code (for now) with the boards that are
  71 *      to be configured into the system. This is what needs to be modified
  72 *      when adding/removing/modifying boards. Each line entry in the
  73 *      stli_brdconf[] array is a board. Each line contains io/irq/memory
  74 *      ranges for that board (as well as what type of board it is).
  75 *      Some examples:
  76 *              { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
  77 *      This line will configure an EasyConnection 8/64 at io address 2a0,
  78 *      and shared memory address of cc000. Multiple EasyConnection 8/64
  79 *      boards can share the same shared memory address space. No interrupt
  80 *      is required for this board type.
  81 *      Another example:
  82 *              { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
  83 *      This line will configure an EasyConnection 8/64 EISA in slot 5 and
  84 *      shared memory address of 0x80000000 (2 GByte). Multiple
  85 *      EasyConnection 8/64 EISA boards can share the same shared memory
  86 *      address space. No interrupt is required for this board type.
  87 *      Another example:
  88 *              { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
  89 *      This line will configure an ONboard (ISA type) at io address 240,
  90 *      and shared memory address of d0000. Multiple ONboards can share
  91 *      the same shared memory address space. No interrupt required.
  92 *      Another example:
  93 *              { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
  94 *      This line will configure a Brumby board (any number of ports!) at
  95 *      io address 360 and shared memory address of c8000. All Brumby boards
  96 *      configured into a system must have their own separate io and memory
  97 *      addresses. No interrupt is required.
  98 *      Another example:
  99 *              { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
 100 *      This line will configure an original Stallion board at io address 330
 101 *      and shared memory address d0000 (this would only be valid for a "V4.0"
 102 *      or Rev.O Stallion board). All Stallion boards configured into the
 103 *      system must have their own separate io and memory addresses. No
 104 *      interrupt is required.
 105 */
 106
 107struct stlconf {
 108        int             brdtype;
 109        int             ioaddr1;
 110        int             ioaddr2;
 111        unsigned long   memaddr;
 112        int             irq;
 113        int             irqtype;
 114};
 115
 116static unsigned int stli_nrbrds;
 117
 118/* stli_lock must NOT be taken holding brd_lock */
 119static spinlock_t stli_lock;    /* TTY logic lock */
 120static spinlock_t brd_lock;     /* Board logic lock */
 121
 122/*
 123 *      There is some experimental EISA board detection code in this driver.
 124 *      By default it is disabled, but for those that want to try it out,
 125 *      then set the define below to be 1.
 126 */
 127#define STLI_EISAPROBE  0
 128
 129/*****************************************************************************/
 130
 131/*
 132 *      Define some important driver characteristics. Device major numbers
 133 *      allocated as per Linux Device Registry.
 134 */
 135#ifndef STL_SIOMEMMAJOR
 136#define STL_SIOMEMMAJOR         28
 137#endif
 138#ifndef STL_SERIALMAJOR
 139#define STL_SERIALMAJOR         24
 140#endif
 141#ifndef STL_CALLOUTMAJOR
 142#define STL_CALLOUTMAJOR        25
 143#endif
 144
 145/*****************************************************************************/
 146
 147/*
 148 *      Define our local driver identity first. Set up stuff to deal with
 149 *      all the local structures required by a serial tty driver.
 150 */
 151static char     *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
 152static char     *stli_drvname = "istallion";
 153static char     *stli_drvversion = "5.6.0";
 154static char     *stli_serialname = "ttyE";
 155
 156static struct tty_driver        *stli_serial;
 157static const struct tty_port_operations stli_port_ops;
 158
 159#define STLI_TXBUFSIZE          4096
 160
 161/*
 162 *      Use a fast local buffer for cooked characters. Typically a whole
 163 *      bunch of cooked characters come in for a port, 1 at a time. So we
 164 *      save those up into a local buffer, then write out the whole lot
 165 *      with a large memcpy. Just use 1 buffer for all ports, since its
 166 *      use it is only need for short periods of time by each port.
 167 */
 168static char                     *stli_txcookbuf;
 169static int                      stli_txcooksize;
 170static int                      stli_txcookrealsize;
 171static struct tty_struct        *stli_txcooktty;
 172
 173/*
 174 *      Define a local default termios struct. All ports will be created
 175 *      with this termios initially. Basically all it defines is a raw port
 176 *      at 9600 baud, 8 data bits, no parity, 1 stop bit.
 177 */
 178static struct ktermios          stli_deftermios = {
 179        .c_cflag        = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
 180        .c_cc           = INIT_C_CC,
 181        .c_ispeed       = 9600,
 182        .c_ospeed       = 9600,
 183};
 184
 185/*
 186 *      Define global stats structures. Not used often, and can be
 187 *      re-used for each stats call.
 188 */
 189static comstats_t       stli_comstats;
 190static combrd_t         stli_brdstats;
 191static struct asystats  stli_cdkstats;
 192
 193/*****************************************************************************/
 194
 195static DEFINE_MUTEX(stli_brdslock);
 196static struct stlibrd   *stli_brds[STL_MAXBRDS];
 197
 198static int              stli_shared;
 199
 200/*
 201 *      Per board state flags. Used with the state field of the board struct.
 202 *      Not really much here... All we need to do is keep track of whether
 203 *      the board has been detected, and whether it is actually running a slave
 204 *      or not.
 205 */
 206#define BST_FOUND       0x1
 207#define BST_STARTED     0x2
 208#define BST_PROBED      0x4
 209
 210/*
 211 *      Define the set of port state flags. These are marked for internal
 212 *      state purposes only, usually to do with the state of communications
 213 *      with the slave. Most of them need to be updated atomically, so always
 214 *      use the bit setting operations (unless protected by cli/sti).
 215 */
 216#define ST_INITIALIZING 1
 217#define ST_OPENING      2
 218#define ST_CLOSING      3
 219#define ST_CMDING       4
 220#define ST_TXBUSY       5
 221#define ST_RXING        6
 222#define ST_DOFLUSHRX    7
 223#define ST_DOFLUSHTX    8
 224#define ST_DOSIGS       9
 225#define ST_RXSTOP       10
 226#define ST_GETSIGS      11
 227
 228/*
 229 *      Define an array of board names as printable strings. Handy for
 230 *      referencing boards when printing trace and stuff.
 231 */
 232static char     *stli_brdnames[] = {
 233        "Unknown",
 234        "Stallion",
 235        "Brumby",
 236        "ONboard-MC",
 237        "ONboard",
 238        "Brumby",
 239        "Brumby",
 240        "ONboard-EI",
 241        NULL,
 242        "ONboard",
 243        "ONboard-MC",
 244        "ONboard-MC",
 245        NULL,
 246        NULL,
 247        NULL,
 248        NULL,
 249        NULL,
 250        NULL,
 251        NULL,
 252        NULL,
 253        "EasyIO",
 254        "EC8/32-AT",
 255        "EC8/32-MC",
 256        "EC8/64-AT",
 257        "EC8/64-EI",
 258        "EC8/64-MC",
 259        "EC8/32-PCI",
 260        "EC8/64-PCI",
 261        "EasyIO-PCI",
 262        "EC/RA-PCI",
 263};
 264
 265/*****************************************************************************/
 266
 267/*
 268 *      Define some string labels for arguments passed from the module
 269 *      load line. These allow for easy board definitions, and easy
 270 *      modification of the io, memory and irq resoucres.
 271 */
 272
 273static char     *board0[8];
 274static char     *board1[8];
 275static char     *board2[8];
 276static char     *board3[8];
 277
 278static char     **stli_brdsp[] = {
 279        (char **) &board0,
 280        (char **) &board1,
 281        (char **) &board2,
 282        (char **) &board3
 283};
 284
 285/*
 286 *      Define a set of common board names, and types. This is used to
 287 *      parse any module arguments.
 288 */
 289
 290static struct stlibrdtype {
 291        char    *name;
 292        int     type;
 293} stli_brdstr[] = {
 294        { "stallion", BRD_STALLION },
 295        { "1", BRD_STALLION },
 296        { "brumby", BRD_BRUMBY },
 297        { "brumby4", BRD_BRUMBY },
 298        { "brumby/4", BRD_BRUMBY },
 299        { "brumby-4", BRD_BRUMBY },
 300        { "brumby8", BRD_BRUMBY },
 301        { "brumby/8", BRD_BRUMBY },
 302        { "brumby-8", BRD_BRUMBY },
 303        { "brumby16", BRD_BRUMBY },
 304        { "brumby/16", BRD_BRUMBY },
 305        { "brumby-16", BRD_BRUMBY },
 306        { "2", BRD_BRUMBY },
 307        { "onboard2", BRD_ONBOARD2 },
 308        { "onboard-2", BRD_ONBOARD2 },
 309        { "onboard/2", BRD_ONBOARD2 },
 310        { "onboard-mc", BRD_ONBOARD2 },
 311        { "onboard/mc", BRD_ONBOARD2 },
 312        { "onboard-mca", BRD_ONBOARD2 },
 313        { "onboard/mca", BRD_ONBOARD2 },
 314        { "3", BRD_ONBOARD2 },
 315        { "onboard", BRD_ONBOARD },
 316        { "onboardat", BRD_ONBOARD },
 317        { "4", BRD_ONBOARD },
 318        { "onboarde", BRD_ONBOARDE },
 319        { "onboard-e", BRD_ONBOARDE },
 320        { "onboard/e", BRD_ONBOARDE },
 321        { "onboard-ei", BRD_ONBOARDE },
 322        { "onboard/ei", BRD_ONBOARDE },
 323        { "7", BRD_ONBOARDE },
 324        { "ecp", BRD_ECP },
 325        { "ecpat", BRD_ECP },
 326        { "ec8/64", BRD_ECP },
 327        { "ec8/64-at", BRD_ECP },
 328        { "ec8/64-isa", BRD_ECP },
 329        { "23", BRD_ECP },
 330        { "ecpe", BRD_ECPE },
 331        { "ecpei", BRD_ECPE },
 332        { "ec8/64-e", BRD_ECPE },
 333        { "ec8/64-ei", BRD_ECPE },
 334        { "24", BRD_ECPE },
 335        { "ecpmc", BRD_ECPMC },
 336        { "ec8/64-mc", BRD_ECPMC },
 337        { "ec8/64-mca", BRD_ECPMC },
 338        { "25", BRD_ECPMC },
 339        { "ecppci", BRD_ECPPCI },
 340        { "ec/ra", BRD_ECPPCI },
 341        { "ec/ra-pc", BRD_ECPPCI },
 342        { "ec/ra-pci", BRD_ECPPCI },
 343        { "29", BRD_ECPPCI },
 344};
 345
 346/*
 347 *      Define the module agruments.
 348 */
 349MODULE_AUTHOR("Greg Ungerer");
 350MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
 351MODULE_LICENSE("GPL");
 352
 353
 354module_param_array(board0, charp, NULL, 0);
 355MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
 356module_param_array(board1, charp, NULL, 0);
 357MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
 358module_param_array(board2, charp, NULL, 0);
 359MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
 360module_param_array(board3, charp, NULL, 0);
 361MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
 362
 363#if STLI_EISAPROBE != 0
 364/*
 365 *      Set up a default memory address table for EISA board probing.
 366 *      The default addresses are all bellow 1Mbyte, which has to be the
 367 *      case anyway. They should be safe, since we only read values from
 368 *      them, and interrupts are disabled while we do it. If the higher
 369 *      memory support is compiled in then we also try probing around
 370 *      the 1Gb, 2Gb and 3Gb areas as well...
 371 */
 372static unsigned long    stli_eisamemprobeaddrs[] = {
 373        0xc0000,    0xd0000,    0xe0000,    0xf0000,
 374        0x80000000, 0x80010000, 0x80020000, 0x80030000,
 375        0x40000000, 0x40010000, 0x40020000, 0x40030000,
 376        0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
 377        0xff000000, 0xff010000, 0xff020000, 0xff030000,
 378};
 379
 380static int      stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
 381#endif
 382
 383/*
 384 *      Define the Stallion PCI vendor and device IDs.
 385 */
 386#ifndef PCI_DEVICE_ID_ECRA
 387#define PCI_DEVICE_ID_ECRA              0x0004
 388#endif
 389
 390static struct pci_device_id istallion_pci_tbl[] = {
 391        { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
 392        { 0 }
 393};
 394MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
 395
 396static struct pci_driver stli_pcidriver;
 397
 398/*****************************************************************************/
 399
 400/*
 401 *      Hardware configuration info for ECP boards. These defines apply
 402 *      to the directly accessible io ports of the ECP. There is a set of
 403 *      defines for each ECP board type, ISA, EISA, MCA and PCI.
 404 */
 405#define ECP_IOSIZE      4
 406
 407#define ECP_MEMSIZE     (128 * 1024)
 408#define ECP_PCIMEMSIZE  (256 * 1024)
 409
 410#define ECP_ATPAGESIZE  (4 * 1024)
 411#define ECP_MCPAGESIZE  (4 * 1024)
 412#define ECP_EIPAGESIZE  (64 * 1024)
 413#define ECP_PCIPAGESIZE (64 * 1024)
 414
 415#define STL_EISAID      0x8c4e
 416
 417/*
 418 *      Important defines for the ISA class of ECP board.
 419 */
 420#define ECP_ATIREG      0
 421#define ECP_ATCONFR     1
 422#define ECP_ATMEMAR     2
 423#define ECP_ATMEMPR     3
 424#define ECP_ATSTOP      0x1
 425#define ECP_ATINTENAB   0x10
 426#define ECP_ATENABLE    0x20
 427#define ECP_ATDISABLE   0x00
 428#define ECP_ATADDRMASK  0x3f000
 429#define ECP_ATADDRSHFT  12
 430
 431/*
 432 *      Important defines for the EISA class of ECP board.
 433 */
 434#define ECP_EIIREG      0
 435#define ECP_EIMEMARL    1
 436#define ECP_EICONFR     2
 437#define ECP_EIMEMARH    3
 438#define ECP_EIENABLE    0x1
 439#define ECP_EIDISABLE   0x0
 440#define ECP_EISTOP      0x4
 441#define ECP_EIEDGE      0x00
 442#define ECP_EILEVEL     0x80
 443#define ECP_EIADDRMASKL 0x00ff0000
 444#define ECP_EIADDRSHFTL 16
 445#define ECP_EIADDRMASKH 0xff000000
 446#define ECP_EIADDRSHFTH 24
 447#define ECP_EIBRDENAB   0xc84
 448
 449#define ECP_EISAID      0x4
 450
 451/*
 452 *      Important defines for the Micro-channel class of ECP board.
 453 *      (It has a lot in common with the ISA boards.)
 454 */
 455#define ECP_MCIREG      0
 456#define ECP_MCCONFR     1
 457#define ECP_MCSTOP      0x20
 458#define ECP_MCENABLE    0x80
 459#define ECP_MCDISABLE   0x00
 460
 461/*
 462 *      Important defines for the PCI class of ECP board.
 463 *      (It has a lot in common with the other ECP boards.)
 464 */
 465#define ECP_PCIIREG     0
 466#define ECP_PCICONFR    1
 467#define ECP_PCISTOP     0x01
 468
 469/*
 470 *      Hardware configuration info for ONboard and Brumby boards. These
 471 *      defines apply to the directly accessible io ports of these boards.
 472 */
 473#define ONB_IOSIZE      16
 474#define ONB_MEMSIZE     (64 * 1024)
 475#define ONB_ATPAGESIZE  (64 * 1024)
 476#define ONB_MCPAGESIZE  (64 * 1024)
 477#define ONB_EIMEMSIZE   (128 * 1024)
 478#define ONB_EIPAGESIZE  (64 * 1024)
 479
 480/*
 481 *      Important defines for the ISA class of ONboard board.
 482 */
 483#define ONB_ATIREG      0
 484#define ONB_ATMEMAR     1
 485#define ONB_ATCONFR     2
 486#define ONB_ATSTOP      0x4
 487#define ONB_ATENABLE    0x01
 488#define ONB_ATDISABLE   0x00
 489#define ONB_ATADDRMASK  0xff0000
 490#define ONB_ATADDRSHFT  16
 491
 492#define ONB_MEMENABLO   0
 493#define ONB_MEMENABHI   0x02
 494
 495/*
 496 *      Important defines for the EISA class of ONboard board.
 497 */
 498#define ONB_EIIREG      0
 499#define ONB_EIMEMARL    1
 500#define ONB_EICONFR     2
 501#define ONB_EIMEMARH    3
 502#define ONB_EIENABLE    0x1
 503#define ONB_EIDISABLE   0x0
 504#define ONB_EISTOP      0x4
 505#define ONB_EIEDGE      0x00
 506#define ONB_EILEVEL     0x80
 507#define ONB_EIADDRMASKL 0x00ff0000
 508#define ONB_EIADDRSHFTL 16
 509#define ONB_EIADDRMASKH 0xff000000
 510#define ONB_EIADDRSHFTH 24
 511#define ONB_EIBRDENAB   0xc84
 512
 513#define ONB_EISAID      0x1
 514
 515/*
 516 *      Important defines for the Brumby boards. They are pretty simple,
 517 *      there is not much that is programmably configurable.
 518 */
 519#define BBY_IOSIZE      16
 520#define BBY_MEMSIZE     (64 * 1024)
 521#define BBY_PAGESIZE    (16 * 1024)
 522
 523#define BBY_ATIREG      0
 524#define BBY_ATCONFR     1
 525#define BBY_ATSTOP      0x4
 526
 527/*
 528 *      Important defines for the Stallion boards. They are pretty simple,
 529 *      there is not much that is programmably configurable.
 530 */
 531#define STAL_IOSIZE     16
 532#define STAL_MEMSIZE    (64 * 1024)
 533#define STAL_PAGESIZE   (64 * 1024)
 534
 535/*
 536 *      Define the set of status register values for EasyConnection panels.
 537 *      The signature will return with the status value for each panel. From
 538 *      this we can determine what is attached to the board - before we have
 539 *      actually down loaded any code to it.
