linux/drivers/char/random.c
<<
>>
Prefs
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 *
   6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
   7 * rights reserved.
   8 *
   9 * Redistribution and use in source and binary forms, with or without
  10 * modification, are permitted provided that the following conditions
  11 * are met:
  12 * 1. Redistributions of source code must retain the above copyright
  13 *    notice, and the entire permission notice in its entirety,
  14 *    including the disclaimer of warranties.
  15 * 2. Redistributions in binary form must reproduce the above copyright
  16 *    notice, this list of conditions and the following disclaimer in the
  17 *    documentation and/or other materials provided with the distribution.
  18 * 3. The name of the author may not be used to endorse or promote
  19 *    products derived from this software without specific prior
  20 *    written permission.
  21 *
  22 * ALTERNATIVELY, this product may be distributed under the terms of
  23 * the GNU General Public License, in which case the provisions of the GPL are
  24 * required INSTEAD OF the above restrictions.  (This clause is
  25 * necessary due to a potential bad interaction between the GPL and
  26 * the restrictions contained in a BSD-style copyright.)
  27 *
  28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39 * DAMAGE.
  40 */
  41
  42/*
  43 * (now, with legal B.S. out of the way.....)
  44 *
  45 * This routine gathers environmental noise from device drivers, etc.,
  46 * and returns good random numbers, suitable for cryptographic use.
  47 * Besides the obvious cryptographic uses, these numbers are also good
  48 * for seeding TCP sequence numbers, and other places where it is
  49 * desirable to have numbers which are not only random, but hard to
  50 * predict by an attacker.
  51 *
  52 * Theory of operation
  53 * ===================
  54 *
  55 * Computers are very predictable devices.  Hence it is extremely hard
  56 * to produce truly random numbers on a computer --- as opposed to
  57 * pseudo-random numbers, which can easily generated by using a
  58 * algorithm.  Unfortunately, it is very easy for attackers to guess
  59 * the sequence of pseudo-random number generators, and for some
  60 * applications this is not acceptable.  So instead, we must try to
  61 * gather "environmental noise" from the computer's environment, which
  62 * must be hard for outside attackers to observe, and use that to
  63 * generate random numbers.  In a Unix environment, this is best done
  64 * from inside the kernel.
  65 *
  66 * Sources of randomness from the environment include inter-keyboard
  67 * timings, inter-interrupt timings from some interrupts, and other
  68 * events which are both (a) non-deterministic and (b) hard for an
  69 * outside observer to measure.  Randomness from these sources are
  70 * added to an "entropy pool", which is mixed using a CRC-like function.
  71 * This is not cryptographically strong, but it is adequate assuming
  72 * the randomness is not chosen maliciously, and it is fast enough that
  73 * the overhead of doing it on every interrupt is very reasonable.
  74 * As random bytes are mixed into the entropy pool, the routines keep
  75 * an *estimate* of how many bits of randomness have been stored into
  76 * the random number generator's internal state.
  77 *
  78 * When random bytes are desired, they are obtained by taking the SHA
  79 * hash of the contents of the "entropy pool".  The SHA hash avoids
  80 * exposing the internal state of the entropy pool.  It is believed to
  81 * be computationally infeasible to derive any useful information
  82 * about the input of SHA from its output.  Even if it is possible to
  83 * analyze SHA in some clever way, as long as the amount of data
  84 * returned from the generator is less than the inherent entropy in
  85 * the pool, the output data is totally unpredictable.  For this
  86 * reason, the routine decreases its internal estimate of how many
  87 * bits of "true randomness" are contained in the entropy pool as it
  88 * outputs random numbers.
  89 *
  90 * If this estimate goes to zero, the routine can still generate
  91 * random numbers; however, an attacker may (at least in theory) be
  92 * able to infer the future output of the generator from prior
  93 * outputs.  This requires successful cryptanalysis of SHA, which is
  94 * not believed to be feasible, but there is a remote possibility.
  95 * Nonetheless, these numbers should be useful for the vast majority
  96 * of purposes.
  97 *
  98 * Exported interfaces ---- output
  99 * ===============================
 100 *
 101 * There are three exported interfaces; the first is one designed to
 102 * be used from within the kernel:
 103 *
 104 *      void get_random_bytes(void *buf, int nbytes);
 105 *
 106 * This interface will return the requested number of random bytes,
 107 * and place it in the requested buffer.
 108 *
 109 * The two other interfaces are two character devices /dev/random and
 110 * /dev/urandom.  /dev/random is suitable for use when very high
 111 * quality randomness is desired (for example, for key generation or
 112 * one-time pads), as it will only return a maximum of the number of
 113 * bits of randomness (as estimated by the random number generator)
 114 * contained in the entropy pool.
 115 *
 116 * The /dev/urandom device does not have this limit, and will return
 117 * as many bytes as are requested.  As more and more random bytes are
 118 * requested without giving time for the entropy pool to recharge,
 119 * this will result in random numbers that are merely cryptographically
 120 * strong.  For many applications, however, this is acceptable.
 121 *
 122 * Exported interfaces ---- input
 123 * ==============================
 124 *
 125 * The current exported interfaces for gathering environmental noise
 126 * from the devices are:
 127 *
 128 *      void add_input_randomness(unsigned int type, unsigned int code,
 129 *                                unsigned int value);
 130 *      void add_interrupt_randomness(int irq);
 131 *
 132 * add_input_randomness() uses the input layer interrupt timing, as well as
 133 * the event type information from the hardware.
 134 *
 135 * add_interrupt_randomness() uses the inter-interrupt timing as random
 136 * inputs to the entropy pool.  Note that not all interrupts are good
 137 * sources of randomness!  For example, the timer interrupts is not a
 138 * good choice, because the periodicity of the interrupts is too
 139 * regular, and hence predictable to an attacker.  Disk interrupts are
 140 * a better measure, since the timing of the disk interrupts are more
 141 * unpredictable.
 142 *
 143 * All of these routines try to estimate how many bits of randomness a
 144 * particular randomness source.  They do this by keeping track of the
 145 * first and second order deltas of the event timings.
 146 *
 147 * Ensuring unpredictability at system startup
 148 * ============================================
 149 *
 150 * When any operating system starts up, it will go through a sequence
 151 * of actions that are fairly predictable by an adversary, especially
 152 * if the start-up does not involve interaction with a human operator.
 153 * This reduces the actual number of bits of unpredictability in the
 154 * entropy pool below the value in entropy_count.  In order to
 155 * counteract this effect, it helps to carry information in the
 156 * entropy pool across shut-downs and start-ups.  To do this, put the
 157 * following lines an appropriate script which is run during the boot
 158 * sequence:
 159 *
 160 *      echo "Initializing random number generator..."
 161 *      random_seed=/var/run/random-seed
 162 *      # Carry a random seed from start-up to start-up
 163 *      # Load and then save the whole entropy pool
 164 *      if [ -f $random_seed ]; then
 165 *              cat $random_seed >/dev/urandom
 166 *      else
 167 *              touch $random_seed
 168 *      fi
 169 *      chmod 600 $random_seed
 170 *      dd if=/dev/urandom of=$random_seed count=1 bs=512
 171 *
 172 * and the following lines in an appropriate script which is run as
 173 * the system is shutdown:
 174 *
 175 *      # Carry a random seed from shut-down to start-up
 176 *      # Save the whole entropy pool
 177 *      echo "Saving random seed..."