 540 */
 541#define ECH_PNLSTATUS   2
 542#define ECH_PNL16PORT   0x20
 543#define ECH_PNLIDMASK   0x07
 544#define ECH_PNLXPID     0x40
 545#define ECH_PNLINTRPEND 0x80
 546
 547/*
 548 *      Define some macros to do things to the board. Even those these boards
 549 *      are somewhat related there is often significantly different ways of
 550 *      doing some operation on it (like enable, paging, reset, etc). So each
 551 *      board class has a set of functions which do the commonly required
 552 *      operations. The macros below basically just call these functions,
 553 *      generally checking for a NULL function - which means that the board
 554 *      needs nothing done to it to achieve this operation!
 555 */
 556#define EBRDINIT(brdp)                                          \
 557        if (brdp->init != NULL)                                 \
 558                (* brdp->init)(brdp)
 559
 560#define EBRDENABLE(brdp)                                        \
 561        if (brdp->enable != NULL)                               \
 562                (* brdp->enable)(brdp);
 563
 564#define EBRDDISABLE(brdp)                                       \
 565        if (brdp->disable != NULL)                              \
 566                (* brdp->disable)(brdp);
 567
 568#define EBRDINTR(brdp)                                          \
 569        if (brdp->intr != NULL)                                 \
 570                (* brdp->intr)(brdp);
 571
 572#define EBRDRESET(brdp)                                         \
 573        if (brdp->reset != NULL)                                \
 574                (* brdp->reset)(brdp);
 575
 576#define EBRDGETMEMPTR(brdp,offset)                              \
 577        (* brdp->getmemptr)(brdp, offset, __LINE__)
 578
 579/*
 580 *      Define the maximal baud rate, and the default baud base for ports.
 581 */
 582#define STL_MAXBAUD     460800
 583#define STL_BAUDBASE    115200
 584#define STL_CLOSEDELAY  (5 * HZ / 10)
 585
 586/*****************************************************************************/
 587
 588/*
 589 *      Define macros to extract a brd or port number from a minor number.
 590 */
 591#define MINOR2BRD(min)          (((min) & 0xc0) >> 6)
 592#define MINOR2PORT(min)         ((min) & 0x3f)
 593
 594/*****************************************************************************/
 595
 596/*
 597 *      Prototype all functions in this driver!
 598 */
 599
 600static int      stli_parsebrd(struct stlconf *confp, char **argp);
 601static int      stli_open(struct tty_struct *tty, struct file *filp);
 602static void     stli_close(struct tty_struct *tty, struct file *filp);
 603static int      stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
 604static int      stli_putchar(struct tty_struct *tty, unsigned char ch);
 605static void     stli_flushchars(struct tty_struct *tty);
 606static int      stli_writeroom(struct tty_struct *tty);
 607static int      stli_charsinbuffer(struct tty_struct *tty);
 608static int      stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
 609static void     stli_settermios(struct tty_struct *tty, struct ktermios *old);
 610static void     stli_throttle(struct tty_struct *tty);
 611static void     stli_unthrottle(struct tty_struct *tty);
 612static void     stli_stop(struct tty_struct *tty);
 613static void     stli_start(struct tty_struct *tty);
 614static void     stli_flushbuffer(struct tty_struct *tty);
 615static int      stli_breakctl(struct tty_struct *tty, int state);
 616static void     stli_waituntilsent(struct tty_struct *tty, int timeout);
 617static void     stli_sendxchar(struct tty_struct *tty, char ch);
 618static void     stli_hangup(struct tty_struct *tty);
 619
 620static int      stli_brdinit(struct stlibrd *brdp);
 621static int      stli_startbrd(struct stlibrd *brdp);
 622static ssize_t  stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
 623static ssize_t  stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
 624static int      stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
 625static void     stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
 626static void     stli_poll(unsigned long arg);
 627static int      stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
 628static int      stli_initopen(struct tty_struct *tty, struct stlibrd *brdp, struct stliport *portp);
 629static int      stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
 630static int      stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
 631static int      stli_setport(struct tty_struct *tty);
 632static int      stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
 633static void     stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
 634static void     __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
 635static void     stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
 636static void     stli_mkasyport(struct tty_struct *tty, struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
 637static void     stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
 638static long     stli_mktiocm(unsigned long sigvalue);
 639static void     stli_read(struct stlibrd *brdp, struct stliport *portp);
 640static int      stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
 641static int      stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp);
 642static int      stli_getbrdstats(combrd_t __user *bp);
 643static int      stli_getportstats(struct tty_struct *tty, struct stliport *portp, comstats_t __user *cp);
 644static int      stli_portcmdstats(struct tty_struct *tty, struct stliport *portp);
 645static int      stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
 646static int      stli_getportstruct(struct stliport __user *arg);
 647static int      stli_getbrdstruct(struct stlibrd __user *arg);
 648static struct stlibrd *stli_allocbrd(void);
 649
 650static void     stli_ecpinit(struct stlibrd *brdp);
 651static void     stli_ecpenable(struct stlibrd *brdp);
 652static void     stli_ecpdisable(struct stlibrd *brdp);
 653static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 654static void     stli_ecpreset(struct stlibrd *brdp);
 655static void     stli_ecpintr(struct stlibrd *brdp);
 656static void     stli_ecpeiinit(struct stlibrd *brdp);
 657static void     stli_ecpeienable(struct stlibrd *brdp);
 658static void     stli_ecpeidisable(struct stlibrd *brdp);
 659static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 660static void     stli_ecpeireset(struct stlibrd *brdp);
 661static void     stli_ecpmcenable(struct stlibrd *brdp);
 662static void     stli_ecpmcdisable(struct stlibrd *brdp);
 663static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 664static void     stli_ecpmcreset(struct stlibrd *brdp);
 665static void     stli_ecppciinit(struct stlibrd *brdp);
 666static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 667static void     stli_ecppcireset(struct stlibrd *brdp);
 668
 669static void     stli_onbinit(struct stlibrd *brdp);
 670static void     stli_onbenable(struct stlibrd *brdp);
 671static void     stli_onbdisable(struct stlibrd *brdp);
 672static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 673static void     stli_onbreset(struct stlibrd *brdp);
 674static void     stli_onbeinit(struct stlibrd *brdp);
 675static void     stli_onbeenable(struct stlibrd *brdp);
 676static void     stli_onbedisable(struct stlibrd *brdp);
 677static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 678static void     stli_onbereset(struct stlibrd *brdp);
 679static void     stli_bbyinit(struct stlibrd *brdp);
 680static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 681static void     stli_bbyreset(struct stlibrd *brdp);
 682static void     stli_stalinit(struct stlibrd *brdp);
 683static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 684static void     stli_stalreset(struct stlibrd *brdp);
 685
 686static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
 687
 688static int      stli_initecp(struct stlibrd *brdp);
 689static int      stli_initonb(struct stlibrd *brdp);
 690#if STLI_EISAPROBE != 0
 691static int      stli_eisamemprobe(struct stlibrd *brdp);
 692#endif
 693static int      stli_initports(struct stlibrd *brdp);
 694
 695/*****************************************************************************/
 696
 697/*
 698 *      Define the driver info for a user level shared memory device. This
 699 *      device will work sort of like the /dev/kmem device - except that it
 700 *      will give access to the shared memory on the Stallion intelligent
 701 *      board. This is also a very useful debugging tool.
 702 */
 703static const struct file_operations     stli_fsiomem = {
 704        .owner          = THIS_MODULE,
 705        .read           = stli_memread,
 706        .write          = stli_memwrite,
 707        .ioctl          = stli_memioctl,
 708};
 709
 710/*****************************************************************************/
 711
 712/*
 713 *      Define a timer_list entry for our poll routine. The slave board
 714 *      is polled every so often to see if anything needs doing. This is
 715 *      much cheaper on host cpu than using interrupts. It turns out to
 716 *      not increase character latency by much either...
 717 */
 718static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
 719
 720static int      stli_timeron;
 721
 722/*
 723 *      Define the calculation for the timeout routine.
 724 */
 725#define STLI_TIMEOUT    (jiffies + 1)
 726
 727/*****************************************************************************/
 728
 729static struct class *istallion_class;
 730
 731static void stli_cleanup_ports(struct stlibrd *brdp)
 732{
 733        struct stliport *portp;
 734        unsigned int j;
 735        struct tty_struct *tty;
 736
 737        for (j = 0; j < STL_MAXPORTS; j++) {
 738                portp = brdp->ports[j];
 739                if (portp != NULL) {
 740                        tty = tty_port_tty_get(&portp->port);
 741                        if (tty != NULL) {
 742                                tty_hangup(tty);
 743                                tty_kref_put(tty);
 744                        }
 745                        kfree(portp);
 746                }
 747        }
 748}
 749
 750/*****************************************************************************/
 751
 752/*
 753 *      Parse the supplied argument string, into the board conf struct.
 754 */
 755
 756static int stli_parsebrd(struct stlconf *confp, char **argp)
 757{
 758        unsigned int i;
 759        char *sp;
 760
 761        if (argp[0] == NULL || *argp[0] == 0)
 762                return 0;
 763
 764        for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
 765                *sp = tolower(*sp);
 766
 767        for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
 768                if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
 769                        break;
 770        }
 771        if (i == ARRAY_SIZE(stli_brdstr)) {
 772                printk(KERN_WARNING "istallion: unknown board name, %s?\n", argp[0]);
 773                return 0;
 774        }
 775
 776        confp->brdtype = stli_brdstr[i].type;
 777        if (argp[1] != NULL && *argp[1] != 0)
 778                confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
 779        if (argp[2] !=  NULL && *argp[2] != 0)
 780                confp->memaddr = simple_strtoul(argp[2], NULL, 0);
 781        return(1);
 782}
 783
 784/*****************************************************************************/
 785
 786static int stli_open(struct tty_struct *tty, struct file *filp)
 787{
 788        struct stlibrd *brdp;
 789        struct stliport *portp;
 790        struct tty_port *port;
 791        unsigned int minordev, brdnr, portnr;
 792        int rc;
 793
 794        minordev = tty->index;
 795        brdnr = MINOR2BRD(minordev);
 796        if (brdnr >= stli_nrbrds)
 797                return -ENODEV;
 798        brdp = stli_brds[brdnr];
 799        if (brdp == NULL)
 800                return -ENODEV;
 801        if ((brdp->state & BST_STARTED) == 0)
 802                return -ENODEV;
 803        portnr = MINOR2PORT(minordev);
 804        if (portnr > brdp->nrports)
 805                return -ENODEV;
 806
 807        portp = brdp->ports[portnr];
 808        if (portp == NULL)
 809                return -ENODEV;
 810        if (portp->devnr < 1)
 811                return -ENODEV;
 812        port = &portp->port;
 813
 814/*
 815 *      On the first open of the device setup the port hardware, and
 816 *      initialize the per port data structure. Since initializing the port
 817 *      requires several commands to the board we will need to wait for any
 818 *      other open that is already initializing the port.
 819 *
 820 *      Review - locking
 821 */
 822        tty_port_tty_set(port, tty);
 823        tty->driver_data = portp;
 824        port->count++;
 825
 826        wait_event_interruptible(portp->raw_wait,
 827                        !test_bit(ST_INITIALIZING, &portp->state));
 828        if (signal_pending(current))
 829                return -ERESTARTSYS;
 830
 831        if ((portp->port.flags & ASYNC_INITIALIZED) == 0) {
 832                set_bit(ST_INITIALIZING, &portp->state);
 833                if ((rc = stli_initopen(tty, brdp, portp)) >= 0) {
 834                        /* Locking */
 835                        port->flags |= ASYNC_INITIALIZED;
 836                        clear_bit(TTY_IO_ERROR, &tty->flags);
 837                }
 838                clear_bit(ST_INITIALIZING, &portp->state);
 839                wake_up_interruptible(&portp->raw_wait);
 840                if (rc < 0)
 841                        return rc;
 842        }
 843        return tty_port_block_til_ready(&portp->port, tty, filp);
 844}
 845
 846/*****************************************************************************/
 847
 848static void stli_close(struct tty_struct *tty, struct file *filp)
 849{
 850        struct stlibrd *brdp;
 851        struct stliport *portp;
 852        struct tty_port *port;
 853        unsigned long flags;
 854
 855        portp = tty->driver_data;
 856        if (portp == NULL)
 857                return;
 858        port = &portp->port;
 859
 860        if (tty_port_close_start(port, tty, filp) == 0)
 861                return;
 862
 863/*
 864 *      May want to wait for data to drain before closing. The BUSY flag
 865 *      keeps track of whether we are still transmitting or not. It is
 866 *      updated by messages from the slave - indicating when all chars
 867 *      really have drained.
 868 */
 869        spin_lock_irqsave(&stli_lock, flags);
 870        if (tty == stli_txcooktty)
 871                stli_flushchars(tty);
 872        spin_unlock_irqrestore(&stli_lock, flags);
 873
 874        /* We end up doing this twice for the moment. This needs looking at
 875           eventually. Note we still use portp->closing_wait as a result */
 876        if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
 877                tty_wait_until_sent(tty, portp->closing_wait);
 878
 879        /* FIXME: port locking here needs attending to */
 880        port->flags &= ~ASYNC_INITIALIZED;
 881
 882        brdp = stli_brds[portp->brdnr];
 883        stli_rawclose(brdp, portp, 0, 0);
 884        if (tty->termios->c_cflag & HUPCL) {
 885                stli_mkasysigs(&portp->asig, 0, 0);
 886                if (test_bit(ST_CMDING, &portp->state))
 887                        set_bit(ST_DOSIGS, &portp->state);
 888                else
 889                        stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
 890                                sizeof(asysigs_t), 0);
 891        }
 892        clear_bit(ST_TXBUSY, &portp->state);
 893        clear_bit(ST_RXSTOP, &portp->state);
 894        set_bit(TTY_IO_ERROR, &tty->flags);
 895        tty_ldisc_flush(tty);
 896        set_bit(ST_DOFLUSHRX, &portp->state);
 897        stli_flushbuffer(tty);
 898
 899        tty_port_close_end(port, tty);
 900        tty_port_tty_set(port, NULL);
 901}
 902
 903/*****************************************************************************/
 904
 905/*
 906 *      Carry out first open operations on a port. This involves a number of
 907 *      commands to be sent to the slave. We need to open the port, set the
 908 *      notification events, set the initial port settings, get and set the
 909 *      initial signal values. We sleep and wait in between each one. But
 910 *      this still all happens pretty quickly.
 911 */
 912
 913static int stli_initopen(struct tty_struct *tty,
 914                                struct stlibrd *brdp, struct stliport *portp)
 915{
 916        asynotify_t nt;
 917        asyport_t aport;
 918        int rc;
 919
 920        if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
 921                return rc;
 922
 923        memset(&nt, 0, sizeof(asynotify_t));
 924        nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
 925        nt.signal = SG_DCD;
 926        if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
 927            sizeof(asynotify_t), 0)) < 0)
 928                return rc;
 929
 930        stli_mkasyport(tty, portp, &aport, tty->termios);
 931        if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
 932            sizeof(asyport_t), 0)) < 0)
 933                return rc;
 934
 935        set_bit(ST_GETSIGS, &portp->state);
 936        if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
 937            sizeof(asysigs_t), 1)) < 0)
 938                return rc;
 939        if (test_and_clear_bit(ST_GETSIGS, &portp->state))
 940                portp->sigs = stli_mktiocm(portp->asig.sigvalue);
 941        stli_mkasysigs(&portp->asig, 1, 1);
 942        if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
 943            sizeof(asysigs_t), 0)) < 0)
 944                return rc;
 945
 946        return 0;
 947}
 948
 949/*****************************************************************************/
 950
 951/*
 952 *      Send an open message to the slave. This will sleep waiting for the
 953 *      acknowledgement, so must have user context. We need to co-ordinate
 954 *      with close events here, since we don't want open and close events
 955 *      to overlap.
 956 */
 957
 958static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
 959{
 960        cdkhdr_t __iomem *hdrp;
 961        cdkctrl_t __iomem *cp;
 962        unsigned char __iomem *bits;
 963        unsigned long flags;
 964        int rc;
 965
 966/*
 967 *      Send a message to the slave to open this port.
 968 */
 969
 970/*
 971 *      Slave is already closing this port. This can happen if a hangup
 972 *      occurs on this port. So we must wait until it is complete. The
 973 *      order of opens and closes may not be preserved across shared
 974 *      memory, so we must wait until it is complete.
 975 */
 976        wait_event_interruptible(portp->raw_wait,
 977                        !test_bit(ST_CLOSING, &portp->state));
 978        if (signal_pending(current)) {
 979                return -ERESTARTSYS;
 980        }
 981
 982/*
 983 *      Everything is ready now, so write the open message into shared
 984 *      memory. Once the message is in set the service bits to say that
 985 *      this port wants service.
 986 */
 987        spin_lock_irqsave(&brd_lock, flags);
 988        EBRDENABLE(brdp);
 989        cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
 990        writel(arg, &cp->openarg);
 991        writeb(1, &cp->open);
 992        hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
 993        bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
 994                portp->portidx;
 995        writeb(readb(bits) | portp->portbit, bits);
 996        EBRDDISABLE(brdp);
 997
 998        if (wait == 0) {
 999                spin_unlock_irqrestore(&brd_lock, flags);
1000                return 0;
1001        }
1002
1003/*
1004 *      Slave is in action, so now we must wait for the open acknowledgment
1005 *      to come back.
1006 */
1007        rc = 0;
1008        set_bit(ST_OPENING, &portp->state);
1009        spin_unlock_irqrestore(&brd_lock, flags);
1010
1011        wait_event_interruptible(portp->raw_wait,
1012                        !test_bit(ST_OPENING, &portp->state));
1013        if (signal_pending(current))
1014                rc = -ERESTARTSYS;
1015
1016        if ((rc == 0) && (portp->rc != 0))
1017                rc = -EIO;
1018        return rc;
1019}
1020
1021/*****************************************************************************/
1022
1023/*
1024 *      Send a close message to the slave. Normally this will sleep waiting
1025 *      for the acknowledgement, but if wait parameter is 0 it will not. If
1026 *      wait is true then must have user context (to sleep).
1027 */
1028
1029static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1030{
1031        cdkhdr_t __iomem *hdrp;
1032        cdkctrl_t __iomem *cp;
1033        unsigned char __iomem *bits;
1034        unsigned long flags;
1035        int rc;
1036
1037/*
1038 *      Slave is already closing this port. This can happen if a hangup
1039 *      occurs on this port.