 178 *      random_seed=/var/run/random-seed
 179 *      touch $random_seed
 180 *      chmod 600 $random_seed
 181 *      dd if=/dev/urandom of=$random_seed count=1 bs=512
 182 *
 183 * For example, on most modern systems using the System V init
 184 * scripts, such code fragments would be found in
 185 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 187 *
 188 * Effectively, these commands cause the contents of the entropy pool
 189 * to be saved at shut-down time and reloaded into the entropy pool at
 190 * start-up.  (The 'dd' in the addition to the bootup script is to
 191 * make sure that /etc/random-seed is different for every start-up,
 192 * even if the system crashes without executing rc.0.)  Even with
 193 * complete knowledge of the start-up activities, predicting the state
 194 * of the entropy pool requires knowledge of the previous history of
 195 * the system.
 196 *
 197 * Configuring the /dev/random driver under Linux
 198 * ==============================================
 199 *
 200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 201 * the /dev/mem major number (#1).  So if your system does not have
 202 * /dev/random and /dev/urandom created already, they can be created
 203 * by using the commands:
 204 *
 205 *      mknod /dev/random c 1 8
 206 *      mknod /dev/urandom c 1 9
 207 *
 208 * Acknowledgements:
 209 * =================
 210 *
 211 * Ideas for constructing this random number generator were derived
 212 * from Pretty Good Privacy's random number generator, and from private
 213 * discussions with Phil Karn.  Colin Plumb provided a faster random
 214 * number generator, which speed up the mixing function of the entropy
 215 * pool, taken from PGPfone.  Dale Worley has also contributed many
 216 * useful ideas and suggestions to improve this driver.
 217 *
 218 * Any flaws in the design are solely my responsibility, and should
 219 * not be attributed to the Phil, Colin, or any of authors of PGP.
 220 *
 221 * Further background information on this topic may be obtained from
 222 * RFC 1750, "Randomness Recommendations for Security", by Donald
 223 * Eastlake, Steve Crocker, and Jeff Schiller.
 224 */
 225
 226#include <linux/utsname.h>
 227#include <linux/module.h>
 228#include <linux/kernel.h>
 229#include <linux/major.h>
 230#include <linux/string.h>
 231#include <linux/fcntl.h>
 232#include <linux/slab.h>
 233#include <linux/random.h>
 234#include <linux/poll.h>
 235#include <linux/init.h>
 236#include <linux/fs.h>
 237#include <linux/genhd.h>
 238#include <linux/interrupt.h>
 239#include <linux/mm.h>
 240#include <linux/spinlock.h>
 241#include <linux/percpu.h>
 242#include <linux/cryptohash.h>
 243#include <linux/fips.h>
 244
 245#ifdef CONFIG_GENERIC_HARDIRQS
 246# include <linux/irq.h>
 247#endif
 248
 249#include <asm/processor.h>
 250#include <asm/uaccess.h>
 251#include <asm/irq.h>
 252#include <asm/io.h>
 253
 254/*
 255 * Configuration information
 256 */
 257#define INPUT_POOL_WORDS 128
 258#define OUTPUT_POOL_WORDS 32
 259#define SEC_XFER_SIZE 512
 260
 261/*
 262 * The minimum number of bits of entropy before we wake up a read on
 263 * /dev/random.  Should be enough to do a significant reseed.
 264 */
 265static int random_read_wakeup_thresh = 64;
 266
 267/*
 268 * If the entropy count falls under this number of bits, then we
 269 * should wake up processes which are selecting or polling on write
 270 * access to /dev/random.
 271 */
 272static int random_write_wakeup_thresh = 128;
 273
 274/*
 275 * When the input pool goes over trickle_thresh, start dropping most
 276 * samples to avoid wasting CPU time and reduce lock contention.
 277 */
 278
 279static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
 280
 281static DEFINE_PER_CPU(int, trickle_count);
 282
 283/*
 284 * A pool of size .poolwords is stirred with a primitive polynomial
 285 * of degree .poolwords over GF(2).  The taps for various sizes are
 286 * defined below.  They are chosen to be evenly spaced (minimum RMS
 287 * distance from evenly spaced; the numbers in the comments are a
 288 * scaled squared error sum) except for the last tap, which is 1 to
 289 * get the twisting happening as fast as possible.
 290 */
 291static struct poolinfo {
 292        int poolwords;
 293        int tap1, tap2, tap3, tap4, tap5;
 294} poolinfo_table[] = {
 295        /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
 296        { 128,  103,    76,     51,     25,     1 },
 297        /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
 298        { 32,   26,     20,     14,     7,      1 },
 299#if 0
 300        /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 301        { 2048, 1638,   1231,   819,    411,    1 },
 302
 303        /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 304        { 1024, 817,    615,    412,    204,    1 },
 305
 306        /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 307        { 1024, 819,    616,    410,    207,    2 },
 308
 309        /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 310        { 512,  411,    308,    208,    104,    1 },
 311
 312        /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 313        { 512,  409,    307,    206,    102,    2 },
 314        /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 315        { 512,  409,    309,    205,    103,    2 },
 316
 317        /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 318        { 256,  205,    155,    101,    52,     1 },
 319
 320        /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 321        { 128,  103,    78,     51,     27,     2 },
 322
 323        /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 324        { 64,   52,     39,     26,     14,     1 },
 325#endif
 326};
 327
 328#define POOLBITS        poolwords*32
 329#define POOLBYTES       poolwords*4
 330
 331/*
 332 * For the purposes of better mixing, we use the CRC-32 polynomial as
 333 * well to make a twisted Generalized Feedback Shift Reigster
 334 *
 335 * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
 336 * Transactions on Modeling and Computer Simulation 2(3):179-194.
 337 * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
 338 * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
 339 *
 340 * Thanks to Colin Plumb for suggesting this.
 341 *
 342 * We have not analyzed the resultant polynomial to prove it primitive;
 343 * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
 344 * of a random large-degree polynomial over GF(2) are more than large enough
 345 * that periodicity is not a concern.
 346 *
 347 * The input hash is much less sensitive than the output hash.  All
 348 * that we want of it is that it be a good non-cryptographic hash;
 349 * i.e. it not produce collisions when fed "random" data of the sort
 350 * we expect to see.  As long as the pool state differs for different
 351 * inputs, we have preserved the input entropy and done a good job.
 352 * The fact that an intelligent attacker can construct inputs that
 353 * will produce controlled alterations to the pool's state is not
 354 * important because we don't consider such inputs to contribute any
 355 * randomness.  The only property we need with respect to them is that
 356 * the attacker can't increase his/her knowledge of the pool's state.
 357 * Since all additions are reversible (knowing the final state and the
 358 * input, you can reconstruct the initial state), if an attacker has
 359 * any uncertainty about the initial state, he/she can only shuffle
 360 * that uncertainty about, but never cause any collisions (which would
 361 * decrease the uncertainty).