1040 */
1041        if (wait) {
1042                wait_event_interruptible(portp->raw_wait,
1043                                !test_bit(ST_CLOSING, &portp->state));
1044                if (signal_pending(current)) {
1045                        return -ERESTARTSYS;
1046                }
1047        }
1048
1049/*
1050 *      Write the close command into shared memory.
1051 */
1052        spin_lock_irqsave(&brd_lock, flags);
1053        EBRDENABLE(brdp);
1054        cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1055        writel(arg, &cp->closearg);
1056        writeb(1, &cp->close);
1057        hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1058        bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1059                portp->portidx;
1060        writeb(readb(bits) |portp->portbit, bits);
1061        EBRDDISABLE(brdp);
1062
1063        set_bit(ST_CLOSING, &portp->state);
1064        spin_unlock_irqrestore(&brd_lock, flags);
1065
1066        if (wait == 0)
1067                return 0;
1068
1069/*
1070 *      Slave is in action, so now we must wait for the open acknowledgment
1071 *      to come back.
1072 */
1073        rc = 0;
1074        wait_event_interruptible(portp->raw_wait,
1075                        !test_bit(ST_CLOSING, &portp->state));
1076        if (signal_pending(current))
1077                rc = -ERESTARTSYS;
1078
1079        if ((rc == 0) && (portp->rc != 0))
1080                rc = -EIO;
1081        return rc;
1082}
1083
1084/*****************************************************************************/
1085
1086/*
1087 *      Send a command to the slave and wait for the response. This must
1088 *      have user context (it sleeps). This routine is generic in that it
1089 *      can send any type of command. Its purpose is to wait for that command
1090 *      to complete (as opposed to initiating the command then returning).
1091 */
1092
1093static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1094{
1095        wait_event_interruptible(portp->raw_wait,
1096                        !test_bit(ST_CMDING, &portp->state));
1097        if (signal_pending(current))
1098                return -ERESTARTSYS;
1099
1100        stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1101
1102        wait_event_interruptible(portp->raw_wait,
1103                        !test_bit(ST_CMDING, &portp->state));
1104        if (signal_pending(current))
1105                return -ERESTARTSYS;
1106
1107        if (portp->rc != 0)
1108                return -EIO;
1109        return 0;
1110}
1111
1112/*****************************************************************************/
1113
1114/*
1115 *      Send the termios settings for this port to the slave. This sleeps
1116 *      waiting for the command to complete - so must have user context.
1117 */
1118
1119static int stli_setport(struct tty_struct *tty)
1120{
1121        struct stliport *portp = tty->driver_data;
1122        struct stlibrd *brdp;
1123        asyport_t aport;
1124
1125        if (portp == NULL)
1126                return -ENODEV;
1127        if (portp->brdnr >= stli_nrbrds)
1128                return -ENODEV;
1129        brdp = stli_brds[portp->brdnr];
1130        if (brdp == NULL)
1131                return -ENODEV;
1132
1133        stli_mkasyport(tty, portp, &aport, tty->termios);
1134        return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1135}
1136
1137/*****************************************************************************/
1138
1139static int stli_carrier_raised(struct tty_port *port)
1140{
1141        struct stliport *portp = container_of(port, struct stliport, port);
1142        return (portp->sigs & TIOCM_CD) ? 1 : 0;
1143}
1144
1145static void stli_dtr_rts(struct tty_port *port, int on)
1146{
1147        struct stliport *portp = container_of(port, struct stliport, port);
1148        struct stlibrd *brdp = stli_brds[portp->brdnr];
1149        stli_mkasysigs(&portp->asig, on, on);
1150        if (stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1151                sizeof(asysigs_t), 0) < 0)
1152                        printk(KERN_WARNING "istallion: dtr set failed.\n");
1153}
1154
1155
1156/*****************************************************************************/
1157
1158/*
1159 *      Write routine. Take the data and put it in the shared memory ring
1160 *      queue. If port is not already sending chars then need to mark the
1161 *      service bits for this port.
1162 */
1163
1164static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1165{
1166        cdkasy_t __iomem *ap;
1167        cdkhdr_t __iomem *hdrp;
1168        unsigned char __iomem *bits;
1169        unsigned char __iomem *shbuf;
1170        unsigned char *chbuf;
1171        struct stliport *portp;
1172        struct stlibrd *brdp;
1173        unsigned int len, stlen, head, tail, size;
1174        unsigned long flags;
1175
1176        if (tty == stli_txcooktty)
1177                stli_flushchars(tty);
1178        portp = tty->driver_data;
1179        if (portp == NULL)
1180                return 0;
1181        if (portp->brdnr >= stli_nrbrds)
1182                return 0;
1183        brdp = stli_brds[portp->brdnr];
1184        if (brdp == NULL)
1185                return 0;
1186        chbuf = (unsigned char *) buf;
1187
1188/*
1189 *      All data is now local, shove as much as possible into shared memory.
1190 */
1191        spin_lock_irqsave(&brd_lock, flags);
1192        EBRDENABLE(brdp);
1193        ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1194        head = (unsigned int) readw(&ap->txq.head);
1195        tail = (unsigned int) readw(&ap->txq.tail);
1196        if (tail != ((unsigned int) readw(&ap->txq.tail)))
1197                tail = (unsigned int) readw(&ap->txq.tail);
1198        size = portp->txsize;
1199        if (head >= tail) {
1200                len = size - (head - tail) - 1;
1201                stlen = size - head;
1202        } else {
1203                len = tail - head - 1;
1204                stlen = len;
1205        }
1206
1207        len = min(len, (unsigned int)count);
1208        count = 0;
1209        shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1210
1211        while (len > 0) {
1212                stlen = min(len, stlen);
1213                memcpy_toio(shbuf + head, chbuf, stlen);
1214                chbuf += stlen;
1215                len -= stlen;
1216                count += stlen;
1217                head += stlen;
1218                if (head >= size) {
1219                        head = 0;
1220                        stlen = tail;
1221                }
1222        }
1223
1224        ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1225        writew(head, &ap->txq.head);
1226        if (test_bit(ST_TXBUSY, &portp->state)) {
1227                if (readl(&ap->changed.data) & DT_TXEMPTY)
1228                        writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1229        }
1230        hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1231        bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1232                portp->portidx;
1233        writeb(readb(bits) | portp->portbit, bits);
1234        set_bit(ST_TXBUSY, &portp->state);
1235        EBRDDISABLE(brdp);
1236        spin_unlock_irqrestore(&brd_lock, flags);
1237
1238        return(count);
1239}
1240
1241/*****************************************************************************/
1242
1243/*
1244 *      Output a single character. We put it into a temporary local buffer
1245 *      (for speed) then write out that buffer when the flushchars routine
1246 *      is called. There is a safety catch here so that if some other port
1247 *      writes chars before the current buffer has been, then we write them
1248 *      first them do the new ports.
1249 */
1250
1251static int stli_putchar(struct tty_struct *tty, unsigned char ch)
1252{
1253        if (tty != stli_txcooktty) {
1254                if (stli_txcooktty != NULL)
1255                        stli_flushchars(stli_txcooktty);
1256                stli_txcooktty = tty;
1257        }
1258
1259        stli_txcookbuf[stli_txcooksize++] = ch;
1260        return 0;
1261}
1262
1263/*****************************************************************************/
1264
1265/*
1266 *      Transfer characters from the local TX cooking buffer to the board.
1267 *      We sort of ignore the tty that gets passed in here. We rely on the
1268 *      info stored with the TX cook buffer to tell us which port to flush
1269 *      the data on. In any case we clean out the TX cook buffer, for re-use
1270 *      by someone else.
1271 */
1272
1273static void stli_flushchars(struct tty_struct *tty)
1274{
1275        cdkhdr_t __iomem *hdrp;
1276        unsigned char __iomem *bits;
1277        cdkasy_t __iomem *ap;
1278        struct tty_struct *cooktty;
1279        struct stliport *portp;
1280        struct stlibrd *brdp;
1281        unsigned int len, stlen, head, tail, size, count, cooksize;
1282        unsigned char *buf;
1283        unsigned char __iomem *shbuf;
1284        unsigned long flags;
1285
1286        cooksize = stli_txcooksize;
1287        cooktty = stli_txcooktty;
1288        stli_txcooksize = 0;
1289        stli_txcookrealsize = 0;
1290        stli_txcooktty = NULL;
1291
1292        if (cooktty == NULL)
1293                return;
1294        if (tty != cooktty)
1295                tty = cooktty;
1296        if (cooksize == 0)
1297                return;
1298
1299        portp = tty->driver_data;
1300        if (portp == NULL)
1301                return;
1302        if (portp->brdnr >= stli_nrbrds)
1303                return;
1304        brdp = stli_brds[portp->brdnr];
1305        if (brdp == NULL)
1306                return;
1307
1308        spin_lock_irqsave(&brd_lock, flags);
1309        EBRDENABLE(brdp);
1310
1311        ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1312        head = (unsigned int) readw(&ap->txq.head);
1313        tail = (unsigned int) readw(&ap->txq.tail);
1314        if (tail != ((unsigned int) readw(&ap->txq.tail)))
1315                tail = (unsigned int) readw(&ap->txq.tail);
1316        size = portp->txsize;
1317        if (head >= tail) {
1318                len = size - (head - tail) - 1;
1319                stlen = size - head;
1320        } else {
1321                len = tail - head - 1;
1322                stlen = len;
1323        }
1324
1325        len = min(len, cooksize);
1326        count = 0;
1327        shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1328        buf = stli_txcookbuf;
1329
1330        while (len > 0) {
1331                stlen = min(len, stlen);
1332                memcpy_toio(shbuf + head, buf, stlen);
1333                buf += stlen;
1334                len -= stlen;
1335                count += stlen;
1336                head += stlen;
1337                if (head >= size) {
1338                        head = 0;
1339                        stlen = tail;
1340                }
1341        }
1342
1343        ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1344        writew(head, &ap->txq.head);
1345
1346        if (test_bit(ST_TXBUSY, &portp->state)) {
1347                if (readl(&ap->changed.data) & DT_TXEMPTY)
1348                        writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1349        }
1350        hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1351        bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1352                portp->portidx;
1353        writeb(readb(bits) | portp->portbit, bits);
1354        set_bit(ST_TXBUSY, &portp->state);
1355
1356        EBRDDISABLE(brdp);
1357        spin_unlock_irqrestore(&brd_lock, flags);
1358}
1359
1360/*****************************************************************************/
1361
1362static int stli_writeroom(struct tty_struct *tty)
1363{
1364        cdkasyrq_t __iomem *rp;
1365        struct stliport *portp;
1366        struct stlibrd *brdp;
1367        unsigned int head, tail, len;
1368        unsigned long flags;
1369
1370        if (tty == stli_txcooktty) {
1371                if (stli_txcookrealsize != 0) {
1372                        len = stli_txcookrealsize - stli_txcooksize;
1373                        return len;
1374                }
1375        }
1376
1377        portp = tty->driver_data;
1378        if (portp == NULL)
1379                return 0;
1380        if (portp->brdnr >= stli_nrbrds)
1381                return 0;
1382        brdp = stli_brds[portp->brdnr];
1383        if (brdp == NULL)
1384                return 0;
1385
1386        spin_lock_irqsave(&brd_lock, flags);
1387        EBRDENABLE(brdp);
1388        rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1389        head = (unsigned int) readw(&rp->head);
1390        tail = (unsigned int) readw(&rp->tail);
1391        if (tail != ((unsigned int) readw(&rp->tail)))
1392                tail = (unsigned int) readw(&rp->tail);
1393        len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1394        len--;
1395        EBRDDISABLE(brdp);
1396        spin_unlock_irqrestore(&brd_lock, flags);
1397
1398        if (tty == stli_txcooktty) {
1399                stli_txcookrealsize = len;
1400                len -= stli_txcooksize;
1401        }
1402        return len;
1403}
1404
1405/*****************************************************************************/
1406
1407/*
1408 *      Return the number of characters in the transmit buffer. Normally we
1409 *      will return the number of chars in the shared memory ring queue.
1410 *      We need to kludge around the case where the shared memory buffer is
1411 *      empty but not all characters have drained yet, for this case just
1412 *      return that there is 1 character in the buffer!
1413 */
1414
1415static int stli_charsinbuffer(struct tty_struct *tty)
1416{
1417        cdkasyrq_t __iomem *rp;
1418        struct stliport *portp;
1419        struct stlibrd *brdp;
1420        unsigned int head, tail, len;
1421        unsigned long flags;
1422
1423        if (tty == stli_txcooktty)
1424                stli_flushchars(tty);
1425        portp = tty->driver_data;
1426        if (portp == NULL)
1427                return 0;
1428        if (portp->brdnr >= stli_nrbrds)
1429                return 0;
1430        brdp = stli_brds[portp->brdnr];
1431        if (brdp == NULL)
1432                return 0;
1433
1434        spin_lock_irqsave(&brd_lock, flags);
1435        EBRDENABLE(brdp);
1436        rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1437        head = (unsigned int) readw(&rp->head);
1438        tail = (unsigned int) readw(&rp->tail);
1439        if (tail != ((unsigned int) readw(&rp->tail)))
1440                tail = (unsigned int) readw(&rp->tail);
1441        len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1442        if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1443                len = 1;
1444        EBRDDISABLE(brdp);
1445        spin_unlock_irqrestore(&brd_lock, flags);
1446
1447        return len;
1448}
1449
1450/*****************************************************************************/
1451
1452/*
1453 *      Generate the serial struct info.
1454 */
1455
1456static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1457{
1458        struct serial_struct sio;
1459        struct stlibrd *brdp;
1460
1461        memset(&sio, 0, sizeof(struct serial_struct));
1462        sio.type = PORT_UNKNOWN;
1463        sio.line = portp->portnr;
1464        sio.irq = 0;
1465        sio.flags = portp->port.flags;
1466        sio.baud_base = portp->baud_base;
1467        sio.close_delay = portp->port.close_delay;
1468        sio.closing_wait = portp->closing_wait;
1469        sio.custom_divisor = portp->custom_divisor;
1470        sio.xmit_fifo_size = 0;
1471        sio.hub6 = 0;
1472
1473        brdp = stli_brds[portp->brdnr];
1474        if (brdp != NULL)
1475                sio.port = brdp->iobase;
1476                
1477        return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1478                        -EFAULT : 0;
1479}
1480
1481/*****************************************************************************/
1482
1483/*
1484 *      Set port according to the serial struct info.
1485 *      At this point we do not do any auto-configure stuff, so we will
1486 *      just quietly ignore any requests to change irq, etc.
1487 */
1488
1489static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1490{
1491        struct serial_struct sio;
1492        int rc;
1493        struct stliport *portp = tty->driver_data;
1494
1495        if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1496                return -EFAULT;
1497        if (!capable(CAP_SYS_ADMIN)) {
1498                if ((sio.baud_base != portp->baud_base) ||
1499                    (sio.close_delay != portp->port.close_delay) ||
1500                    ((sio.flags & ~ASYNC_USR_MASK) !=
1501                    (portp->port.flags & ~ASYNC_USR_MASK)))
1502                        return -EPERM;
1503        } 
1504
1505        portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1506                (sio.flags & ASYNC_USR_MASK);
1507        portp->baud_base = sio.baud_base;
1508        portp->port.close_delay = sio.close_delay;
1509        portp->closing_wait = sio.closing_wait;
1510        portp->custom_divisor = sio.custom_divisor;
1511
1512        if ((rc = stli_setport(tty)) < 0)
1513                return rc;
1514        return 0;
1515}
1516
1517/*****************************************************************************/
1518
1519static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1520{
1521        struct stliport *portp = tty->driver_data;
1522        struct stlibrd *brdp;
1523        int rc;
1524
1525        if (portp == NULL)
1526                return -ENODEV;
1527        if (portp->brdnr >= stli_nrbrds)
1528                return 0;
1529        brdp = stli_brds[portp->brdnr];
1530        if (brdp == NULL)
1531                return 0;
1532        if (tty->flags & (1 << TTY_IO_ERROR))
1533                return -EIO;
1534
1535        if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1536                               &portp->asig, sizeof(asysigs_t), 1)) < 0)
1537                return rc;
1538
1539        return stli_mktiocm(portp->asig.sigvalue);
1540}
1541
1542static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1543                         unsigned int set, unsigned int clear)
1544{
1545        struct stliport *portp = tty->driver_data;
1546        struct stlibrd *brdp;
1547        int rts = -1, dtr = -1;
1548
1549        if (portp == NULL)
1550                return -ENODEV;
1551        if (portp->brdnr >= stli_nrbrds)
1552                return 0;
1553        brdp = stli_brds[portp->brdnr];
1554        if (brdp == NULL)
1555                return 0;
1556        if (tty->flags & (1 << TTY_IO_ERROR))
1557                return -EIO;
1558
1559        if (set & TIOCM_RTS)
1560                rts = 1;
1561        if (set & TIOCM_DTR)
1562                dtr = 1;
1563        if (clear & TIOCM_RTS)
1564                rts = 0;
1565        if (clear & TIOCM_DTR)
1566                dtr = 0;
1567
1568        stli_mkasysigs(&portp->asig, dtr, rts);
1569
1570        return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1571                            sizeof(asysigs_t), 0);
1572}
1573
1574static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1575{
1576        struct stliport *portp;
1577        struct stlibrd *brdp;
1578        int rc;
1579        void __user *argp = (void __user *)arg;
1580
1581        portp = tty->driver_data;
1582        if (portp == NULL)
1583                return -ENODEV;
1584        if (portp->brdnr >= stli_nrbrds)
1585                return 0;
1586        brdp = stli_brds[portp->brdnr];
1587        if (brdp == NULL)
1588                return 0;
1589
1590        if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1591            (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1592                if (tty->flags & (1 << TTY_IO_ERROR))
1593                        return -EIO;
1594        }
1595
1596        rc = 0;
1597
1598        switch (cmd) {
1599        case TIOCGSERIAL:
1600                rc = stli_getserial(portp, argp);
1601                break;
1602        case TIOCSSERIAL:
1603                rc = stli_setserial(tty, argp);
1604                break;
1605        case STL_GETPFLAG:
1606                rc = put_user(portp->pflag, (unsigned __user *)argp);
1607                break;
1608        case STL_SETPFLAG:
1609                if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1610                        stli_setport(tty);
1611                break;
1612        case COM_GETPORTSTATS:
1613                rc = stli_getportstats(tty, portp, argp);
1614                break;
1615        case COM_CLRPORTSTATS:
1616                rc = stli_clrportstats(portp, argp);
1617                break;
1618        case TIOCSERCONFIG:
1619        case TIOCSERGWILD:
1620        case TIOCSERSWILD:
1621        case TIOCSERGETLSR:
1622        case TIOCSERGSTRUCT:
1623        case TIOCSERGETMULTI:
1624        case TIOCSERSETMULTI:
1625        default:
1626                rc = -ENOIOCTLCMD;
1627                break;
1628        }
1629
1630        return rc;
1631}
1632
1633/*****************************************************************************/
1634
1635/*
1636 *      This routine assumes that we have user context and can sleep.