 362 *
 363 * The chosen system lets the state of the pool be (essentially) the input
 364 * modulo the generator polymnomial.  Now, for random primitive polynomials,
 365 * this is a universal class of hash functions, meaning that the chance
 366 * of a collision is limited by the attacker's knowledge of the generator
 367 * polynomail, so if it is chosen at random, an attacker can never force
 368 * a collision.  Here, we use a fixed polynomial, but we *can* assume that
 369 * ###--> it is unknown to the processes generating the input entropy. <-###
 370 * Because of this important property, this is a good, collision-resistant
 371 * hash; hash collisions will occur no more often than chance.
 372 */
 373
 374/*
 375 * Static global variables
 376 */
 377static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 378static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 379static struct fasync_struct *fasync;
 380
 381#if 0
 382static int debug;
 383module_param(debug, bool, 0644);
 384#define DEBUG_ENT(fmt, arg...) do { \
 385        if (debug) \
 386                printk(KERN_DEBUG "random %04d %04d %04d: " \
 387                fmt,\
 388                input_pool.entropy_count,\
 389                blocking_pool.entropy_count,\
 390                nonblocking_pool.entropy_count,\
 391                ## arg); } while (0)
 392#else
 393#define DEBUG_ENT(fmt, arg...) do {} while (0)
 394#endif
 395
 396/**********************************************************************
 397 *
 398 * OS independent entropy store.   Here are the functions which handle
 399 * storing entropy in an entropy pool.
 400 *
 401 **********************************************************************/
 402
 403struct entropy_store;
 404struct entropy_store {
 405        /* read-only data: */
 406        struct poolinfo *poolinfo;
 407        __u32 *pool;
 408        const char *name;
 409        int limit;
 410        struct entropy_store *pull;
 411
 412        /* read-write data: */
 413        spinlock_t lock;
 414        unsigned add_ptr;
 415        int entropy_count;
 416        int input_rotate;
 417        __u8 *last_data;
 418};
 419
 420static __u32 input_pool_data[INPUT_POOL_WORDS];
 421static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
 422static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
 423
 424static struct entropy_store input_pool = {
 425        .poolinfo = &poolinfo_table[0],
 426        .name = "input",
 427        .limit = 1,
 428        .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
 429        .pool = input_pool_data
 430};
 431
 432static struct entropy_store blocking_pool = {
 433        .poolinfo = &poolinfo_table[1],
 434        .name = "blocking",
 435        .limit = 1,
 436        .pull = &input_pool,
 437        .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
 438        .pool = blocking_pool_data
 439};
 440
 441static struct entropy_store nonblocking_pool = {
 442        .poolinfo = &poolinfo_table[1],
 443        .name = "nonblocking",
 444        .pull = &input_pool,
 445        .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
 446        .pool = nonblocking_pool_data
 447};
 448
 449/*
 450 * This function adds bytes into the entropy "pool".  It does not
 451 * update the entropy estimate.  The caller should call
 452 * credit_entropy_bits if this is appropriate.
 453 *
 454 * The pool is stirred with a primitive polynomial of the appropriate
 455 * degree, and then twisted.  We twist by three bits at a time because
 456 * it's cheap to do so and helps slightly in the expected case where
 457 * the entropy is concentrated in the low-order bits.
 458 */
 459static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
 460                                   int nbytes, __u8 out[64])
 461{
 462        static __u32 const twist_table[8] = {
 463                0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 464                0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 465        unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
 466        int input_rotate;
 467        int wordmask = r->poolinfo->poolwords - 1;
 468        const char *bytes = in;
 469        __u32 w;
 470        unsigned long flags;
 471
 472        /* Taps are constant, so we can load them without holding r->lock.  */
 473        tap1 = r->poolinfo->tap1;
 474        tap2 = r->poolinfo->tap2;
 475        tap3 = r->poolinfo->tap3;
 476        tap4 = r->poolinfo->tap4;
 477        tap5 = r->poolinfo->tap5;
 478
 479        spin_lock_irqsave(&r->lock, flags);
 480        input_rotate = r->input_rotate;
 481        i = r->add_ptr;
 482
 483        /* mix one byte at a time to simplify size handling and churn faster */
 484        while (nbytes--) {
 485                w = rol32(*bytes++, input_rotate & 31);
 486                i = (i - 1) & wordmask;
 487
 488                /* XOR in the various taps */
 489                w ^= r->pool[i];
 490                w ^= r->pool[(i + tap1) & wordmask];
 491                w ^= r->pool[(i + tap2) & wordmask];
 492                w ^= r->pool[(i + tap3) & wordmask];
 493                w ^= r->pool[(i + tap4) & wordmask];
 494                w ^= r->pool[(i + tap5) & wordmask];
 495
 496                /* Mix the result back in with a twist */
 497                r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 498
 499                /*
 500                 * Normally, we add 7 bits of rotation to the pool.
 501                 * At the beginning of the pool, add an extra 7 bits
 502                 * rotation, so that successive passes spread the
 503                 * input bits across the pool evenly.
 504                 */
 505                input_rotate += i ? 7 : 14;
 506        }
 507
 508        r->input_rotate = input_rotate;
 509        r->add_ptr = i;
 510
 511        if (out)
 512                for (j = 0; j < 16; j++)
 513                        ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
 514
 515        spin_unlock_irqrestore(&r->lock, flags);
 516}
 517
 518static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
 519{
 520       mix_pool_bytes_extract(r, in, bytes, NULL);
 521}
 522
 523/*
 524 * Credit (or debit) the entropy store with n bits of entropy
 525 */
 526static void credit_entropy_bits(struct entropy_store *r, int nbits)
 527{
 528        unsigned long flags;
 529        int entropy_count;
 530
 531        if (!nbits)
 532                return;
 533
 534        spin_lock_irqsave(&r->lock, flags);
 535
 536        DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
 537        entropy_count = r->entropy_count;
 538        entropy_count += nbits;
 539        if (entropy_count < 0) {
 540                DEBUG_ENT("negative entropy/overflow\n");
 541                entropy_count = 0;
 542        } else if (entropy_count > r->poolinfo->POOLBITS)
 543                entropy_count = r->poolinfo->POOLBITS;
 544        r->entropy_count = entropy_count;
 545
 546        /* should we wake readers? */
 547        if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
 548                wake_up_interruptible(&random_read_wait);
 549                kill_fasync(&fasync, SIGIO, POLL_IN);
 550        }
 551        spin_unlock_irqrestore(&r->lock, flags);
 552}
 553
 554/*********************************************************************
 555 *
 556 * Entropy input management
 557 *
 558 *********************************************************************/
 559
 560/* There is one of these per entropy source */
 561struct timer_rand_state {
 562        cycles_t last_time;
 563        long last_delta, last_delta2;
 564        unsigned dont_count_entropy:1;
 565};
 566
 567#ifndef CONFIG_GENERIC_HARDIRQS
 568
 569static struct timer_rand_state *irq_timer_state[NR_IRQS];
 570
 571static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
 572{
 573        return irq_timer_state[irq];
 574}
 575
 576static void set_timer_rand_state(unsigned int irq,
 577                                 struct timer_rand_state *state)
 578{
 579        irq_timer_state[irq] = state;
 580}
 581
 582#else
 583
 584static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
 585{
 586        struct irq_desc *desc;
 587
 588        desc = irq_to_desc(irq);
 589
 590        return desc->timer_rand_state;
 591}
 592
 593static void set_timer_rand_state(unsigned int irq,
 594                                 struct timer_rand_state *state)
 595{
 596        struct irq_desc *desc;
 597
 598        desc = irq_to_desc(irq);
 599
 600        desc->timer_rand_state = state;
 601}
 602#endif
 603
 604static struct timer_rand_state input_timer_state;
 605
 606/*
 607 * This function adds entropy to the entropy "pool" by using timing
 608 * delays.  It uses the timer_rand_state structure to make an estimate
 609 * of how many bits of entropy this call has added to the pool.