1637 *      Looks like it is true for the current ttys implementation..!!
1638 */
1639
1640static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1641{
1642        struct stliport *portp;
1643        struct stlibrd *brdp;
1644        struct ktermios *tiosp;
1645        asyport_t aport;
1646
1647        portp = tty->driver_data;
1648        if (portp == NULL)
1649                return;
1650        if (portp->brdnr >= stli_nrbrds)
1651                return;
1652        brdp = stli_brds[portp->brdnr];
1653        if (brdp == NULL)
1654                return;
1655
1656        tiosp = tty->termios;
1657
1658        stli_mkasyport(tty, portp, &aport, tiosp);
1659        stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1660        stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1661        stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1662                sizeof(asysigs_t), 0);
1663        if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1664                tty->hw_stopped = 0;
1665        if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1666                wake_up_interruptible(&portp->port.open_wait);
1667}
1668
1669/*****************************************************************************/
1670
1671/*
1672 *      Attempt to flow control who ever is sending us data. We won't really
1673 *      do any flow control action here. We can't directly, and even if we
1674 *      wanted to we would have to send a command to the slave. The slave
1675 *      knows how to flow control, and will do so when its buffers reach its
1676 *      internal high water marks. So what we will do is set a local state
1677 *      bit that will stop us sending any RX data up from the poll routine
1678 *      (which is the place where RX data from the slave is handled).
1679 */
1680
1681static void stli_throttle(struct tty_struct *tty)
1682{
1683        struct stliport *portp = tty->driver_data;
1684        if (portp == NULL)
1685                return;
1686        set_bit(ST_RXSTOP, &portp->state);
1687}
1688
1689/*****************************************************************************/
1690
1691/*
1692 *      Unflow control the device sending us data... That means that all
1693 *      we have to do is clear the RXSTOP state bit. The next poll call
1694 *      will then be able to pass the RX data back up.
1695 */
1696
1697static void stli_unthrottle(struct tty_struct *tty)
1698{
1699        struct stliport *portp = tty->driver_data;
1700        if (portp == NULL)
1701                return;
1702        clear_bit(ST_RXSTOP, &portp->state);
1703}
1704
1705/*****************************************************************************/
1706
1707/*
1708 *      Stop the transmitter.
1709 */
1710
1711static void stli_stop(struct tty_struct *tty)
1712{
1713}
1714
1715/*****************************************************************************/
1716
1717/*
1718 *      Start the transmitter again.
1719 */
1720
1721static void stli_start(struct tty_struct *tty)
1722{
1723}
1724
1725/*****************************************************************************/
1726
1727/*
1728 *      Hangup this port. This is pretty much like closing the port, only
1729 *      a little more brutal. No waiting for data to drain. Shutdown the
1730 *      port and maybe drop signals. This is rather tricky really. We want
1731 *      to close the port as well.
1732 */
1733
1734static void stli_hangup(struct tty_struct *tty)
1735{
1736        struct stliport *portp;
1737        struct stlibrd *brdp;
1738        struct tty_port *port;
1739        unsigned long flags;
1740
1741        portp = tty->driver_data;
1742        if (portp == NULL)
1743                return;
1744        if (portp->brdnr >= stli_nrbrds)
1745                return;
1746        brdp = stli_brds[portp->brdnr];
1747        if (brdp == NULL)
1748                return;
1749        port = &portp->port;
1750
1751        spin_lock_irqsave(&port->lock, flags);
1752        port->flags &= ~ASYNC_INITIALIZED;
1753        spin_unlock_irqrestore(&port->lock, flags);
1754
1755        if (!test_bit(ST_CLOSING, &portp->state))
1756                stli_rawclose(brdp, portp, 0, 0);
1757
1758        spin_lock_irqsave(&stli_lock, flags);
1759        if (tty->termios->c_cflag & HUPCL) {
1760                stli_mkasysigs(&portp->asig, 0, 0);
1761                if (test_bit(ST_CMDING, &portp->state)) {
1762                        set_bit(ST_DOSIGS, &portp->state);
1763                        set_bit(ST_DOFLUSHTX, &portp->state);
1764                        set_bit(ST_DOFLUSHRX, &portp->state);
1765                } else {
1766                        stli_sendcmd(brdp, portp, A_SETSIGNALSF,
1767                                &portp->asig, sizeof(asysigs_t), 0);
1768                }
1769        }
1770
1771        clear_bit(ST_TXBUSY, &portp->state);
1772        clear_bit(ST_RXSTOP, &portp->state);
1773        set_bit(TTY_IO_ERROR, &tty->flags);
1774        spin_unlock_irqrestore(&stli_lock, flags);
1775
1776        tty_port_hangup(port);
1777}
1778
1779/*****************************************************************************/
1780
1781/*
1782 *      Flush characters from the lower buffer. We may not have user context
1783 *      so we cannot sleep waiting for it to complete. Also we need to check
1784 *      if there is chars for this port in the TX cook buffer, and flush them
1785 *      as well.
1786 */
1787
1788static void stli_flushbuffer(struct tty_struct *tty)
1789{
1790        struct stliport *portp;
1791        struct stlibrd *brdp;
1792        unsigned long ftype, flags;
1793
1794        portp = tty->driver_data;
1795        if (portp == NULL)
1796                return;
1797        if (portp->brdnr >= stli_nrbrds)
1798                return;
1799        brdp = stli_brds[portp->brdnr];
1800        if (brdp == NULL)
1801                return;
1802
1803        spin_lock_irqsave(&brd_lock, flags);
1804        if (tty == stli_txcooktty) {
1805                stli_txcooktty = NULL;
1806                stli_txcooksize = 0;
1807                stli_txcookrealsize = 0;
1808        }
1809        if (test_bit(ST_CMDING, &portp->state)) {
1810                set_bit(ST_DOFLUSHTX, &portp->state);
1811        } else {
1812                ftype = FLUSHTX;
1813                if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1814                        ftype |= FLUSHRX;
1815                        clear_bit(ST_DOFLUSHRX, &portp->state);
1816                }
1817                __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1818        }
1819        spin_unlock_irqrestore(&brd_lock, flags);
1820        tty_wakeup(tty);
1821}
1822
1823/*****************************************************************************/
1824
1825static int stli_breakctl(struct tty_struct *tty, int state)
1826{
1827        struct stlibrd  *brdp;
1828        struct stliport *portp;
1829        long            arg;
1830
1831        portp = tty->driver_data;
1832        if (portp == NULL)
1833                return -EINVAL;
1834        if (portp->brdnr >= stli_nrbrds)
1835                return -EINVAL;
1836        brdp = stli_brds[portp->brdnr];
1837        if (brdp == NULL)
1838                return -EINVAL;
1839
1840        arg = (state == -1) ? BREAKON : BREAKOFF;
1841        stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1842        return 0;
1843}
1844
1845/*****************************************************************************/
1846
1847static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1848{
1849        struct stliport *portp;
1850        unsigned long tend;
1851
1852        portp = tty->driver_data;
1853        if (portp == NULL)
1854                return;
1855
1856        if (timeout == 0)
1857                timeout = HZ;
1858        tend = jiffies + timeout;
1859
1860        while (test_bit(ST_TXBUSY, &portp->state)) {
1861                if (signal_pending(current))
1862                        break;
1863                msleep_interruptible(20);
1864                if (time_after_eq(jiffies, tend))
1865                        break;
1866        }
1867}
1868
1869/*****************************************************************************/
1870
1871static void stli_sendxchar(struct tty_struct *tty, char ch)
1872{
1873        struct stlibrd  *brdp;
1874        struct stliport *portp;
1875        asyctrl_t       actrl;
1876
1877        portp = tty->driver_data;
1878        if (portp == NULL)
1879                return;
1880        if (portp->brdnr >= stli_nrbrds)
1881                return;
1882        brdp = stli_brds[portp->brdnr];
1883        if (brdp == NULL)
1884                return;
1885
1886        memset(&actrl, 0, sizeof(asyctrl_t));
1887        if (ch == STOP_CHAR(tty)) {
1888                actrl.rxctrl = CT_STOPFLOW;
1889        } else if (ch == START_CHAR(tty)) {
1890                actrl.rxctrl = CT_STARTFLOW;
1891        } else {
1892                actrl.txctrl = CT_SENDCHR;
1893                actrl.tximdch = ch;
1894        }
1895        stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
1896}
1897
1898static void stli_portinfo(struct seq_file *m, struct stlibrd *brdp, struct stliport *portp, int portnr)
1899{
1900        char *uart;
1901        int rc;
1902
1903        rc = stli_portcmdstats(NULL, portp);
1904
1905        uart = "UNKNOWN";
1906        if (brdp->state & BST_STARTED) {
1907                switch (stli_comstats.hwid) {
1908                case 0: uart = "2681"; break;
1909                case 1: uart = "SC26198"; break;
1910                default:uart = "CD1400"; break;
1911                }
1912        }
1913        seq_printf(m, "%d: uart:%s ", portnr, uart);
1914
1915        if ((brdp->state & BST_STARTED) && (rc >= 0)) {
1916                char sep;
1917
1918                seq_printf(m, "tx:%d rx:%d", (int) stli_comstats.txtotal,
1919                        (int) stli_comstats.rxtotal);
1920
1921                if (stli_comstats.rxframing)
1922                        seq_printf(m, " fe:%d",
1923                                (int) stli_comstats.rxframing);
1924                if (stli_comstats.rxparity)
1925                        seq_printf(m, " pe:%d",
1926                                (int) stli_comstats.rxparity);
1927                if (stli_comstats.rxbreaks)
1928                        seq_printf(m, " brk:%d",
1929                                (int) stli_comstats.rxbreaks);
1930                if (stli_comstats.rxoverrun)
1931                        seq_printf(m, " oe:%d",
1932                                (int) stli_comstats.rxoverrun);
1933
1934                sep = ' ';
1935                if (stli_comstats.signals & TIOCM_RTS) {
1936                        seq_printf(m, "%c%s", sep, "RTS");
1937                        sep = '|';
1938                }
1939                if (stli_comstats.signals & TIOCM_CTS) {
1940                        seq_printf(m, "%c%s", sep, "CTS");
1941                        sep = '|';
1942                }
1943                if (stli_comstats.signals & TIOCM_DTR) {
1944                        seq_printf(m, "%c%s", sep, "DTR");
1945                        sep = '|';
1946                }
1947                if (stli_comstats.signals & TIOCM_CD) {
1948                        seq_printf(m, "%c%s", sep, "DCD");
1949                        sep = '|';
1950                }
1951                if (stli_comstats.signals & TIOCM_DSR) {
1952                        seq_printf(m, "%c%s", sep, "DSR");
1953                        sep = '|';
1954                }
1955        }
1956        seq_putc(m, '\n');
1957}
1958
1959/*****************************************************************************/
1960
1961/*
1962 *      Port info, read from the /proc file system.
1963 */
1964
1965static int stli_proc_show(struct seq_file *m, void *v)
1966{
1967        struct stlibrd *brdp;
1968        struct stliport *portp;
1969        unsigned int brdnr, portnr, totalport;
1970
1971        totalport = 0;
1972
1973        seq_printf(m, "%s: version %s\n", stli_drvtitle, stli_drvversion);
1974
1975/*
1976 *      We scan through for each board, panel and port. The offset is
1977 *      calculated on the fly, and irrelevant ports are skipped.
1978 */
1979        for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
1980                brdp = stli_brds[brdnr];
1981                if (brdp == NULL)
1982                        continue;
1983                if (brdp->state == 0)
1984                        continue;
1985
1986                totalport = brdnr * STL_MAXPORTS;
1987                for (portnr = 0; (portnr < brdp->nrports); portnr++,
1988                    totalport++) {
1989                        portp = brdp->ports[portnr];
1990                        if (portp == NULL)
1991                                continue;
1992                        stli_portinfo(m, brdp, portp, totalport);
1993                }
1994        }
1995        return 0;
1996}
1997
1998static int stli_proc_open(struct inode *inode, struct file *file)
1999{
2000        return single_open(file, stli_proc_show, NULL);
2001}
2002
2003static const struct file_operations stli_proc_fops = {
2004        .owner          = THIS_MODULE,
2005        .open           = stli_proc_open,
2006        .read           = seq_read,
2007        .llseek         = seq_lseek,
2008        .release        = single_release,
2009};
2010
2011/*****************************************************************************/
2012
2013/*
2014 *      Generic send command routine. This will send a message to the slave,
2015 *      of the specified type with the specified argument. Must be very
2016 *      careful of data that will be copied out from shared memory -
2017 *      containing command results. The command completion is all done from
2018 *      a poll routine that does not have user context. Therefore you cannot
2019 *      copy back directly into user space, or to the kernel stack of a
2020 *      process. This routine does not sleep, so can be called from anywhere.
2021 *
2022 *      The caller must hold the brd_lock (see also stli_sendcmd the usual
2023 *      entry point)
2024 */
2025
2026static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2027{
2028        cdkhdr_t __iomem *hdrp;
2029        cdkctrl_t __iomem *cp;
2030        unsigned char __iomem *bits;
2031
2032        if (test_bit(ST_CMDING, &portp->state)) {
2033                printk(KERN_ERR "istallion: command already busy, cmd=%x!\n",
2034                                (int) cmd);
2035                return;
2036        }
2037
2038        EBRDENABLE(brdp);
2039        cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2040        if (size > 0) {
2041                memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
2042                if (copyback) {
2043                        portp->argp = arg;
2044                        portp->argsize = size;
2045                }
2046        }
2047        writel(0, &cp->status);
2048        writel(cmd, &cp->cmd);
2049        hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2050        bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
2051                portp->portidx;
2052        writeb(readb(bits) | portp->portbit, bits);
2053        set_bit(ST_CMDING, &portp->state);
2054        EBRDDISABLE(brdp);
2055}
2056
2057static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2058{
2059        unsigned long           flags;
2060
2061        spin_lock_irqsave(&brd_lock, flags);
2062        __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2063        spin_unlock_irqrestore(&brd_lock, flags);
2064}
2065
2066/*****************************************************************************/
2067
2068/*
2069 *      Read data from shared memory. This assumes that the shared memory
2070 *      is enabled and that interrupts are off. Basically we just empty out
2071 *      the shared memory buffer into the tty buffer. Must be careful to
2072 *      handle the case where we fill up the tty buffer, but still have
2073 *      more chars to unload.
2074 */
2075
2076static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2077{
2078        cdkasyrq_t __iomem *rp;
2079        char __iomem *shbuf;
2080        struct tty_struct       *tty;
2081        unsigned int head, tail, size;
2082        unsigned int len, stlen;
2083
2084        if (test_bit(ST_RXSTOP, &portp->state))
2085                return;
2086        tty = tty_port_tty_get(&portp->port);
2087        if (tty == NULL)
2088                return;
2089
2090        rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2091        head = (unsigned int) readw(&rp->head);
2092        if (head != ((unsigned int) readw(&rp->head)))
2093                head = (unsigned int) readw(&rp->head);
2094        tail = (unsigned int) readw(&rp->tail);
2095        size = portp->rxsize;
2096        if (head >= tail) {
2097                len = head - tail;
2098                stlen = len;
2099        } else {
2100                len = size - (tail - head);
2101                stlen = size - tail;
2102        }
2103
2104        len = tty_buffer_request_room(tty, len);
2105
2106        shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2107
2108        while (len > 0) {
2109                unsigned char *cptr;
2110
2111                stlen = min(len, stlen);
2112                tty_prepare_flip_string(tty, &cptr, stlen);
2113                memcpy_fromio(cptr, shbuf + tail, stlen);
2114                len -= stlen;
2115                tail += stlen;
2116                if (tail >= size) {
2117                        tail = 0;
2118                        stlen = head;
2119                }
2120        }
2121        rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2122        writew(tail, &rp->tail);
2123
2124        if (head != tail)
2125                set_bit(ST_RXING, &portp->state);
2126
2127        tty_schedule_flip(tty);
2128        tty_kref_put(tty);
2129}
2130
2131/*****************************************************************************/
2132
2133/*
2134 *      Set up and carry out any delayed commands. There is only a small set
2135 *      of slave commands that can be done "off-level". So it is not too
2136 *      difficult to deal with them here.
2137 */
2138
2139static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2140{
2141        int cmd;
2142
2143        if (test_bit(ST_DOSIGS, &portp->state)) {
2144                if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2145                    test_bit(ST_DOFLUSHRX, &portp->state))
2146                        cmd = A_SETSIGNALSF;
2147                else if (test_bit(ST_DOFLUSHTX, &portp->state))
2148                        cmd = A_SETSIGNALSFTX;
2149                else if (test_bit(ST_DOFLUSHRX, &portp->state))
2150                        cmd = A_SETSIGNALSFRX;
2151                else
2152                        cmd = A_SETSIGNALS;
2153                clear_bit(ST_DOFLUSHTX, &portp->state);
2154                clear_bit(ST_DOFLUSHRX, &portp->state);
2155                clear_bit(ST_DOSIGS, &portp->state);
2156                memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2157                        sizeof(asysigs_t));
2158                writel(0, &cp->status);
2159                writel(cmd, &cp->cmd);
2160                set_bit(ST_CMDING, &portp->state);
2161        } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2162            test_bit(ST_DOFLUSHRX, &portp->state)) {
2163                cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2164                cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2165                clear_bit(ST_DOFLUSHTX, &portp->state);
2166                clear_bit(ST_DOFLUSHRX, &portp->state);
2167                memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2168                writel(0, &cp->status);
2169                writel(A_FLUSH, &cp->cmd);
2170                set_bit(ST_CMDING, &portp->state);
2171        }
2172}
2173
2174/*****************************************************************************/
2175
2176/*
2177 *      Host command service checking. This handles commands or messages
2178 *      coming from the slave to the host. Must have board shared memory
2179 *      enabled and interrupts off when called. Notice that by servicing the
2180 *      read data last we don't need to change the shared memory pointer
2181 *      during processing (which is a slow IO operation).