 610 *
 611 * The number "num" is also added to the pool - it should somehow describe
 612 * the type of event which just happened.  This is currently 0-255 for
 613 * keyboard scan codes, and 256 upwards for interrupts.
 614 *
 615 */
 616static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
 617{
 618        struct {
 619                cycles_t cycles;
 620                long jiffies;
 621                unsigned num;
 622        } sample;
 623        long delta, delta2, delta3;
 624
 625        preempt_disable();
 626        /* if over the trickle threshold, use only 1 in 4096 samples */
 627        if (input_pool.entropy_count > trickle_thresh &&
 628            (__get_cpu_var(trickle_count)++ & 0xfff))
 629                goto out;
 630
 631        sample.jiffies = jiffies;
 632        sample.cycles = get_cycles();
 633        sample.num = num;
 634        mix_pool_bytes(&input_pool, &sample, sizeof(sample));
 635
 636        /*
 637         * Calculate number of bits of randomness we probably added.
 638         * We take into account the first, second and third-order deltas
 639         * in order to make our estimate.
 640         */
 641
 642        if (!state->dont_count_entropy) {
 643                delta = sample.jiffies - state->last_time;
 644                state->last_time = sample.jiffies;
 645
 646                delta2 = delta - state->last_delta;
 647                state->last_delta = delta;
 648
 649                delta3 = delta2 - state->last_delta2;
 650                state->last_delta2 = delta2;
 651
 652                if (delta < 0)
 653                        delta = -delta;
 654                if (delta2 < 0)
 655                        delta2 = -delta2;
 656                if (delta3 < 0)
 657                        delta3 = -delta3;
 658                if (delta > delta2)
 659                        delta = delta2;
 660                if (delta > delta3)
 661                        delta = delta3;
 662
 663                /*
 664                 * delta is now minimum absolute delta.
 665                 * Round down by 1 bit on general principles,
 666                 * and limit entropy entimate to 12 bits.
 667                 */
 668                credit_entropy_bits(&input_pool,
 669                                    min_t(int, fls(delta>>1), 11));
 670        }
 671out:
 672        preempt_enable();
 673}
 674
 675void add_input_randomness(unsigned int type, unsigned int code,
 676                                 unsigned int value)
 677{
 678        static unsigned char last_value;
 679
 680        /* ignore autorepeat and the like */
 681        if (value == last_value)
 682                return;
 683
 684        DEBUG_ENT("input event\n");
 685        last_value = value;
 686        add_timer_randomness(&input_timer_state,
 687                             (type << 4) ^ code ^ (code >> 4) ^ value);
 688}
 689EXPORT_SYMBOL_GPL(add_input_randomness);
 690
 691void add_interrupt_randomness(int irq)
 692{
 693        struct timer_rand_state *state;
 694
 695        state = get_timer_rand_state(irq);
 696
 697        if (state == NULL)
 698                return;
 699
 700        DEBUG_ENT("irq event %d\n", irq);
 701        add_timer_randomness(state, 0x100 + irq);
 702}
 703
 704#ifdef CONFIG_BLOCK
 705void add_disk_randomness(struct gendisk *disk)
 706{
 707        if (!disk || !disk->random)
 708                return;
 709        /* first major is 1, so we get >= 0x200 here */
 710        DEBUG_ENT("disk event %d:%d\n",
 711                  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
 712
 713        add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
 714}
 715#endif
 716
 717#define EXTRACT_SIZE 10
 718
 719/*********************************************************************
 720 *
 721 * Entropy extraction routines
 722 *
 723 *********************************************************************/
 724
 725static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 726                               size_t nbytes, int min, int rsvd);
 727
 728/*
 729 * This utility inline function is responsible for transfering entropy
 730 * from the primary pool to the secondary extraction pool. We make
 731 * sure we pull enough for a 'catastrophic reseed'.
 732 */
 733static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 734{
 735        __u32 tmp[OUTPUT_POOL_WORDS];
 736
 737        if (r->pull && r->entropy_count < nbytes * 8 &&
 738            r->entropy_count < r->poolinfo->POOLBITS) {
 739                /* If we're limited, always leave two wakeup worth's BITS */
 740                int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
 741                int bytes = nbytes;
 742
 743                /* pull at least as many as BYTES as wakeup BITS */
 744                bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
 745                /* but never more than the buffer size */
 746                bytes = min_t(int, bytes, sizeof(tmp));
 747
 748                DEBUG_ENT("going to reseed %s with %d bits "
 749                          "(%d of %d requested)\n",
 750                          r->name, bytes * 8, nbytes * 8, r->entropy_count);
 751
 752                bytes = extract_entropy(r->pull, tmp, bytes,
 753                                        random_read_wakeup_thresh / 8, rsvd);
 754                mix_pool_bytes(r, tmp, bytes);
 755                credit_entropy_bits(r, bytes*8);
 756        }
 757}
 758
 759/*
 760 * These functions extracts randomness from the "entropy pool", and
 761 * returns it in a buffer.
 762 *
 763 * The min parameter specifies the minimum amount we can pull before
 764 * failing to avoid races that defeat catastrophic reseeding while the
 765 * reserved parameter indicates how much entropy we must leave in the
 766 * pool after each pull to avoid starving other readers.
 767 *
 768 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
 769 */
 770
 771static size_t account(struct entropy_store *r, size_t nbytes, int min,
 772                      int reserved)
 773{
 774        unsigned long flags;
 775
 776        /* Hold lock while accounting */
 777        spin_lock_irqsave(&r->lock, flags);
 778
 779        BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
 780        DEBUG_ENT("trying to extract %d bits from %s\n",
 781                  nbytes * 8, r->name);
 782
 783        /* Can we pull enough? */
 784        if (r->entropy_count / 8 < min + reserved) {
 785                nbytes = 0;
 786        } else {
 787                /* If limited, never pull more than available */
 788                if (r->limit && nbytes + reserved >= r->entropy_count / 8)
 789                        nbytes = r->entropy_count/8 - reserved;
 790
 791                if (r->entropy_count / 8 >= nbytes + reserved)
 792                        r->entropy_count -= nbytes*8;
 793                else
 794                        r->entropy_count = reserved;
 795
 796                if (r->entropy_count < random_write_wakeup_thresh) {
 797                        wake_up_interruptible(&random_write_wait);
 798                        kill_fasync(&fasync, SIGIO, POLL_OUT);
 799                }
 800        }
 801
 802        DEBUG_ENT("debiting %d entropy credits from %s%s\n",
 803                  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
 804
 805        spin_unlock_irqrestore(&r->lock, flags);
 806
 807        return nbytes;
 808}
 809
 810static void extract_buf(struct entropy_store *r, __u8 *out)
 811{
 812        int i;
 813        __u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
 814        __u8 extract[64];
 815
 816        /* Generate a hash across the pool, 16 words (512 bits) at a time */
 817        sha_init(hash);
 818        for (i = 0; i < r->poolinfo->poolwords; i += 16)
 819                sha_transform(hash, (__u8 *)(r->pool + i), workspace);
 820
 821        /*
 822         * We mix the hash back into the pool to prevent backtracking
 823         * attacks (where the attacker knows the state of the pool
 824         * plus the current outputs, and attempts to find previous
 825         * ouputs), unless the hash function can be inverted. By
 826         * mixing at least a SHA1 worth of hash data back, we make
 827         * brute-forcing the feedback as hard as brute-forcing the
 828         * hash.