2182 *      Return value indicates if this port is still awaiting actions from
2183 *      the slave (like open, command, or even TX data being sent). If 0
2184 *      then port is still busy, otherwise no longer busy.
2185 */
2186
2187static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2188{
2189        cdkasy_t __iomem *ap;
2190        cdkctrl_t __iomem *cp;
2191        struct tty_struct *tty;
2192        asynotify_t nt;
2193        unsigned long oldsigs;
2194        int rc, donerx;
2195
2196        ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2197        cp = &ap->ctrl;
2198
2199/*
2200 *      Check if we are waiting for an open completion message.
2201 */
2202        if (test_bit(ST_OPENING, &portp->state)) {
2203                rc = readl(&cp->openarg);
2204                if (readb(&cp->open) == 0 && rc != 0) {
2205                        if (rc > 0)
2206                                rc--;
2207                        writel(0, &cp->openarg);
2208                        portp->rc = rc;
2209                        clear_bit(ST_OPENING, &portp->state);
2210                        wake_up_interruptible(&portp->raw_wait);
2211                }
2212        }
2213
2214/*
2215 *      Check if we are waiting for a close completion message.
2216 */
2217        if (test_bit(ST_CLOSING, &portp->state)) {
2218                rc = (int) readl(&cp->closearg);
2219                if (readb(&cp->close) == 0 && rc != 0) {
2220                        if (rc > 0)
2221                                rc--;
2222                        writel(0, &cp->closearg);
2223                        portp->rc = rc;
2224                        clear_bit(ST_CLOSING, &portp->state);
2225                        wake_up_interruptible(&portp->raw_wait);
2226                }
2227        }
2228
2229/*
2230 *      Check if we are waiting for a command completion message. We may
2231 *      need to copy out the command results associated with this command.
2232 */
2233        if (test_bit(ST_CMDING, &portp->state)) {
2234                rc = readl(&cp->status);
2235                if (readl(&cp->cmd) == 0 && rc != 0) {
2236                        if (rc > 0)
2237                                rc--;
2238                        if (portp->argp != NULL) {
2239                                memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2240                                        portp->argsize);
2241                                portp->argp = NULL;
2242                        }
2243                        writel(0, &cp->status);
2244                        portp->rc = rc;
2245                        clear_bit(ST_CMDING, &portp->state);
2246                        stli_dodelaycmd(portp, cp);
2247                        wake_up_interruptible(&portp->raw_wait);
2248                }
2249        }
2250
2251/*
2252 *      Check for any notification messages ready. This includes lots of
2253 *      different types of events - RX chars ready, RX break received,
2254 *      TX data low or empty in the slave, modem signals changed state.
2255 */
2256        donerx = 0;
2257
2258        if (ap->notify) {
2259                nt = ap->changed;
2260                ap->notify = 0;
2261                tty = tty_port_tty_get(&portp->port);
2262
2263                if (nt.signal & SG_DCD) {
2264                        oldsigs = portp->sigs;
2265                        portp->sigs = stli_mktiocm(nt.sigvalue);
2266                        clear_bit(ST_GETSIGS, &portp->state);
2267                        if ((portp->sigs & TIOCM_CD) &&
2268                            ((oldsigs & TIOCM_CD) == 0))
2269                                wake_up_interruptible(&portp->port.open_wait);
2270                        if ((oldsigs & TIOCM_CD) &&
2271                            ((portp->sigs & TIOCM_CD) == 0)) {
2272                                if (portp->port.flags & ASYNC_CHECK_CD) {
2273                                        if (tty)
2274                                                tty_hangup(tty);
2275                                }
2276                        }
2277                }
2278
2279                if (nt.data & DT_TXEMPTY)
2280                        clear_bit(ST_TXBUSY, &portp->state);
2281                if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2282                        if (tty != NULL) {
2283                                tty_wakeup(tty);
2284                                EBRDENABLE(brdp);
2285                        }
2286                }
2287
2288                if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2289                        if (tty != NULL) {
2290                                tty_insert_flip_char(tty, 0, TTY_BREAK);
2291                                if (portp->port.flags & ASYNC_SAK) {
2292                                        do_SAK(tty);
2293                                        EBRDENABLE(brdp);
2294                                }
2295                                tty_schedule_flip(tty);
2296                        }
2297                }
2298                tty_kref_put(tty);
2299
2300                if (nt.data & DT_RXBUSY) {
2301                        donerx++;
2302                        stli_read(brdp, portp);
2303                }
2304        }
2305
2306/*
2307 *      It might seem odd that we are checking for more RX chars here.
2308 *      But, we need to handle the case where the tty buffer was previously
2309 *      filled, but we had more characters to pass up. The slave will not
2310 *      send any more RX notify messages until the RX buffer has been emptied.
2311 *      But it will leave the service bits on (since the buffer is not empty).
2312 *      So from here we can try to process more RX chars.
2313 */
2314        if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2315                clear_bit(ST_RXING, &portp->state);
2316                stli_read(brdp, portp);
2317        }
2318
2319        return((test_bit(ST_OPENING, &portp->state) ||
2320                test_bit(ST_CLOSING, &portp->state) ||
2321                test_bit(ST_CMDING, &portp->state) ||
2322                test_bit(ST_TXBUSY, &portp->state) ||
2323                test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2324}
2325
2326/*****************************************************************************/
2327
2328/*
2329 *      Service all ports on a particular board. Assumes that the boards
2330 *      shared memory is enabled, and that the page pointer is pointed
2331 *      at the cdk header structure.
2332 */
2333
2334static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2335{
2336        struct stliport *portp;
2337        unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2338        unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2339        unsigned char __iomem *slavep;
2340        int bitpos, bitat, bitsize;
2341        int channr, nrdevs, slavebitchange;
2342
2343        bitsize = brdp->bitsize;
2344        nrdevs = brdp->nrdevs;
2345
2346/*
2347 *      Check if slave wants any service. Basically we try to do as
2348 *      little work as possible here. There are 2 levels of service
2349 *      bits. So if there is nothing to do we bail early. We check
2350 *      8 service bits at a time in the inner loop, so we can bypass
2351 *      the lot if none of them want service.
2352 */
2353        memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2354                bitsize);
2355
2356        memset(&slavebits[0], 0, bitsize);
2357        slavebitchange = 0;
2358
2359        for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2360                if (hostbits[bitpos] == 0)
2361                        continue;
2362                channr = bitpos * 8;
2363                for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2364                        if (hostbits[bitpos] & bitat) {
2365                                portp = brdp->ports[(channr - 1)];
2366                                if (stli_hostcmd(brdp, portp)) {
2367                                        slavebitchange++;
2368                                        slavebits[bitpos] |= bitat;
2369                                }
2370                        }
2371                }
2372        }
2373
2374/*
2375 *      If any of the ports are no longer busy then update them in the
2376 *      slave request bits. We need to do this after, since a host port
2377 *      service may initiate more slave requests.
2378 */
2379        if (slavebitchange) {
2380                hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2381                slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2382                for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2383                        if (readb(slavebits + bitpos))
2384                                writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2385                }
2386        }
2387}
2388
2389/*****************************************************************************/
2390
2391/*
2392 *      Driver poll routine. This routine polls the boards in use and passes
2393 *      messages back up to host when necessary. This is actually very
2394 *      CPU efficient, since we will always have the kernel poll clock, it
2395 *      adds only a few cycles when idle (since board service can be
2396 *      determined very easily), but when loaded generates no interrupts
2397 *      (with their expensive associated context change).
2398 */
2399
2400static void stli_poll(unsigned long arg)
2401{
2402        cdkhdr_t __iomem *hdrp;
2403        struct stlibrd *brdp;
2404        unsigned int brdnr;
2405
2406        mod_timer(&stli_timerlist, STLI_TIMEOUT);
2407
2408/*
2409 *      Check each board and do any servicing required.
2410 */
2411        for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2412                brdp = stli_brds[brdnr];
2413                if (brdp == NULL)
2414                        continue;
2415                if ((brdp->state & BST_STARTED) == 0)
2416                        continue;
2417
2418                spin_lock(&brd_lock);
2419                EBRDENABLE(brdp);
2420                hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2421                if (readb(&hdrp->hostreq))
2422                        stli_brdpoll(brdp, hdrp);
2423                EBRDDISABLE(brdp);
2424                spin_unlock(&brd_lock);
2425        }
2426}
2427
2428/*****************************************************************************/
2429
2430/*
2431 *      Translate the termios settings into the port setting structure of
2432 *      the slave.
2433 */
2434
2435static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp,
2436                                asyport_t *pp, struct ktermios *tiosp)
2437{
2438        memset(pp, 0, sizeof(asyport_t));
2439
2440/*
2441 *      Start of by setting the baud, char size, parity and stop bit info.
2442 */
2443        pp->baudout = tty_get_baud_rate(tty);
2444        if ((tiosp->c_cflag & CBAUD) == B38400) {
2445                if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2446                        pp->baudout = 57600;
2447                else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2448                        pp->baudout = 115200;
2449                else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2450                        pp->baudout = 230400;
2451                else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2452                        pp->baudout = 460800;
2453                else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2454                        pp->baudout = (portp->baud_base / portp->custom_divisor);
2455        }
2456        if (pp->baudout > STL_MAXBAUD)
2457                pp->baudout = STL_MAXBAUD;
2458        pp->baudin = pp->baudout;
2459
2460        switch (tiosp->c_cflag & CSIZE) {
2461        case CS5:
2462                pp->csize = 5;
2463                break;
2464        case CS6:
2465                pp->csize = 6;
2466                break;
2467        case CS7:
2468                pp->csize = 7;
2469                break;
2470        default:
2471                pp->csize = 8;
2472                break;
2473        }
2474
2475        if (tiosp->c_cflag & CSTOPB)
2476                pp->stopbs = PT_STOP2;
2477        else
2478                pp->stopbs = PT_STOP1;
2479
2480        if (tiosp->c_cflag & PARENB) {
2481                if (tiosp->c_cflag & PARODD)
2482                        pp->parity = PT_ODDPARITY;
2483                else
2484                        pp->parity = PT_EVENPARITY;
2485        } else {
2486                pp->parity = PT_NOPARITY;
2487        }
2488
2489/*
2490 *      Set up any flow control options enabled.
2491 */
2492        if (tiosp->c_iflag & IXON) {
2493                pp->flow |= F_IXON;
2494                if (tiosp->c_iflag & IXANY)
2495                        pp->flow |= F_IXANY;
2496        }
2497        if (tiosp->c_cflag & CRTSCTS)
2498                pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2499
2500        pp->startin = tiosp->c_cc[VSTART];
2501        pp->stopin = tiosp->c_cc[VSTOP];
2502        pp->startout = tiosp->c_cc[VSTART];
2503        pp->stopout = tiosp->c_cc[VSTOP];
2504
2505/*
2506 *      Set up the RX char marking mask with those RX error types we must
2507 *      catch. We can get the slave to help us out a little here, it will
2508 *      ignore parity errors and breaks for us, and mark parity errors in
2509 *      the data stream.
2510 */
2511        if (tiosp->c_iflag & IGNPAR)
2512                pp->iflag |= FI_IGNRXERRS;
2513        if (tiosp->c_iflag & IGNBRK)
2514                pp->iflag |= FI_IGNBREAK;
2515
2516        portp->rxmarkmsk = 0;
2517        if (tiosp->c_iflag & (INPCK | PARMRK))
2518                pp->iflag |= FI_1MARKRXERRS;
2519        if (tiosp->c_iflag & BRKINT)
2520                portp->rxmarkmsk |= BRKINT;
2521
2522/*
2523 *      Set up clocal processing as required.
2524 */
2525        if (tiosp->c_cflag & CLOCAL)
2526                portp->port.flags &= ~ASYNC_CHECK_CD;
2527        else
2528                portp->port.flags |= ASYNC_CHECK_CD;
2529
2530/*
2531 *      Transfer any persistent flags into the asyport structure.
2532 */
2533        pp->pflag = (portp->pflag & 0xffff);
2534        pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2535        pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2536        pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2537}
2538
2539/*****************************************************************************/
2540
2541/*
2542 *      Construct a slave signals structure for setting the DTR and RTS
2543 *      signals as specified.
2544 */
2545
2546static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2547{
2548        memset(sp, 0, sizeof(asysigs_t));
2549        if (dtr >= 0) {
2550                sp->signal |= SG_DTR;
2551                sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2552        }
2553        if (rts >= 0) {
2554                sp->signal |= SG_RTS;
2555                sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2556        }
2557}
2558
2559/*****************************************************************************/
2560
2561/*
2562 *      Convert the signals returned from the slave into a local TIOCM type
2563 *      signals value. We keep them locally in TIOCM format.
2564 */
2565
2566static long stli_mktiocm(unsigned long sigvalue)
2567{
2568        long    tiocm = 0;
2569        tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2570        tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2571        tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2572        tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2573        tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2574        tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2575        return(tiocm);
2576}
2577
2578/*****************************************************************************/
2579
2580/*
2581 *      All panels and ports actually attached have been worked out. All
2582 *      we need to do here is set up the appropriate per port data structures.
2583 */
2584
2585static int stli_initports(struct stlibrd *brdp)
2586{
2587        struct stliport *portp;
2588        unsigned int i, panelnr, panelport;
2589
2590        for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2591                portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2592                if (!portp) {
2593                        printk(KERN_WARNING "istallion: failed to allocate port structure\n");
2594                        continue;
2595                }
2596                tty_port_init(&portp->port);
2597                portp->port.ops = &stli_port_ops;
2598                portp->magic = STLI_PORTMAGIC;
2599                portp->portnr = i;
2600                portp->brdnr = brdp->brdnr;
2601                portp->panelnr = panelnr;
2602                portp->baud_base = STL_BAUDBASE;
2603                portp->port.close_delay = STL_CLOSEDELAY;
2604                portp->closing_wait = 30 * HZ;
2605                init_waitqueue_head(&portp->port.open_wait);
2606                init_waitqueue_head(&portp->port.close_wait);
2607                init_waitqueue_head(&portp->raw_wait);
2608                panelport++;
2609                if (panelport >= brdp->panels[panelnr]) {
2610                        panelport = 0;
2611                        panelnr++;
2612                }
2613                brdp->ports[i] = portp;
2614        }
2615
2616        return 0;
2617}
2618
2619/*****************************************************************************/
2620
2621/*
2622 *      All the following routines are board specific hardware operations.
2623 */
2624
2625static void stli_ecpinit(struct stlibrd *brdp)
2626{
2627        unsigned long   memconf;
2628
2629        outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2630        udelay(10);
2631        outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2632        udelay(100);
2633
2634        memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2635        outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2636}
2637
2638/*****************************************************************************/
2639
2640static void stli_ecpenable(struct stlibrd *brdp)
2641{       
2642        outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2643}
2644
2645/*****************************************************************************/
2646
2647static void stli_ecpdisable(struct stlibrd *brdp)
2648{       
2649        outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2650}
2651
2652/*****************************************************************************/
2653
2654static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2655{       
2656        void __iomem *ptr;
2657        unsigned char val;
2658
2659        if (offset > brdp->memsize) {
2660                printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2661                                "range at line=%d(%d), brd=%d\n",
2662                        (int) offset, line, __LINE__, brdp->brdnr);
2663                ptr = NULL;
2664                val = 0;
2665        } else {
2666                ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2667                val = (unsigned char) (offset / ECP_ATPAGESIZE);
2668        }
2669        outb(val, (brdp->iobase + ECP_ATMEMPR));
2670        return(ptr);
2671}
2672
2673/*****************************************************************************/
2674
2675static void stli_ecpreset(struct stlibrd *brdp)
2676{       
2677        outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2678        udelay(10);
2679        outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2680        udelay(500);
2681}
2682
2683/*****************************************************************************/
2684
2685static void stli_ecpintr(struct stlibrd *brdp)
2686{       
2687        outb(0x1, brdp->iobase);
2688}
2689
2690/*****************************************************************************/
2691
2692/*
2693 *      The following set of functions act on ECP EISA boards.
2694 */
2695
2696static void stli_ecpeiinit(struct stlibrd *brdp)
2697{
2698        unsigned long   memconf;
2699
2700        outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2701        outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2702        udelay(10);
2703        outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2704        udelay(500);
2705
2706        memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2707        outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2708        memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2709        outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2710}
2711
2712/*****************************************************************************/
2713
2714static void stli_ecpeienable(struct stlibrd *brdp)
2715{       
2716        outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2717}
2718
2719/*****************************************************************************/
2720
2721static void stli_ecpeidisable(struct stlibrd *brdp)
2722{       
2723        outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2724}
2725
2726/*****************************************************************************/
2727
2728static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2729{       
2730        void __iomem *ptr;
2731        unsigned char   val;
2732
2733        if (offset > brdp->memsize) {
2734                printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2735                                "range at line=%d(%d), brd=%d\n",
2736                        (int) offset, line, __LINE__, brdp->brdnr);
2737                ptr = NULL;
2738                val = 0;
2739        } else {
2740                ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2741                if (offset < ECP_EIPAGESIZE)
2742                        val = ECP_EIENABLE;
2743                else
2744                        val = ECP_EIENABLE | 0x40;
2745        }
2746        outb(val, (brdp->iobase + ECP_EICONFR));
2747        return(ptr);
2748}
2749
2750/*****************************************************************************/
2751
2752static void stli_ecpeireset(struct stlibrd *brdp)
2753{       
2754        outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2755        udelay(10);
2756        outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2757        udelay(500);
2758}
2759
2760/*****************************************************************************/
2761
2762/*
2763 *      The following set of functions act on ECP MCA boards.