 829         */
 830        mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
 831
 832        /*
 833         * To avoid duplicates, we atomically extract a portion of the
 834         * pool while mixing, and hash one final time.
 835         */
 836        sha_transform(hash, extract, workspace);
 837        memset(extract, 0, sizeof(extract));
 838        memset(workspace, 0, sizeof(workspace));
 839
 840        /*
 841         * In case the hash function has some recognizable output
 842         * pattern, we fold it in half. Thus, we always feed back
 843         * twice as much data as we output.
 844         */
 845        hash[0] ^= hash[3];
 846        hash[1] ^= hash[4];
 847        hash[2] ^= rol32(hash[2], 16);
 848        memcpy(out, hash, EXTRACT_SIZE);
 849        memset(hash, 0, sizeof(hash));
 850}
 851
 852static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 853                               size_t nbytes, int min, int reserved)
 854{
 855        ssize_t ret = 0, i;
 856        __u8 tmp[EXTRACT_SIZE];
 857        unsigned long flags;
 858
 859        xfer_secondary_pool(r, nbytes);
 860        nbytes = account(r, nbytes, min, reserved);
 861
 862        while (nbytes) {
 863                extract_buf(r, tmp);
 864
 865                if (r->last_data) {
 866                        spin_lock_irqsave(&r->lock, flags);
 867                        if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
 868                                panic("Hardware RNG duplicated output!\n");
 869                        memcpy(r->last_data, tmp, EXTRACT_SIZE);
 870                        spin_unlock_irqrestore(&r->lock, flags);
 871                }
 872                i = min_t(int, nbytes, EXTRACT_SIZE);
 873                memcpy(buf, tmp, i);
 874                nbytes -= i;
 875                buf += i;
 876                ret += i;
 877        }
 878
 879        /* Wipe data just returned from memory */
 880        memset(tmp, 0, sizeof(tmp));
 881
 882        return ret;
 883}
 884
 885static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
 886                                    size_t nbytes)
 887{
 888        ssize_t ret = 0, i;
 889        __u8 tmp[EXTRACT_SIZE];
 890
 891        xfer_secondary_pool(r, nbytes);
 892        nbytes = account(r, nbytes, 0, 0);
 893
 894        while (nbytes) {
 895                if (need_resched()) {
 896                        if (signal_pending(current)) {
 897                                if (ret == 0)
 898                                        ret = -ERESTARTSYS;
 899                                break;
 900                        }
 901                        schedule();
 902                }
 903
 904                extract_buf(r, tmp);
 905                i = min_t(int, nbytes, EXTRACT_SIZE);
 906                if (copy_to_user(buf, tmp, i)) {
 907                        ret = -EFAULT;
 908                        break;
 909                }
 910
 911                nbytes -= i;
 912                buf += i;
 913                ret += i;
 914        }
 915
 916        /* Wipe data just returned from memory */
 917        memset(tmp, 0, sizeof(tmp));
 918
 919        return ret;
 920}
 921
 922/*
 923 * This function is the exported kernel interface.  It returns some
 924 * number of good random numbers, suitable for seeding TCP sequence
 925 * numbers, etc.
 926 */
 927void get_random_bytes(void *buf, int nbytes)
 928{
 929        extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
 930}
 931EXPORT_SYMBOL(get_random_bytes);
 932
 933/*
 934 * init_std_data - initialize pool with system data
 935 *
 936 * @r: pool to initialize
 937 *
 938 * This function clears the pool's entropy count and mixes some system
 939 * data into the pool to prepare it for use. The pool is not cleared
 940 * as that can only decrease the entropy in the pool.
 941 */
 942static void init_std_data(struct entropy_store *r)
 943{
 944        ktime_t now;
 945        unsigned long flags;
 946
 947        spin_lock_irqsave(&r->lock, flags);
 948        r->entropy_count = 0;
 949        spin_unlock_irqrestore(&r->lock, flags);
 950
 951        now = ktime_get_real();
 952        mix_pool_bytes(r, &now, sizeof(now));
 953        mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
 954        /* Enable continuous test in fips mode */
 955        if (fips_enabled)
 956                r->last_data = kmalloc(EXTRACT_SIZE, GFP_KERNEL);
 957}
 958
 959static int rand_initialize(void)
 960{
 961        init_std_data(&input_pool);
 962        init_std_data(&blocking_pool);
 963        init_std_data(&nonblocking_pool);
 964        return 0;
 965}
 966module_init(rand_initialize);
 967
 968void rand_initialize_irq(int irq)
 969{
 970        struct timer_rand_state *state;
 971
 972        state = get_timer_rand_state(irq);
 973
 974        if (state)
 975                return;
 976
 977        /*
 978         * If kzalloc returns null, we just won't use that entropy
 979         * source.
 980         */
 981        state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
 982        if (state)
 983                set_timer_rand_state(irq, state);
 984}
 985
 986#ifdef CONFIG_BLOCK
 987void rand_initialize_disk(struct gendisk *disk)
 988{
 989        struct timer_rand_state *state;
 990
 991        /*
 992         * If kzalloc returns null, we just won't use that entropy
 993         * source.
 994         */
 995        state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
 996        if (state)
 997                disk->random = state;
 998}
 999#endif
1000
1001static ssize_t
1002random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1003{
1004        ssize_t n, retval = 0, count = 0;
1005
1006        if (nbytes == 0)
1007                return 0;
1008
1009        while (nbytes > 0) {
1010                n = nbytes;
1011                if (n > SEC_XFER_SIZE)
1012                        n = SEC_XFER_SIZE;
1013
1014                DEBUG_ENT("reading %d bits\n", n*8);
1015
1016                n = extract_entropy_user(&blocking_pool, buf, n);
1017
1018                DEBUG_ENT("read got %d bits (%d still needed)\n",
1019                          n*8, (nbytes-n)*8);
1020
1021                if (n == 0) {
1022                        if (file->f_flags & O_NONBLOCK) {
1023                                retval = -EAGAIN;
1024                                break;
1025                        }
1026
1027                        DEBUG_ENT("sleeping?\n");
1028
1029                        wait_event_interruptible(random_read_wait,
1030                                input_pool.entropy_count >=
1031                                                 random_read_wakeup_thresh);
1032
1033                        DEBUG_ENT("awake\n");
1034
1035                        if (signal_pending(current)) {
1036                                retval = -ERESTARTSYS;
1037                                break;
1038                        }
1039
1040                        continue;
1041                }
1042
1043                if (n < 0) {
1044                        retval = n;
1045                        break;
1046                }
1047                count += n;
1048                buf += n;
1049                nbytes -= n;
1050                break;          /* This break makes the device work */
1051                                /* like a named pipe */
1052        }
1053
1054        /*
1055         * If we gave the user some bytes, update the access time.
1056         */
1057        if (count)
1058                file_accessed(file);
1059
1060        return (count ? count : retval);
1061}
1062
1063static ssize_t
1064urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1065{
1066        return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1067}
1068
1069static unsigned int
1070random_poll(struct file *file, poll_table * wait)
1071{
1072        unsigned int mask;
1073
1074        poll_wait(file, &random_read_wait, wait);
1075        poll_wait(file, &random_write_wait, wait);
1076        mask = 0;
1077        if (input_pool.entropy_count >= random_read_wakeup_thresh)
1078                mask |= POLLIN | POLLRDNORM;
1079        if (input_pool.entropy_count < random_write_wakeup_thresh)
1080                mask |= POLLOUT | POLLWRNORM;
1081        return mask;
1082}
1083
1084static int
1085write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1086{
1087        size_t bytes;
1088        __u32 buf[16];
1089        const char __user *p = buffer;
1090
1091        while (count > 0) {
1092                bytes = min(count, sizeof(buf));
1093                if (copy_from_user(&buf, p, bytes))
1094                        return -EFAULT;
1095
1096                count -= bytes;
1097                p += bytes;
1098
1099                mix_pool_bytes(r, buf, bytes);
1100                cond_resched();
1101        }
1102
1103        return 0;
1104}
1105
1106static ssize_t random_write(struct file *file, const char __user *buffer,
1107                            size_t count, loff_t *ppos)
1108{
1109        size_t ret;
1110        struct inode *inode = file->f_path.dentry->d_inode;
1111
1112        ret = write_pool(&blocking_pool, buffer, count);
1113        if (ret)
1114                return ret;
1115        ret = write_pool(&nonblocking_pool, buffer, count);
1116        if (ret)
1117                return ret;
1118
1119        inode->i_mtime = current_fs_time(inode->i_sb);
1120        mark_inode_dirty(inode);
1121        return (ssize_t)count;
1122}
1123
1124static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1125{
1126        int size, ent_count;
1127        int __user *p = (int __user *)arg;
1128        int retval;
1129
1130        switch (cmd) {
1131        case RNDGETENTCNT:
1132                /* inherently racy, no point locking */
1133                if (put_user(input_pool.entropy_count, p))
1134                        return -EFAULT;
1135                return 0;
1136        case RNDADDTOENTCNT:
1137                if (!capable(CAP_SYS_ADMIN))
1138                        return -EPERM;
1139                if (get_user(ent_count, p))
1140                        return -EFAULT;
1141                credit_entropy_bits(&input_pool, ent_count);
1142                return 0;
1143        case RNDADDENTROPY:
1144                if (!capable(CAP_SYS_ADMIN))
1145                        return -EPERM;
1146                if (get_user(ent_count, p++))
1147                        return -EFAULT;
1148                if (ent_count < 0)
1149                        return -EINVAL;
1150                if (get_user(size, p++))
1151                        return -EFAULT;
1152                retval = write_pool(&input_pool, (const char __user *)p,
1153                                    size);
1154                if (retval < 0)
1155                        return retval;
1156                credit_entropy_bits(&input_pool, ent_count);
1157                return 0;
1158        case RNDZAPENTCNT:
1159        case RNDCLEARPOOL:
1160                /* Clear the entropy pool counters. */
1161                if (!capable(CAP_SYS_ADMIN))
1162                        return -EPERM;
1163                rand_initialize();
1164                return 0;
1165        default:
1166                return -EINVAL;
1167        }
1168}
1169
1170static int random_fasync(int fd, struct file *filp, int on)
1171{
1172        return fasync_helper(fd, filp, on, &fasync);
1173}
1174
1175const struct file_operations random_fops = {
1176        .read  = random_read,
1177        .write = random_write,
1178        .poll  = random_poll,
1179        .unlocked_ioctl = random_ioctl,
1180        .fasync = random_fasync,
1181};
1182
1183const struct file_operations urandom_fops = {
1184        .read  = urandom_read,
1185        .write = random_write,
1186        .unlocked_ioctl = random_ioctl,
1187        .fasync = random_fasync,
1188};
1189
1190/***************************************************************
1191 * Random UUID interface
1192 *
1193 * Used here for a Boot ID, but can be useful for other kernel
1194 * drivers.
1195 ***************************************************************/
1196
1197/*
1198 * Generate random UUID
1199 */
1200void generate_random_uuid(unsigned char uuid_out[16])
1201{
1202        get_random_bytes(uuid_out, 16);
1203        /* Set UUID version to 4 --- truely random generation */
1204        uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1205        /* Set the UUID variant to DCE */
1206        uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1207}
1208EXPORT_SYMBOL(generate_random_uuid);
1209
1210/********************************************************************
1211 *
1212 * Sysctl interface
1213 *
1214 ********************************************************************/
1215
1216#ifdef CONFIG_SYSCTL
1217
1218#include <linux/sysctl.h>
1219
1220static int min_read_thresh = 8, min_write_thresh;
1221static int max_read_thresh = INPUT_POOL_WORDS * 32;
1222static int max_write_thresh = INPUT_POOL_WORDS * 32;
1223static char sysctl_bootid[16];
1224
1225/*
1226 * These functions is used to return both the bootid UUID, and random
1227 * UUID.  The difference is in whether table->data is NULL; if it is,
1228 * then a new UUID is generated and returned to the user.
1229 *
1230 * If the user accesses this via the proc interface, it will be returned
1231 * as an ASCII string in the standard UUID format.  If accesses via the
1232 * sysctl system call, it is returned as 16 bytes of binary data.