2764 */
2765
2766static void stli_ecpmcenable(struct stlibrd *brdp)
2767{       
2768        outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2769}
2770
2771/*****************************************************************************/
2772
2773static void stli_ecpmcdisable(struct stlibrd *brdp)
2774{       
2775        outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2776}
2777
2778/*****************************************************************************/
2779
2780static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2781{       
2782        void __iomem *ptr;
2783        unsigned char val;
2784
2785        if (offset > brdp->memsize) {
2786                printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2787                                "range at line=%d(%d), brd=%d\n",
2788                        (int) offset, line, __LINE__, brdp->brdnr);
2789                ptr = NULL;
2790                val = 0;
2791        } else {
2792                ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2793                val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2794        }
2795        outb(val, (brdp->iobase + ECP_MCCONFR));
2796        return(ptr);
2797}
2798
2799/*****************************************************************************/
2800
2801static void stli_ecpmcreset(struct stlibrd *brdp)
2802{       
2803        outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2804        udelay(10);
2805        outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2806        udelay(500);
2807}
2808
2809/*****************************************************************************/
2810
2811/*
2812 *      The following set of functions act on ECP PCI boards.
2813 */
2814
2815static void stli_ecppciinit(struct stlibrd *brdp)
2816{
2817        outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2818        udelay(10);
2819        outb(0, (brdp->iobase + ECP_PCICONFR));
2820        udelay(500);
2821}
2822
2823/*****************************************************************************/
2824
2825static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2826{       
2827        void __iomem *ptr;
2828        unsigned char   val;
2829
2830        if (offset > brdp->memsize) {
2831                printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2832                                "range at line=%d(%d), board=%d\n",
2833                                (int) offset, line, __LINE__, brdp->brdnr);
2834                ptr = NULL;
2835                val = 0;
2836        } else {
2837                ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2838                val = (offset / ECP_PCIPAGESIZE) << 1;
2839        }
2840        outb(val, (brdp->iobase + ECP_PCICONFR));
2841        return(ptr);
2842}
2843
2844/*****************************************************************************/
2845
2846static void stli_ecppcireset(struct stlibrd *brdp)
2847{       
2848        outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2849        udelay(10);
2850        outb(0, (brdp->iobase + ECP_PCICONFR));
2851        udelay(500);
2852}
2853
2854/*****************************************************************************/
2855
2856/*
2857 *      The following routines act on ONboards.
2858 */
2859
2860static void stli_onbinit(struct stlibrd *brdp)
2861{
2862        unsigned long   memconf;
2863
2864        outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2865        udelay(10);
2866        outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2867        mdelay(1000);
2868
2869        memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
2870        outb(memconf, (brdp->iobase + ONB_ATMEMAR));
2871        outb(0x1, brdp->iobase);
2872        mdelay(1);
2873}
2874
2875/*****************************************************************************/
2876
2877static void stli_onbenable(struct stlibrd *brdp)
2878{       
2879        outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
2880}
2881
2882/*****************************************************************************/
2883
2884static void stli_onbdisable(struct stlibrd *brdp)
2885{       
2886        outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
2887}
2888
2889/*****************************************************************************/
2890
2891static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2892{       
2893        void __iomem *ptr;
2894
2895        if (offset > brdp->memsize) {
2896                printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2897                                "range at line=%d(%d), brd=%d\n",
2898                                (int) offset, line, __LINE__, brdp->brdnr);
2899                ptr = NULL;
2900        } else {
2901                ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
2902        }
2903        return(ptr);
2904}
2905
2906/*****************************************************************************/
2907
2908static void stli_onbreset(struct stlibrd *brdp)
2909{       
2910        outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2911        udelay(10);
2912        outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2913        mdelay(1000);
2914}
2915
2916/*****************************************************************************/
2917
2918/*
2919 *      The following routines act on ONboard EISA.
2920 */
2921
2922static void stli_onbeinit(struct stlibrd *brdp)
2923{
2924        unsigned long   memconf;
2925
2926        outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
2927        outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2928        udelay(10);
2929        outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2930        mdelay(1000);
2931
2932        memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
2933        outb(memconf, (brdp->iobase + ONB_EIMEMARL));
2934        memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
2935        outb(memconf, (brdp->iobase + ONB_EIMEMARH));
2936        outb(0x1, brdp->iobase);
2937        mdelay(1);
2938}
2939
2940/*****************************************************************************/
2941
2942static void stli_onbeenable(struct stlibrd *brdp)
2943{       
2944        outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
2945}
2946
2947/*****************************************************************************/
2948
2949static void stli_onbedisable(struct stlibrd *brdp)
2950{       
2951        outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2952}
2953
2954/*****************************************************************************/
2955
2956static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2957{       
2958        void __iomem *ptr;
2959        unsigned char val;
2960
2961        if (offset > brdp->memsize) {
2962                printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2963                                "range at line=%d(%d), brd=%d\n",
2964                        (int) offset, line, __LINE__, brdp->brdnr);
2965                ptr = NULL;
2966                val = 0;
2967        } else {
2968                ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
2969                if (offset < ONB_EIPAGESIZE)
2970                        val = ONB_EIENABLE;
2971                else
2972                        val = ONB_EIENABLE | 0x40;
2973        }
2974        outb(val, (brdp->iobase + ONB_EICONFR));
2975        return(ptr);
2976}
2977
2978/*****************************************************************************/
2979
2980static void stli_onbereset(struct stlibrd *brdp)
2981{       
2982        outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2983        udelay(10);
2984        outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2985        mdelay(1000);
2986}
2987
2988/*****************************************************************************/
2989
2990/*
2991 *      The following routines act on Brumby boards.
2992 */
2993
2994static void stli_bbyinit(struct stlibrd *brdp)
2995{
2996        outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2997        udelay(10);
2998        outb(0, (brdp->iobase + BBY_ATCONFR));
2999        mdelay(1000);
3000        outb(0x1, brdp->iobase);
3001        mdelay(1);
3002}
3003
3004/*****************************************************************************/
3005
3006static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3007{       
3008        void __iomem *ptr;
3009        unsigned char val;
3010
3011        BUG_ON(offset > brdp->memsize);
3012
3013        ptr = brdp->membase + (offset % BBY_PAGESIZE);
3014        val = (unsigned char) (offset / BBY_PAGESIZE);
3015        outb(val, (brdp->iobase + BBY_ATCONFR));
3016        return(ptr);
3017}
3018
3019/*****************************************************************************/
3020
3021static void stli_bbyreset(struct stlibrd *brdp)
3022{       
3023        outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3024        udelay(10);
3025        outb(0, (brdp->iobase + BBY_ATCONFR));
3026        mdelay(1000);
3027}
3028
3029/*****************************************************************************/
3030
3031/*
3032 *      The following routines act on original old Stallion boards.
3033 */
3034
3035static void stli_stalinit(struct stlibrd *brdp)
3036{
3037        outb(0x1, brdp->iobase);
3038        mdelay(1000);
3039}
3040
3041/*****************************************************************************/
3042
3043static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3044{       
3045        BUG_ON(offset > brdp->memsize);
3046        return brdp->membase + (offset % STAL_PAGESIZE);
3047}
3048
3049/*****************************************************************************/
3050
3051static void stli_stalreset(struct stlibrd *brdp)
3052{       
3053        u32 __iomem *vecp;
3054
3055        vecp = (u32 __iomem *) (brdp->membase + 0x30);
3056        writel(0xffff0000, vecp);
3057        outb(0, brdp->iobase);
3058        mdelay(1000);
3059}
3060
3061/*****************************************************************************/
3062
3063/*
3064 *      Try to find an ECP board and initialize it. This handles only ECP
3065 *      board types.
3066 */
3067
3068static int stli_initecp(struct stlibrd *brdp)
3069{
3070        cdkecpsig_t sig;
3071        cdkecpsig_t __iomem *sigsp;
3072        unsigned int status, nxtid;
3073        char *name;
3074        int retval, panelnr, nrports;
3075
3076        if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3077                retval = -ENODEV;
3078                goto err;
3079        }
3080
3081        brdp->iosize = ECP_IOSIZE;
3082
3083        if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3084                retval = -EIO;
3085                goto err;
3086        }
3087
3088/*
3089 *      Based on the specific board type setup the common vars to access
3090 *      and enable shared memory. Set all board specific information now
3091 *      as well.
3092 */
3093        switch (brdp->brdtype) {
3094        case BRD_ECP:
3095                brdp->memsize = ECP_MEMSIZE;
3096                brdp->pagesize = ECP_ATPAGESIZE;
3097                brdp->init = stli_ecpinit;
3098                brdp->enable = stli_ecpenable;
3099                brdp->reenable = stli_ecpenable;
3100                brdp->disable = stli_ecpdisable;
3101                brdp->getmemptr = stli_ecpgetmemptr;
3102                brdp->intr = stli_ecpintr;
3103                brdp->reset = stli_ecpreset;
3104                name = "serial(EC8/64)";
3105                break;
3106
3107        case BRD_ECPE:
3108                brdp->memsize = ECP_MEMSIZE;
3109                brdp->pagesize = ECP_EIPAGESIZE;
3110                brdp->init = stli_ecpeiinit;
3111                brdp->enable = stli_ecpeienable;
3112                brdp->reenable = stli_ecpeienable;
3113                brdp->disable = stli_ecpeidisable;
3114                brdp->getmemptr = stli_ecpeigetmemptr;
3115                brdp->intr = stli_ecpintr;
3116                brdp->reset = stli_ecpeireset;
3117                name = "serial(EC8/64-EI)";
3118                break;
3119
3120        case BRD_ECPMC:
3121                brdp->memsize = ECP_MEMSIZE;
3122                brdp->pagesize = ECP_MCPAGESIZE;
3123                brdp->init = NULL;
3124                brdp->enable = stli_ecpmcenable;
3125                brdp->reenable = stli_ecpmcenable;
3126                brdp->disable = stli_ecpmcdisable;
3127                brdp->getmemptr = stli_ecpmcgetmemptr;
3128                brdp->intr = stli_ecpintr;
3129                brdp->reset = stli_ecpmcreset;
3130                name = "serial(EC8/64-MCA)";
3131                break;
3132
3133        case BRD_ECPPCI:
3134                brdp->memsize = ECP_PCIMEMSIZE;
3135                brdp->pagesize = ECP_PCIPAGESIZE;
3136                brdp->init = stli_ecppciinit;
3137                brdp->enable = NULL;
3138                brdp->reenable = NULL;
3139                brdp->disable = NULL;
3140                brdp->getmemptr = stli_ecppcigetmemptr;
3141                brdp->intr = stli_ecpintr;
3142                brdp->reset = stli_ecppcireset;
3143                name = "serial(EC/RA-PCI)";
3144                break;
3145
3146        default:
3147                retval = -EINVAL;
3148                goto err_reg;
3149        }
3150
3151/*
3152 *      The per-board operations structure is all set up, so now let's go
3153 *      and get the board operational. Firstly initialize board configuration
3154 *      registers. Set the memory mapping info so we can get at the boards
3155 *      shared memory.
3156 */
3157        EBRDINIT(brdp);
3158
3159        brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3160        if (brdp->membase == NULL) {
3161                retval = -ENOMEM;
3162                goto err_reg;
3163        }
3164
3165/*
3166 *      Now that all specific code is set up, enable the shared memory and
3167 *      look for the a signature area that will tell us exactly what board
3168 *      this is, and what it is connected to it.
3169 */
3170        EBRDENABLE(brdp);
3171        sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3172        memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3173        EBRDDISABLE(brdp);
3174
3175        if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3176                retval = -ENODEV;
3177                goto err_unmap;
3178        }
3179
3180/*
3181 *      Scan through the signature looking at the panels connected to the
3182 *      board. Calculate the total number of ports as we go.
3183 */
3184        for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3185                status = sig.panelid[nxtid];
3186                if ((status & ECH_PNLIDMASK) != nxtid)
3187                        break;
3188
3189                brdp->panelids[panelnr] = status;
3190                nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3191                if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3192                        nxtid++;
3193                brdp->panels[panelnr] = nrports;
3194                brdp->nrports += nrports;
3195                nxtid++;
3196                brdp->nrpanels++;
3197        }
3198
3199
3200        brdp->state |= BST_FOUND;
3201        return 0;
3202err_unmap:
3203        iounmap(brdp->membase);
3204        brdp->membase = NULL;
3205err_reg:
3206        release_region(brdp->iobase, brdp->iosize);
3207err:
3208        return retval;
3209}
3210
3211/*****************************************************************************/
3212
3213/*
3214 *      Try to find an ONboard, Brumby or Stallion board and initialize it.
3215 *      This handles only these board types.
3216 */
3217
3218static int stli_initonb(struct stlibrd *brdp)
3219{
3220        cdkonbsig_t sig;
3221        cdkonbsig_t __iomem *sigsp;
3222        char *name;
3223        int i, retval;
3224
3225/*
3226 *      Do a basic sanity check on the IO and memory addresses.
3227 */
3228        if (brdp->iobase == 0 || brdp->memaddr == 0) {
3229                retval = -ENODEV;
3230                goto err;
3231        }
3232
3233        brdp->iosize = ONB_IOSIZE;
3234        
3235        if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3236                retval = -EIO;
3237                goto err;
3238        }
3239
3240/*
3241 *      Based on the specific board type setup the common vars to access
3242 *      and enable shared memory. Set all board specific information now
3243 *      as well.
3244 */
3245        switch (brdp->brdtype) {
3246        case BRD_ONBOARD:
3247        case BRD_ONBOARD2:
3248                brdp->memsize = ONB_MEMSIZE;
3249                brdp->pagesize = ONB_ATPAGESIZE;
3250                brdp->init = stli_onbinit;
3251                brdp->enable = stli_onbenable;
3252                brdp->reenable = stli_onbenable;
3253                brdp->disable = stli_onbdisable;
3254                brdp->getmemptr = stli_onbgetmemptr;
3255                brdp->intr = stli_ecpintr;
3256                brdp->reset = stli_onbreset;
3257                if (brdp->memaddr > 0x100000)
3258                        brdp->enabval = ONB_MEMENABHI;
3259                else
3260                        brdp->enabval = ONB_MEMENABLO;
3261                name = "serial(ONBoard)";
3262                break;
3263
3264        case BRD_ONBOARDE:
3265                brdp->memsize = ONB_EIMEMSIZE;
3266                brdp->pagesize = ONB_EIPAGESIZE;
3267                brdp->init = stli_onbeinit;
3268                brdp->enable = stli_onbeenable;
3269                brdp->reenable = stli_onbeenable;
3270                brdp->disable = stli_onbedisable;
3271                brdp->getmemptr = stli_onbegetmemptr;
3272                brdp->intr = stli_ecpintr;
3273                brdp->reset = stli_onbereset;
3274                name = "serial(ONBoard/E)";
3275                break;
3276
3277        case BRD_BRUMBY4:
3278                brdp->memsize = BBY_MEMSIZE;
3279                brdp->pagesize = BBY_PAGESIZE;
3280                brdp->init = stli_bbyinit;
3281                brdp->enable = NULL;
3282                brdp->reenable = NULL;
3283                brdp->disable = NULL;
3284                brdp->getmemptr = stli_bbygetmemptr;
3285                brdp->intr = stli_ecpintr;
3286                brdp->reset = stli_bbyreset;
3287                name = "serial(Brumby)";
3288                break;
3289
3290        case BRD_STALLION:
3291                brdp->memsize = STAL_MEMSIZE;
3292                brdp->pagesize = STAL_PAGESIZE;
3293                brdp->init = stli_stalinit;
3294                brdp->enable = NULL;
3295                brdp->reenable = NULL;
3296                brdp->disable = NULL;
3297                brdp->getmemptr = stli_stalgetmemptr;
3298                brdp->intr = stli_ecpintr;
3299                brdp->reset = stli_stalreset;
3300                name = "serial(Stallion)";
3301                break;
3302
3303        default:
3304                retval = -EINVAL;
3305                goto err_reg;
3306        }
3307
3308/*
3309 *      The per-board operations structure is all set up, so now let's go
3310 *      and get the board operational. Firstly initialize board configuration
3311 *      registers. Set the memory mapping info so we can get at the boards
3312 *      shared memory.
3313 */
3314        EBRDINIT(brdp);
3315
3316        brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3317        if (brdp->membase == NULL) {
3318                retval = -ENOMEM;
3319                goto err_reg;
3320        }
3321
3322/*
3323 *      Now that all specific code is set up, enable the shared memory and
3324 *      look for the a signature area that will tell us exactly what board
3325 *      this is, and how many ports.
3326 */
3327        EBRDENABLE(brdp);
3328        sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3329        memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3330        EBRDDISABLE(brdp);
3331
3332        if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3333            sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3334            sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3335            sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3336                retval = -ENODEV;
3337                goto err_unmap;
3338        }
3339
3340/*
3341 *      Scan through the signature alive mask and calculate how many ports
3342 *      there are on this board.
3343 */
3344        brdp->nrpanels = 1;
3345        if (sig.amask1) {
3346                brdp->nrports = 32;
3347        } else {
3348                for (i = 0; (i < 16); i++) {
3349                        if (((sig.amask0 << i) & 0x8000) == 0)
3350                                break;
3351                }
3352                brdp->nrports = i;
3353        }
3354        brdp->panels[0] = brdp->nrports;
3355
3356
3357        brdp->state |= BST_FOUND;
3358        return 0;
3359err_unmap:
3360        iounmap(brdp->membase);
3361        brdp->membase = NULL;
3362err_reg:
3363        release_region(brdp->iobase, brdp->iosize);
3364err:
3365        return retval;
3366}
3367
3368/*****************************************************************************/
3369
3370/*
3371 *      Start up a running board. This routine is only called after the
3372 *      code has been down loaded to the board and is operational. It will
3373 *      read in the memory map, and get the show on the road...
3374 */
3375
3376static int stli_startbrd(struct stlibrd *brdp)
3377{
3378        cdkhdr_t __iomem *hdrp;
3379        cdkmem_t __iomem *memp;
3380        cdkasy_t __iomem *ap;
3381        unsigned long flags;
3382        unsigned int portnr, nrdevs, i;
3383        struct stliport *portp;
3384        int rc = 0;
3385        u32 memoff;
3386
3387        spin_lock_irqsave(&brd_lock, flags);
3388        EBRDENABLE(brdp);
3389        hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3390        nrdevs = hdrp->nrdevs;
3391
3392#if 0
3393        printk("%s(%d): CDK version %d.%d.%d --> "
3394                "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3395                 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3396                 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3397                 readl(&hdrp->slavep));
3398#endif
3399
3400        if (nrdevs < (brdp->nrports + 1)) {
3401                printk(KERN_ERR "istallion: slave failed to allocate memory for "
3402                                "all devices, devices=%d\n", nrdevs);
3403                brdp->nrports = nrdevs - 1;
3404        }
3405        brdp->nrdevs = nrdevs;
3406        brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3407        brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3408        brdp->bitsize = (nrdevs + 7) / 8;
3409        memoff = readl(&hdrp->memp);
3410        if (memoff > brdp->memsize) {
3411                printk(KERN_ERR "istallion: corrupted shared memory region?\n");
3412                rc = -EIO;
3413                goto stli_donestartup;
3414        }
3415        memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3416        if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3417                printk(KERN_ERR "istallion: no slave control device found\n");
3418                goto stli_donestartup;
3419        }
3420        memp++;
3421
3422/*
3423 *      Cycle through memory allocation of each port. We are guaranteed to
3424 *      have all ports inside the first page of slave window, so no need to
3425 *      change pages while reading memory map.
3426 */
3427        for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3428                if (readw(&memp->dtype) != TYP_ASYNC)
3429                        break;
3430                portp = brdp->ports[portnr];
3431                if (portp == NULL)
3432                        break;
3433                portp->devnr = i;
3434                portp->addr = readl(&memp->offset);
3435                portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3436                portp->portidx = (unsigned char) (i / 8);
3437                portp->portbit = (unsigned char) (0x1 << (i % 8));
3438        }
3439
3440        writeb(0xff, &hdrp->slavereq);
3441
3442/*
3443 *      For each port setup a local copy of the RX and TX buffer offsets
3444 *      and sizes. We do this separate from the above, because we need to
3445 *      move the shared memory page...
3446 */
3447        for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3448                portp = brdp->ports[portnr];
3449                if (portp == NULL)
3450                        break;
3451                if (portp->addr == 0)
3452                        break;
3453                ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3454                if (ap != NULL) {
3455                        portp->rxsize = readw(&ap->rxq.size);
3456                        portp->txsize = readw(&ap->txq.size);
3457                        portp->rxoffset = readl(&ap->rxq.offset);
3458                        portp->txoffset = readl(&ap->txq.offset);
3459                }
3460        }
3461
3462stli_donestartup:
3463        EBRDDISABLE(brdp);
3464        spin_unlock_irqrestore(&brd_lock, flags);
3465
3466        if (rc == 0)
3467                brdp->state |= BST_STARTED;
3468
3469        if (! stli_timeron) {
3470                stli_timeron++;
3471                mod_timer(&stli_timerlist, STLI_TIMEOUT);
3472        }
3473
3474        return rc;
3475}
3476
3477/*****************************************************************************/
3478
3479/*
3480 *      Probe and initialize the specified board.
3481 */
3482
3483static int __devinit stli_brdinit(struct stlibrd *brdp)
3484{
3485        int retval;
3486
3487        switch (brdp->brdtype) {
3488        case BRD_ECP:
3489        case BRD_ECPE:
3490        case BRD_ECPMC:
3491        case BRD_ECPPCI:
3492                retval = stli_initecp(brdp);
3493                break;
3494        case BRD_ONBOARD:
3495        case BRD_ONBOARDE:
3496        case BRD_ONBOARD2:
3497        case BRD_BRUMBY4:
3498        case BRD_STALLION:
3499                retval = stli_initonb(brdp);
3500                break;
3501        default:
3502                printk(KERN_ERR "istallion: board=%d is unknown board "
3503                                "type=%d\n", brdp->brdnr, brdp->brdtype);
3504                retval = -ENODEV;
3505        }
3506
3507        if (retval)
3508                return retval;
3509
3510        stli_initports(brdp);
3511        printk(KERN_INFO "istallion: %s found, board=%d io=%x mem=%x "
3512                "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3513                brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3514                brdp->nrpanels, brdp->nrports);
3515        return 0;
3516}
3517
3518#if STLI_EISAPROBE != 0
3519/*****************************************************************************/
3520
3521/*
3522 *      Probe around trying to find where the EISA boards shared memory
3523 *      might be. This is a bit if hack, but it is the best we can do.
3524 */
3525
3526static int stli_eisamemprobe(struct stlibrd *brdp)
3527{
3528        cdkecpsig_t     ecpsig, __iomem *ecpsigp;
3529        cdkonbsig_t     onbsig, __iomem *onbsigp;
3530        int             i, foundit;
3531
3532/*
3533 *      First up we reset the board, to get it into a known state. There
3534 *      is only 2 board types here we need to worry about. Don;t use the
3535 *      standard board init routine here, it programs up the shared
3536 *      memory address, and we don't know it yet...
3537 */
3538        if (brdp->brdtype == BRD_ECPE) {
3539                outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3540                outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3541                udelay(10);
3542                outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3543                udelay(500);
3544                stli_ecpeienable(brdp);
3545        } else if (brdp->brdtype == BRD_ONBOARDE) {
3546                outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3547                outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3548                udelay(10);
3549                outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3550                mdelay(100);
3551                outb(0x1, brdp->iobase);
3552                mdelay(1);
3553                stli_onbeenable(brdp);
3554        } else {
3555                return -ENODEV;
3556        }
3557
3558        foundit = 0;
3559        brdp->memsize = ECP_MEMSIZE;
3560
3561/*
3562 *      Board shared memory is enabled, so now we have a poke around and
3563 *      see if we can find it.
3564 */
3565        for (i = 0; (i < stli_eisamempsize); i++) {
3566                brdp->memaddr = stli_eisamemprobeaddrs[i];
3567                brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3568                if (brdp->membase == NULL)
3569                        continue;
3570
3571                if (brdp->brdtype == BRD_ECPE) {
3572                        ecpsigp = stli_ecpeigetmemptr(brdp,
3573                                CDK_SIGADDR, __LINE__);
3574                        memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3575                        if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3576                                foundit = 1;
3577                } else {
3578                        onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3579                                CDK_SIGADDR, __LINE__);
3580                        memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3581                        if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3582                            (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3583                            (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3584                            (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3585                                foundit = 1;
3586                }
3587
3588                iounmap(brdp->membase);
3589                if (foundit)
3590                        break;
3591        }
3592
3593/*
3594 *      Regardless of whether we found the shared memory or not we must
3595 *      disable the region. After that return success or failure.
3596 */
3597        if (brdp->brdtype == BRD_ECPE)
3598                stli_ecpeidisable(brdp);
3599        else
3600                stli_onbedisable(brdp);
3601
3602        if (! foundit) {
3603                brdp->memaddr = 0;
3604                brdp->membase = NULL;
3605                printk(KERN_ERR "istallion: failed to probe shared memory "
3606                                "region for %s in EISA slot=%d\n",
3607                        stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3608                return -ENODEV;
3609        }
3610        return 0;
3611}
3612#endif
3613
3614static int stli_getbrdnr(void)
3615{
3616        unsigned int i;
3617
3618        for (i = 0; i < STL_MAXBRDS; i++) {
3619                if (!stli_brds[i]) {
3620                        if (i >= stli_nrbrds)
3621                                stli_nrbrds = i + 1;
3622                        return i;
3623                }
3624        }
3625        return -1;
3626}
3627
3628#if STLI_EISAPROBE != 0
3629/*****************************************************************************/
3630
3631/*
3632 *      Probe around and try to find any EISA boards in system. The biggest
3633 *      problem here is finding out what memory address is associated with
3634 *      an EISA board after it is found. The registers of the ECPE and
3635 *      ONboardE are not readable - so we can't read them from there. We
3636 *      don't have access to the EISA CMOS (or EISA BIOS) so we don't
3637 *      actually have any way to find out the real value. The best we can
3638 *      do is go probing around in the usual places hoping we can find it.
3639 */
3640
3641static int __init stli_findeisabrds(void)
3642{
3643        struct stlibrd *brdp;
3644        unsigned int iobase, eid, i;
3645        int brdnr, found = 0;
3646
3647/*
3648 *      Firstly check if this is an EISA system.  If this is not an EISA system then
3649 *      don't bother going any further!
3650 */
3651        if (EISA_bus)
3652                return 0;
3653
3654/*
3655 *      Looks like an EISA system, so go searching for EISA boards.
3656 */
3657        for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3658                outb(0xff, (iobase + 0xc80));
3659                eid = inb(iobase + 0xc80);
3660                eid |= inb(iobase + 0xc81) << 8;
3661                if (eid != STL_EISAID)
3662                        continue;
3663
3664/*
3665 *              We have found a board. Need to check if this board was
3666 *              statically configured already (just in case!).
3667 */
3668                for (i = 0; (i < STL_MAXBRDS); i++) {
3669                        brdp = stli_brds[i];
3670                        if (brdp == NULL)
3671                                continue;
3672                        if (brdp->iobase == iobase)
3673                                break;
3674                }
3675                if (i < STL_MAXBRDS)
3676                        continue;
3677
3678/*
3679 *              We have found a Stallion board and it is not configured already.
3680 *              Allocate a board structure and initialize it.
3681 */
3682                if ((brdp = stli_allocbrd()) == NULL)
3683                        return found ? : -ENOMEM;
3684                brdnr = stli_getbrdnr();
3685                if (brdnr < 0)
3686                        return found ? : -ENOMEM;
3687                brdp->brdnr = (unsigned int)brdnr;
3688                eid = inb(iobase + 0xc82);
3689                if (eid == ECP_EISAID)
3690                        brdp->brdtype = BRD_ECPE;
3691                else if (eid == ONB_EISAID)
3692                        brdp->brdtype = BRD_ONBOARDE;
3693                else
3694                        brdp->brdtype = BRD_UNKNOWN;
3695                brdp->iobase = iobase;
3696                outb(0x1, (iobase + 0xc84));
3697                if (stli_eisamemprobe(brdp))
3698                        outb(0, (iobase + 0xc84));
3699                if (stli_brdinit(brdp) < 0) {
3700                        kfree(brdp);
3701                        continue;
3702                }
3703
3704                stli_brds[brdp->brdnr] = brdp;
3705                found++;
3706
3707                for (i = 0; i < brdp->nrports; i++)
3708                        tty_register_device(stli_serial,
3709                                        brdp->brdnr * STL_MAXPORTS + i, NULL);
3710        }
3711
3712        return found;
3713}
3714#else
3715static inline int stli_findeisabrds(void) { return 0; }
3716#endif
3717
3718/*****************************************************************************/
3719
3720/*
3721 *      Find the next available board number that is free.
3722 */
3723
3724/*****************************************************************************/
3725
3726/*
3727 *      We have a Stallion board. Allocate a board structure and
3728 *      initialize it. Read its IO and MEMORY resources from PCI
3729 *      configuration space.
3730 */
3731
3732static int __devinit stli_pciprobe(struct pci_dev *pdev,
3733                const struct pci_device_id *ent)
3734{
3735        struct stlibrd *brdp;
3736        unsigned int i;
3737        int brdnr, retval = -EIO;
3738
3739        retval = pci_enable_device(pdev);
3740        if (retval)
3741                goto err;
3742        brdp = stli_allocbrd();
3743        if (brdp == NULL) {
3744                retval = -ENOMEM;
3745                goto err;
3746        }
3747        mutex_lock(&stli_brdslock);
3748        brdnr = stli_getbrdnr();
3749        if (brdnr < 0) {
3750                printk(KERN_INFO "istallion: too many boards found, "
3751                        "maximum supported %d\n", STL_MAXBRDS);
3752                mutex_unlock(&stli_brdslock);
3753                retval = -EIO;
3754                goto err_fr;
3755        }
3756        brdp->brdnr = (unsigned int)brdnr;
3757        stli_brds[brdp->brdnr] = brdp;
3758        mutex_unlock(&stli_brdslock);
3759        brdp->brdtype = BRD_ECPPCI;
3760/*
3761 *      We have all resources from the board, so lets setup the actual
3762 *      board structure now.
3763 */
3764        brdp->iobase = pci_resource_start(pdev, 3);
3765        brdp->memaddr = pci_resource_start(pdev, 2);
3766        retval = stli_brdinit(brdp);
3767        if (retval)
3768                goto err_null;
3769
3770        brdp->state |= BST_PROBED;
3771        pci_set_drvdata(pdev, brdp);
3772
3773        EBRDENABLE(brdp);
3774        brdp->enable = NULL;
3775        brdp->disable = NULL;
3776
3777        for (i = 0; i < brdp->nrports; i++)
3778                tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3779                                &pdev->dev);
3780
3781        return 0;
3782err_null:
3783        stli_brds[brdp->brdnr] = NULL;
3784err_fr:
3785        kfree(brdp);
3786err:
3787        return retval;
3788}
3789
3790static void __devexit stli_pciremove(struct pci_dev *pdev)
3791{
3792        struct stlibrd *brdp = pci_get_drvdata(pdev);
3793
3794        stli_cleanup_ports(brdp);
3795
3796        iounmap(brdp->membase);
3797        if (brdp->iosize > 0)
3798                release_region(brdp->iobase, brdp->iosize);
3799
3800        stli_brds[brdp->brdnr] = NULL;
3801        kfree(brdp);
3802}
3803
3804static struct pci_driver stli_pcidriver = {
3805        .name = "istallion",
3806        .id_table = istallion_pci_tbl,
3807        .probe = stli_pciprobe,
3808        .remove = __devexit_p(stli_pciremove)
3809};
3810/*****************************************************************************/
3811
3812/*
3813 *      Allocate a new board structure. Fill out the basic info in it.
3814 */
3815
3816static struct stlibrd *stli_allocbrd(void)
3817{
3818        struct stlibrd *brdp;
3819
3820        brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3821        if (!brdp) {
3822                printk(KERN_ERR "istallion: failed to allocate memory "
3823                                "(size=%Zd)\n", sizeof(struct stlibrd));
3824                return NULL;
3825        }
3826        brdp->magic = STLI_BOARDMAGIC;
3827        return brdp;
3828}
3829
3830/*****************************************************************************/
3831
3832/*
3833 *      Scan through all the boards in the configuration and see what we
3834 *      can find.
3835 */
3836
3837static int __init stli_initbrds(void)
3838{
3839        struct stlibrd *brdp, *nxtbrdp;
3840        struct stlconf conf;
3841        unsigned int i, j, found = 0;
3842        int retval;
3843
3844        for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3845                        stli_nrbrds++) {
3846                memset(&conf, 0, sizeof(conf));
3847                if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3848                        continue;
3849                if ((brdp = stli_allocbrd()) == NULL)
3850                        continue;
3851                brdp->brdnr = stli_nrbrds;
3852                brdp->brdtype = conf.brdtype;
3853                brdp->iobase = conf.ioaddr1;
3854                brdp->memaddr = conf.memaddr;
3855                if (stli_brdinit(brdp) < 0) {
3856                        kfree(brdp);
3857                        continue;
3858                }
3859                stli_brds[brdp->brdnr] = brdp;
3860                found++;
3861
3862                for (i = 0; i < brdp->nrports; i++)
3863                        tty_register_device(stli_serial,
3864                                        brdp->brdnr * STL_MAXPORTS + i, NULL);
3865        }
3866
3867        retval = stli_findeisabrds();
3868        if (retval > 0)
3869                found += retval;
3870
3871/*
3872 *      All found boards are initialized. Now for a little optimization, if
3873 *      no boards are sharing the "shared memory" regions then we can just
3874 *      leave them all enabled. This is in fact the usual case.