1233 */
1234static int proc_do_uuid(ctl_table *table, int write,
1235                        void __user *buffer, size_t *lenp, loff_t *ppos)
1236{
1237        ctl_table fake_table;
1238        unsigned char buf[64], tmp_uuid[16], *uuid;
1239
1240        uuid = table->data;
1241        if (!uuid) {
1242                uuid = tmp_uuid;
1243                uuid[8] = 0;
1244        }
1245        if (uuid[8] == 0)
1246                generate_random_uuid(uuid);
1247
1248        sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1249                "%02x%02x%02x%02x%02x%02x",
1250                uuid[0],  uuid[1],  uuid[2],  uuid[3],
1251                uuid[4],  uuid[5],  uuid[6],  uuid[7],
1252                uuid[8],  uuid[9],  uuid[10], uuid[11],
1253                uuid[12], uuid[13], uuid[14], uuid[15]);
1254        fake_table.data = buf;
1255        fake_table.maxlen = sizeof(buf);
1256
1257        return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1258}
1259
1260static int uuid_strategy(ctl_table *table,
1261                         void __user *oldval, size_t __user *oldlenp,
1262                         void __user *newval, size_t newlen)
1263{
1264        unsigned char tmp_uuid[16], *uuid;
1265        unsigned int len;
1266
1267        if (!oldval || !oldlenp)
1268                return 1;
1269
1270        uuid = table->data;
1271        if (!uuid) {
1272                uuid = tmp_uuid;
1273                uuid[8] = 0;
1274        }
1275        if (uuid[8] == 0)
1276                generate_random_uuid(uuid);
1277
1278        if (get_user(len, oldlenp))
1279                return -EFAULT;
1280        if (len) {
1281                if (len > 16)
1282                        len = 16;
1283                if (copy_to_user(oldval, uuid, len) ||
1284                    put_user(len, oldlenp))
1285                        return -EFAULT;
1286        }
1287        return 1;
1288}
1289
1290static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1291ctl_table random_table[] = {
1292        {
1293                .ctl_name       = RANDOM_POOLSIZE,
1294                .procname       = "poolsize",
1295                .data           = &sysctl_poolsize,
1296                .maxlen         = sizeof(int),
1297                .mode           = 0444,
1298                .proc_handler   = &proc_dointvec,
1299        },
1300        {
1301                .ctl_name       = RANDOM_ENTROPY_COUNT,
1302                .procname       = "entropy_avail",
1303                .maxlen         = sizeof(int),
1304                .mode           = 0444,
1305                .proc_handler   = &proc_dointvec,
1306                .data           = &input_pool.entropy_count,
1307        },
1308        {
1309                .ctl_name       = RANDOM_READ_THRESH,
1310                .procname       = "read_wakeup_threshold",
1311                .data           = &random_read_wakeup_thresh,
1312                .maxlen         = sizeof(int),
1313                .mode           = 0644,
1314                .proc_handler   = &proc_dointvec_minmax,
1315                .strategy       = &sysctl_intvec,
1316                .extra1         = &min_read_thresh,
1317                .extra2         = &max_read_thresh,
1318        },
1319        {
1320                .ctl_name       = RANDOM_WRITE_THRESH,
1321                .procname       = "write_wakeup_threshold",
1322                .data           = &random_write_wakeup_thresh,
1323                .maxlen         = sizeof(int),
1324                .mode           = 0644,
1325                .proc_handler   = &proc_dointvec_minmax,
1326                .strategy       = &sysctl_intvec,
1327                .extra1         = &min_write_thresh,
1328                .extra2         = &max_write_thresh,
1329        },
1330        {
1331                .ctl_name       = RANDOM_BOOT_ID,
1332                .procname       = "boot_id",
1333                .data           = &sysctl_bootid,
1334                .maxlen         = 16,
1335                .mode           = 0444,
1336                .proc_handler   = &proc_do_uuid,
1337                .strategy       = &uuid_strategy,
1338        },
1339        {
1340                .ctl_name       = RANDOM_UUID,
1341                .procname       = "uuid",
1342                .maxlen         = 16,
1343                .mode           = 0444,
1344                .proc_handler   = &proc_do_uuid,
1345                .strategy       = &uuid_strategy,
1346        },
1347        { .ctl_name = 0 }
1348};
1349#endif  /* CONFIG_SYSCTL */
1350
1351/********************************************************************
1352 *
1353 * Random funtions for networking
1354 *
1355 ********************************************************************/
1356
1357/*
1358 * TCP initial sequence number picking.  This uses the random number
1359 * generator to pick an initial secret value.  This value is hashed
1360 * along with the TCP endpoint information to provide a unique
1361 * starting point for each pair of TCP endpoints.  This defeats
1362 * attacks which rely on guessing the initial TCP sequence number.
1363 * This algorithm was suggested by Steve Bellovin.
1364 *
1365 * Using a very strong hash was taking an appreciable amount of the total
1366 * TCP connection establishment time, so this is a weaker hash,
1367 * compensated for by changing the secret periodically.
1368 */
1369
1370/* F, G and H are basic MD4 functions: selection, majority, parity */
1371#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1372#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1373#define H(x, y, z) ((x) ^ (y) ^ (z))
1374
1375/*
1376 * The generic round function.  The application is so specific that
1377 * we don't bother protecting all the arguments with parens, as is generally
1378 * good macro practice, in favor of extra legibility.
1379 * Rotation is separate from addition to prevent recomputation
1380 */
1381#define ROUND(f, a, b, c, d, x, s)      \
1382        (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1383#define K1 0
1384#define K2 013240474631UL
1385#define K3 015666365641UL
1386
1387#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1388
1389static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1390{
1391        __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1392
1393        /* Round 1 */
1394        ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1395        ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1396        ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1397        ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1398        ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1399        ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1400        ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1401        ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1402        ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1403        ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1404        ROUND(F, c, d, a, b, in[10] + K1, 11);
1405        ROUND(F, b, c, d, a, in[11] + K1, 19);
1406
1407        /* Round 2 */
1408        ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1409        ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1410        ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1411        ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1412        ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1413        ROUND(G, d, a, b, c, in[11] + K2,  5);
1414        ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1415        ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1416        ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1417        ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1418        ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1419        ROUND(G, b, c, d, a, in[10] + K2, 13);
1420
1421        /* Round 3 */
1422        ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1423        ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1424        ROUND(H, c, d, a, b, in[11] + K3, 11);
1425        ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1426        ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1427        ROUND(H, d, a, b, c, in[10] + K3,  9);
1428        ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1429        ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1430        ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1431        ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1432        ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1433        ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1434
1435        return buf[1] + b; /* "most hashed" word */
1436        /* Alternative: return sum of all words? */
1437}
1438#endif
1439
1440#undef ROUND
1441#undef F
1442#undef G
1443#undef H
1444#undef K1
1445#undef K2
1446#undef K3
1447
1448/* This should not be decreased so low that ISNs wrap too fast. */
1449#define REKEY_INTERVAL (300 * HZ)
1450/*
1451 * Bit layout of the tcp sequence numbers (before adding current time):
1452 * bit 24-31: increased after every key exchange
1453 * bit 0-23: hash(source,dest)
1454 *
1455 * The implementation is similar to the algorithm described
1456 * in the Appendix of RFC 1185, except that
1457 * - it uses a 1 MHz clock instead of a 250 kHz clock
1458 * - it performs a rekey every 5 minutes, which is equivalent
1459 *      to a (source,dest) tulple dependent forward jump of the
1460 *      clock by 0..2^(HASH_BITS+1)
1461 *
1462 * Thus the average ISN wraparound time is 68 minutes instead of
1463 * 4.55 hours.
1464 *
1465 * SMP cleanup and lock avoidance with poor man's RCU.
1466 *                      Manfred Spraul <manfred@colorfullife.com>
1467 *
1468 */
1469#define COUNT_BITS 8
1470#define COUNT_MASK ((1 << COUNT_BITS) - 1)
1471#define HASH_BITS 24
1472#define HASH_MASK ((1 << HASH_BITS) - 1)
1473
1474static struct keydata {
1475        __u32 count; /* already shifted to the final position */
1476        __u32 secret[12];
1477} ____cacheline_aligned ip_keydata[2];
1478
1479static unsigned int ip_cnt;
1480
1481static void rekey_seq_generator(struct work_struct *work);
1482
1483static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1484
1485/*
1486 * Lock avoidance:
1487 * The ISN generation runs lockless - it's just a hash over random data.
1488 * State changes happen every 5 minutes when the random key is replaced.
1489 * Synchronization is performed by having two copies of the hash function
1490 * state and rekey_seq_generator always updates the inactive copy.
1491 * The copy is then activated by updating ip_cnt.
1492 * The implementation breaks down if someone blocks the thread
1493 * that processes SYN requests for more than 5 minutes. Should never
1494 * happen, and even if that happens only a not perfectly compliant
1495 * ISN is generated, nothing fatal.
1496 */
1497static void rekey_seq_generator(struct work_struct *work)
1498{
1499        struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1500
1501        get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1502        keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1503        smp_wmb();
1504        ip_cnt++;
1505        schedule_delayed_work(&rekey_work,
1506                              round_jiffies_relative(REKEY_INTERVAL));
1507}
1508
1509static inline struct keydata *get_keyptr(void)
1510{
1511        struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1512
1513        smp_rmb();
1514
1515        return keyptr;
1516}
1517
1518static __init int seqgen_init(void)
1519{
1520        rekey_seq_generator(NULL);
1521        return 0;
1522}
1523late_initcall(seqgen_init);
1524
1525#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1526__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1527                                   __be16 sport, __be16 dport)
1528{
1529        __u32 seq;
1530        __u32 hash[12];
1531        struct keydata *keyptr = get_keyptr();
1532
1533        /* The procedure is the same as for IPv4, but addresses are longer.
1534         * Thus we must use twothirdsMD4Transform.
1535         */
1536
1537        memcpy(hash, saddr, 16);
1538        hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1539        memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1540
1541        seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1542        seq += keyptr->count;
1543
1544        seq += ktime_to_ns(ktime_get_real());
1545
1546        return seq;
1547}
1548EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1549#endif
1550
1551/*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1552 *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1553 */
1554__u32 secure_ip_id(__be32 daddr)
1555{
1556        struct keydata *keyptr;
1557        __u32 hash[4];
1558
1559        keyptr = get_keyptr();
1560
1561        /*
1562         *  Pick a unique starting offset for each IP destination.
1563         *  The dest ip address is placed in the starting vector,
1564         *  which is then hashed with random data.
1565         */
1566        hash[0] = (__force __u32)daddr;
1567        hash[1] = keyptr->secret[9];
1568        hash[2] = keyptr->secret[10];
1569        hash[3] = keyptr->secret[11];
1570
1571        return half_md4_transform(hash, keyptr->secret);
1572}
1573
1574#ifdef CONFIG_INET
1575
1576__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1577                                 __be16 sport, __be16 dport)
1578{
1579        __u32 seq;
1580        __u32 hash[4];
1581        struct keydata *keyptr = get_keyptr();
1582
1583        /*
1584         *  Pick a unique starting offset for each TCP connection endpoints
1585         *  (saddr, daddr, sport, dport).
1586         *  Note that the words are placed into the starting vector, which is
1587         *  then mixed with a partial MD4 over random data.
1588         */
1589        hash[0] = (__force u32)saddr;
1590        hash[1] = (__force u32)daddr;
1591        hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1592        hash[3] = keyptr->secret[11];
1593
1594        seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1595        seq += keyptr->count;
1596        /*
1597         *      As close as possible to RFC 793, which
1598         *      suggests using a 250 kHz clock.
1599         *      Further reading shows this assumes 2 Mb/s networks.
1600         *      For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1601         *      For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1602         *      we also need to limit the resolution so that the u32 seq
1603         *      overlaps less than one time per MSL (2 minutes).
1604         *      Choosing a clock of 64 ns period is OK. (period of 274 s)
1605         */
1606        seq += ktime_to_ns(ktime_get_real()) >> 6;
1607
1608        return seq;
1609}
1610
1611/* Generate secure starting point for ephemeral IPV4 transport port search */
1612u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1613{
1614        struct keydata *keyptr = get_keyptr();
1615        u32 hash[4];
1616
1617        /*
1618         *  Pick a unique starting offset for each ephemeral port search
1619         *  (saddr, daddr, dport) and 48bits of random data.
1620         */
1621        hash[0] = (__force u32)saddr;
1622        hash[1] = (__force u32)daddr;
1623        hash[2] = (__force u32)dport ^ keyptr->secret[10];
1624        hash[3] = keyptr->secret[11];
1625
1626        return half_md4_transform(hash, keyptr->secret);
1627}
1628EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
1629
1630#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1631u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1632                               __be16 dport)
1633{
1634        struct keydata *keyptr = get_keyptr();
1635        u32 hash[12];
1636
1637        memcpy(hash, saddr, 16);
1638        hash[4] = (__force u32)dport;
1639        memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1640
1641        return twothirdsMD4Transform((const __u32 *)daddr, hash);
1642}
1643#endif
1644
1645#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1646/* Similar to secure_tcp_sequence_number but generate a 48 bit value
1647 * bit's 32-47 increase every key exchange
1648 *       0-31  hash(source, dest)
1649 */
1650u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1651                                __be16 sport, __be16 dport)
1652{
1653        u64 seq;
1654        __u32 hash[4];
1655        struct keydata *keyptr = get_keyptr();
1656
1657        hash[0] = (__force u32)saddr;
1658        hash[1] = (__force u32)daddr;
1659        hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1660        hash[3] = keyptr->secret[11];
1661
1662        seq = half_md4_transform(hash, keyptr->secret);
1663        seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1664
1665        seq += ktime_to_ns(ktime_get_real());
1666        seq &= (1ull << 48) - 1;
1667
1668        return seq;
1669}
1670EXPORT_SYMBOL(secure_dccp_sequence_number);
1671#endif
1672
1673#endif /* CONFIG_INET */
1674
1675
1676/*
1677 * Get a random word for internal kernel use only. Similar to urandom but
1678 * with the goal of minimal entropy pool depletion. As a result, the random
1679 * value is not cryptographically secure but for several uses the cost of
1680 * depleting entropy is too high
1681 */
1682DEFINE_PER_CPU(__u32 [4], get_random_int_hash);
1683unsigned int get_random_int(void)
1684{
1685        struct keydata *keyptr;
1686        __u32 *hash = get_cpu_var(get_random_int_hash);
1687        int ret;
1688
1689        keyptr = get_keyptr();
1690        hash[0] += current->pid + jiffies + get_cycles();
1691
1692        ret = half_md4_transform(hash, keyptr->secret);
1693        put_cpu_var(get_random_int_hash);
1694
1695        return ret;
1696}
1697
1698/*
1699 * randomize_range() returns a start address such that
1700 *
1701 *    [...... <range> .....]
1702 *  start                  end
1703 *
1704 * a <range> with size "len" starting at the return value is inside in the
1705 * area defined by [start, end], but is otherwise randomized.
1706 */
1707unsigned long
1708randomize_range(unsigned long start, unsigned long end, unsigned long len)
1709{
1710        unsigned long range = end - len - start;
1711
1712        if (end <= start + len)
1713                return 0;
1714        return PAGE_ALIGN(get_random_int() % range + start);
1715}
1716