3875 */
3876        stli_shared = 0;
3877        if (stli_nrbrds > 1) {
3878                for (i = 0; (i < stli_nrbrds); i++) {
3879                        brdp = stli_brds[i];
3880                        if (brdp == NULL)
3881                                continue;
3882                        for (j = i + 1; (j < stli_nrbrds); j++) {
3883                                nxtbrdp = stli_brds[j];
3884                                if (nxtbrdp == NULL)
3885                                        continue;
3886                                if ((brdp->membase >= nxtbrdp->membase) &&
3887                                    (brdp->membase <= (nxtbrdp->membase +
3888                                    nxtbrdp->memsize - 1))) {
3889                                        stli_shared++;
3890                                        break;
3891                                }
3892                        }
3893                }
3894        }
3895
3896        if (stli_shared == 0) {
3897                for (i = 0; (i < stli_nrbrds); i++) {
3898                        brdp = stli_brds[i];
3899                        if (brdp == NULL)
3900                                continue;
3901                        if (brdp->state & BST_FOUND) {
3902                                EBRDENABLE(brdp);
3903                                brdp->enable = NULL;
3904                                brdp->disable = NULL;
3905                        }
3906                }
3907        }
3908
3909        retval = pci_register_driver(&stli_pcidriver);
3910        if (retval && found == 0) {
3911                printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
3912                                "driver can be registered!\n");
3913                goto err;
3914        }
3915
3916        return 0;
3917err:
3918        return retval;
3919}
3920
3921/*****************************************************************************/
3922
3923/*
3924 *      Code to handle an "staliomem" read operation. This device is the 
3925 *      contents of the board shared memory. It is used for down loading
3926 *      the slave image (and debugging :-)
3927 */
3928
3929static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
3930{
3931        unsigned long flags;
3932        void __iomem *memptr;
3933        struct stlibrd *brdp;
3934        unsigned int brdnr;
3935        int size, n;
3936        void *p;
3937        loff_t off = *offp;
3938
3939        brdnr = iminor(fp->f_path.dentry->d_inode);
3940        if (brdnr >= stli_nrbrds)
3941                return -ENODEV;
3942        brdp = stli_brds[brdnr];
3943        if (brdp == NULL)
3944                return -ENODEV;
3945        if (brdp->state == 0)
3946                return -ENODEV;
3947        if (off >= brdp->memsize || off + count < off)
3948                return 0;
3949
3950        size = min(count, (size_t)(brdp->memsize - off));
3951
3952        /*
3953         *      Copy the data a page at a time
3954         */
3955
3956        p = (void *)__get_free_page(GFP_KERNEL);
3957        if(p == NULL)
3958                return -ENOMEM;
3959
3960        while (size > 0) {
3961                spin_lock_irqsave(&brd_lock, flags);
3962                EBRDENABLE(brdp);
3963                memptr = EBRDGETMEMPTR(brdp, off);
3964                n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3965                n = min(n, (int)PAGE_SIZE);
3966                memcpy_fromio(p, memptr, n);
3967                EBRDDISABLE(brdp);
3968                spin_unlock_irqrestore(&brd_lock, flags);
3969                if (copy_to_user(buf, p, n)) {
3970                        count = -EFAULT;
3971                        goto out;
3972                }
3973                off += n;
3974                buf += n;
3975                size -= n;
3976        }
3977out:
3978        *offp = off;
3979        free_page((unsigned long)p);
3980        return count;
3981}
3982
3983/*****************************************************************************/
3984
3985/*
3986 *      Code to handle an "staliomem" write operation. This device is the 
3987 *      contents of the board shared memory. It is used for down loading
3988 *      the slave image (and debugging :-)
3989 *
3990 *      FIXME: copy under lock
3991 */
3992
3993static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
3994{
3995        unsigned long flags;
3996        void __iomem *memptr;
3997        struct stlibrd *brdp;
3998        char __user *chbuf;
3999        unsigned int brdnr;
4000        int size, n;
4001        void *p;
4002        loff_t off = *offp;
4003
4004        brdnr = iminor(fp->f_path.dentry->d_inode);
4005
4006        if (brdnr >= stli_nrbrds)
4007                return -ENODEV;
4008        brdp = stli_brds[brdnr];
4009        if (brdp == NULL)
4010                return -ENODEV;
4011        if (brdp->state == 0)
4012                return -ENODEV;
4013        if (off >= brdp->memsize || off + count < off)
4014                return 0;
4015
4016        chbuf = (char __user *) buf;
4017        size = min(count, (size_t)(brdp->memsize - off));
4018
4019        /*
4020         *      Copy the data a page at a time
4021         */
4022
4023        p = (void *)__get_free_page(GFP_KERNEL);
4024        if(p == NULL)
4025                return -ENOMEM;
4026
4027        while (size > 0) {
4028                n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4029                n = min(n, (int)PAGE_SIZE);
4030                if (copy_from_user(p, chbuf, n)) {
4031                        if (count == 0)
4032                                count = -EFAULT;
4033                        goto out;
4034                }
4035                spin_lock_irqsave(&brd_lock, flags);
4036                EBRDENABLE(brdp);
4037                memptr = EBRDGETMEMPTR(brdp, off);
4038                memcpy_toio(memptr, p, n);
4039                EBRDDISABLE(brdp);
4040                spin_unlock_irqrestore(&brd_lock, flags);
4041                off += n;
4042                chbuf += n;
4043                size -= n;
4044        }
4045out:
4046        free_page((unsigned long) p);
4047        *offp = off;
4048        return count;
4049}
4050
4051/*****************************************************************************/
4052
4053/*
4054 *      Return the board stats structure to user app.
4055 */
4056
4057static int stli_getbrdstats(combrd_t __user *bp)
4058{
4059        struct stlibrd *brdp;
4060        unsigned int i;
4061
4062        if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4063                return -EFAULT;
4064        if (stli_brdstats.brd >= STL_MAXBRDS)
4065                return -ENODEV;
4066        brdp = stli_brds[stli_brdstats.brd];
4067        if (brdp == NULL)
4068                return -ENODEV;
4069
4070        memset(&stli_brdstats, 0, sizeof(combrd_t));
4071        stli_brdstats.brd = brdp->brdnr;
4072        stli_brdstats.type = brdp->brdtype;
4073        stli_brdstats.hwid = 0;
4074        stli_brdstats.state = brdp->state;
4075        stli_brdstats.ioaddr = brdp->iobase;
4076        stli_brdstats.memaddr = brdp->memaddr;
4077        stli_brdstats.nrpanels = brdp->nrpanels;
4078        stli_brdstats.nrports = brdp->nrports;
4079        for (i = 0; (i < brdp->nrpanels); i++) {
4080                stli_brdstats.panels[i].panel = i;
4081                stli_brdstats.panels[i].hwid = brdp->panelids[i];
4082                stli_brdstats.panels[i].nrports = brdp->panels[i];
4083        }
4084
4085        if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4086                return -EFAULT;
4087        return 0;
4088}
4089
4090/*****************************************************************************/
4091
4092/*
4093 *      Resolve the referenced port number into a port struct pointer.
4094 */
4095
4096static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4097                unsigned int portnr)
4098{
4099        struct stlibrd *brdp;
4100        unsigned int i;
4101
4102        if (brdnr >= STL_MAXBRDS)
4103                return NULL;
4104        brdp = stli_brds[brdnr];
4105        if (brdp == NULL)
4106                return NULL;
4107        for (i = 0; (i < panelnr); i++)
4108                portnr += brdp->panels[i];
4109        if (portnr >= brdp->nrports)
4110                return NULL;
4111        return brdp->ports[portnr];
4112}
4113
4114/*****************************************************************************/
4115
4116/*
4117 *      Return the port stats structure to user app. A NULL port struct
4118 *      pointer passed in means that we need to find out from the app
4119 *      what port to get stats for (used through board control device).
4120 */
4121
4122static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp)
4123{
4124        unsigned long   flags;
4125        struct stlibrd  *brdp;
4126        int             rc;
4127
4128        memset(&stli_comstats, 0, sizeof(comstats_t));
4129
4130        if (portp == NULL)
4131                return -ENODEV;
4132        brdp = stli_brds[portp->brdnr];
4133        if (brdp == NULL)
4134                return -ENODEV;
4135
4136        if (brdp->state & BST_STARTED) {
4137                if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4138                    &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4139                        return rc;
4140        } else {
4141                memset(&stli_cdkstats, 0, sizeof(asystats_t));
4142        }
4143
4144        stli_comstats.brd = portp->brdnr;
4145        stli_comstats.panel = portp->panelnr;
4146        stli_comstats.port = portp->portnr;
4147        stli_comstats.state = portp->state;
4148        stli_comstats.flags = portp->port.flags;
4149
4150        spin_lock_irqsave(&brd_lock, flags);
4151        if (tty != NULL) {
4152                if (portp->port.tty == tty) {
4153                        stli_comstats.ttystate = tty->flags;
4154                        stli_comstats.rxbuffered = -1;
4155                        if (tty->termios != NULL) {
4156                                stli_comstats.cflags = tty->termios->c_cflag;
4157                                stli_comstats.iflags = tty->termios->c_iflag;
4158                                stli_comstats.oflags = tty->termios->c_oflag;
4159                                stli_comstats.lflags = tty->termios->c_lflag;
4160                        }
4161                }
4162        }
4163        spin_unlock_irqrestore(&brd_lock, flags);
4164
4165        stli_comstats.txtotal = stli_cdkstats.txchars;
4166        stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4167        stli_comstats.txbuffered = stli_cdkstats.txringq;
4168        stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4169        stli_comstats.rxoverrun = stli_cdkstats.overruns;
4170        stli_comstats.rxparity = stli_cdkstats.parity;
4171        stli_comstats.rxframing = stli_cdkstats.framing;
4172        stli_comstats.rxlost = stli_cdkstats.ringover;
4173        stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4174        stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4175        stli_comstats.txxon = stli_cdkstats.txstart;
4176        stli_comstats.txxoff = stli_cdkstats.txstop;
4177        stli_comstats.rxxon = stli_cdkstats.rxstart;
4178        stli_comstats.rxxoff = stli_cdkstats.rxstop;
4179        stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4180        stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4181        stli_comstats.modem = stli_cdkstats.dcdcnt;
4182        stli_comstats.hwid = stli_cdkstats.hwid;
4183        stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4184
4185        return 0;
4186}
4187
4188/*****************************************************************************/
4189
4190/*
4191 *      Return the port stats structure to user app. A NULL port struct
4192 *      pointer passed in means that we need to find out from the app
4193 *      what port to get stats for (used through board control device).
4194 */
4195
4196static int stli_getportstats(struct tty_struct *tty, struct stliport *portp,
4197                                                        comstats_t __user *cp)
4198{
4199        struct stlibrd *brdp;
4200        int rc;
4201
4202        if (!portp) {
4203                if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4204                        return -EFAULT;
4205                portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4206                        stli_comstats.port);
4207                if (!portp)
4208                        return -ENODEV;
4209        }
4210
4211        brdp = stli_brds[portp->brdnr];
4212        if (!brdp)
4213                return -ENODEV;
4214
4215        if ((rc = stli_portcmdstats(tty, portp)) < 0)
4216                return rc;
4217
4218        return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4219                        -EFAULT : 0;
4220}
4221
4222/*****************************************************************************/
4223
4224/*
4225 *      Clear the port stats structure. We also return it zeroed out...
4226 */
4227
4228static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4229{
4230        struct stlibrd *brdp;
4231        int rc;
4232
4233        if (!portp) {
4234                if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4235                        return -EFAULT;
4236                portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4237                        stli_comstats.port);
4238                if (!portp)
4239                        return -ENODEV;
4240        }
4241
4242        brdp = stli_brds[portp->brdnr];
4243        if (!brdp)
4244                return -ENODEV;
4245
4246        if (brdp->state & BST_STARTED) {
4247                if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
4248                        return rc;
4249        }
4250
4251        memset(&stli_comstats, 0, sizeof(comstats_t));
4252        stli_comstats.brd = portp->brdnr;
4253        stli_comstats.panel = portp->panelnr;
4254        stli_comstats.port = portp->portnr;
4255
4256        if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4257                return -EFAULT;
4258        return 0;
4259}
4260
4261/*****************************************************************************/
4262
4263/*
4264 *      Return the entire driver ports structure to a user app.
4265 */
4266
4267static int stli_getportstruct(struct stliport __user *arg)
4268{
4269        struct stliport stli_dummyport;
4270        struct stliport *portp;
4271
4272        if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4273                return -EFAULT;
4274        portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4275                 stli_dummyport.portnr);
4276        if (!portp)
4277                return -ENODEV;
4278        if (copy_to_user(arg, portp, sizeof(struct stliport)))
4279                return -EFAULT;
4280        return 0;
4281}
4282
4283/*****************************************************************************/
4284
4285/*
4286 *      Return the entire driver board structure to a user app.
4287 */
4288
4289static int stli_getbrdstruct(struct stlibrd __user *arg)
4290{
4291        struct stlibrd stli_dummybrd;
4292        struct stlibrd *brdp;
4293
4294        if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4295                return -EFAULT;
4296        if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4297                return -ENODEV;
4298        brdp = stli_brds[stli_dummybrd.brdnr];
4299        if (!brdp)
4300                return -ENODEV;
4301        if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4302                return -EFAULT;
4303        return 0;
4304}
4305
4306/*****************************************************************************/
4307
4308/*
4309 *      The "staliomem" device is also required to do some special operations on
4310 *      the board. We need to be able to send an interrupt to the board,
4311 *      reset it, and start/stop it.
4312 */
4313
4314static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
4315{
4316        struct stlibrd *brdp;
4317        int brdnr, rc, done;
4318        void __user *argp = (void __user *)arg;
4319
4320/*
4321 *      First up handle the board independent ioctls.
4322 */
4323        done = 0;
4324        rc = 0;
4325
4326        lock_kernel();
4327
4328        switch (cmd) {
4329        case COM_GETPORTSTATS:
4330                rc = stli_getportstats(NULL, NULL, argp);
4331                done++;
4332                break;
4333        case COM_CLRPORTSTATS:
4334                rc = stli_clrportstats(NULL, argp);
4335                done++;
4336                break;
4337        case COM_GETBRDSTATS:
4338                rc = stli_getbrdstats(argp);
4339                done++;
4340                break;
4341        case COM_READPORT:
4342                rc = stli_getportstruct(argp);
4343                done++;
4344                break;
4345        case COM_READBOARD:
4346                rc = stli_getbrdstruct(argp);
4347                done++;
4348                break;
4349        }
4350        unlock_kernel();
4351
4352        if (done)
4353                return rc;
4354
4355/*
4356 *      Now handle the board specific ioctls. These all depend on the
4357 *      minor number of the device they were called from.
4358 */
4359        brdnr = iminor(ip);
4360        if (brdnr >= STL_MAXBRDS)
4361                return -ENODEV;
4362        brdp = stli_brds[brdnr];
4363        if (!brdp)
4364                return -ENODEV;
4365        if (brdp->state == 0)
4366                return -ENODEV;
4367
4368        lock_kernel();
4369
4370        switch (cmd) {
4371        case STL_BINTR:
4372                EBRDINTR(brdp);
4373                break;
4374        case STL_BSTART:
4375                rc = stli_startbrd(brdp);
4376                break;
4377        case STL_BSTOP:
4378                brdp->state &= ~BST_STARTED;
4379                break;
4380        case STL_BRESET:
4381                brdp->state &= ~BST_STARTED;
4382                EBRDRESET(brdp);
4383                if (stli_shared == 0) {
4384                        if (brdp->reenable != NULL)
4385                                (* brdp->reenable)(brdp);
4386                }
4387                break;
4388        default:
4389                rc = -ENOIOCTLCMD;
4390                break;
4391        }
4392        unlock_kernel();
4393        return rc;
4394}
4395
4396static const struct tty_operations stli_ops = {
4397        .open = stli_open,
4398        .close = stli_close,
4399        .write = stli_write,
4400        .put_char = stli_putchar,
4401        .flush_chars = stli_flushchars,
4402        .write_room = stli_writeroom,
4403        .chars_in_buffer = stli_charsinbuffer,
4404        .ioctl = stli_ioctl,
4405        .set_termios = stli_settermios,
4406        .throttle = stli_throttle,
4407        .unthrottle = stli_unthrottle,
4408        .stop = stli_stop,
4409        .start = stli_start,
4410        .hangup = stli_hangup,
4411        .flush_buffer = stli_flushbuffer,
4412        .break_ctl = stli_breakctl,
4413        .wait_until_sent = stli_waituntilsent,
4414        .send_xchar = stli_sendxchar,
4415        .tiocmget = stli_tiocmget,
4416        .tiocmset = stli_tiocmset,
4417        .proc_fops = &stli_proc_fops,
4418};
4419
4420static const struct tty_port_operations stli_port_ops = {
4421        .carrier_raised = stli_carrier_raised,
4422        .dtr_rts = stli_dtr_rts,
4423};
4424
4425/*****************************************************************************/
4426/*
4427 *      Loadable module initialization stuff.
4428 */
4429
4430static void istallion_cleanup_isa(void)
4431{
4432        struct stlibrd  *brdp;
4433        unsigned int j;
4434
4435        for (j = 0; (j < stli_nrbrds); j++) {
4436                if ((brdp = stli_brds[j]) == NULL || (brdp->state & BST_PROBED))
4437                        continue;
4438
4439                stli_cleanup_ports(brdp);
4440
4441                iounmap(brdp->membase);
4442                if (brdp->iosize > 0)
4443                        release_region(brdp->iobase, brdp->iosize);
4444                kfree(brdp);
4445                stli_brds[j] = NULL;
4446        }
4447}
4448
4449static int __init istallion_module_init(void)
4450{
4451        unsigned int i;
4452        int retval;
4453
4454        printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4455
4456        spin_lock_init(&stli_lock);
4457        spin_lock_init(&brd_lock);
4458
4459        stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4460        if (!stli_txcookbuf) {
4461                printk(KERN_ERR "istallion: failed to allocate memory "
4462                                "(size=%d)\n", STLI_TXBUFSIZE);
4463                retval = -ENOMEM;
4464                goto err;
4465        }
4466
4467        stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4468        if (!stli_serial) {
4469                retval = -ENOMEM;
4470                goto err_free;
4471        }
4472
4473        stli_serial->owner = THIS_MODULE;
4474        stli_serial->driver_name = stli_drvname;
4475        stli_serial->name = stli_serialname;
4476        stli_serial->major = STL_SERIALMAJOR;
4477        stli_serial->minor_start = 0;
4478        stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4479        stli_serial->subtype = SERIAL_TYPE_NORMAL;
4480        stli_serial->init_termios = stli_deftermios;
4481        stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4482        tty_set_operations(stli_serial, &stli_ops);
4483
4484        retval = tty_register_driver(stli_serial);
4485        if (retval) {
4486                printk(KERN_ERR "istallion: failed to register serial driver\n");
4487                goto err_ttyput;
4488        }
4489
4490        retval = stli_initbrds();
4491        if (retval)
4492                goto err_ttyunr;
4493
4494/*
4495 *      Set up a character driver for the shared memory region. We need this
4496 *      to down load the slave code image. Also it is a useful debugging tool.
4497 */
4498        retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4499        if (retval) {
4500                printk(KERN_ERR "istallion: failed to register serial memory "
4501                                "device\n");
4502                goto err_deinit;
4503        }
4504
4505        istallion_class = class_create(THIS_MODULE, "staliomem");
4506        for (i = 0; i < 4; i++)
4507                device_create(istallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4508                              NULL, "staliomem%d", i);
4509
4510        return 0;
4511err_deinit:
4512        pci_unregister_driver(&stli_pcidriver);
4513        istallion_cleanup_isa();
4514err_ttyunr:
4515        tty_unregister_driver(stli_serial);
4516err_ttyput:
4517        put_tty_driver(stli_serial);
4518err_free:
4519        kfree(stli_txcookbuf);
4520err:
4521        return retval;
4522}
4523
4524/*****************************************************************************/
4525
4526static void __exit istallion_module_exit(void)
4527{
4528        unsigned int j;
4529
4530        printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4531                stli_drvversion);
4532
4533        if (stli_timeron) {
4534                stli_timeron = 0;
4535                del_timer_sync(&stli_timerlist);
4536        }
4537
4538        unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4539
4540        for (j = 0; j < 4; j++)
4541                device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
4542        class_destroy(istallion_class);
4543
4544        pci_unregister_driver(&stli_pcidriver);
4545        istallion_cleanup_isa();
4546
4547        tty_unregister_driver(stli_serial);
4548        put_tty_driver(stli_serial);
4549
4550        kfree(stli_txcookbuf);
4551}
4552
4553module_init(istallion_module_init);
4554module_exit(istallion_module_exit);
4555