linux/drivers/char/rio/rioboot.c
<<
>>
Prefs
   1/*
   2** -----------------------------------------------------------------------------
   3**
   4**  Perle Specialix driver for Linux
   5**  Ported from existing RIO Driver for SCO sources.
   6 *
   7 *  (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
   8 *
   9 *      This program is free software; you can redistribute it and/or modify
  10 *      it under the terms of the GNU General Public License as published by
  11 *      the Free Software Foundation; either version 2 of the License, or
  12 *      (at your option) any later version.
  13 *
  14 *      This program is distributed in the hope that it will be useful,
  15 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 *      GNU General Public License for more details.
  18 *
  19 *      You should have received a copy of the GNU General Public License
  20 *      along with this program; if not, write to the Free Software
  21 *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22**
  23**      Module          : rioboot.c
  24**      SID             : 1.3
  25**      Last Modified   : 11/6/98 10:33:36
  26**      Retrieved       : 11/6/98 10:33:48
  27**
  28**  ident @(#)rioboot.c 1.3
  29**
  30** -----------------------------------------------------------------------------
  31*/
  32
  33#include <linux/module.h>
  34#include <linux/slab.h>
  35#include <linux/termios.h>
  36#include <linux/serial.h>
  37#include <linux/vmalloc.h>
  38#include <linux/generic_serial.h>
  39#include <linux/errno.h>
  40#include <linux/interrupt.h>
  41#include <linux/delay.h>
  42#include <asm/io.h>
  43#include <asm/system.h>
  44#include <asm/string.h>
  45#include <asm/uaccess.h>
  46
  47
  48#include "linux_compat.h"
  49#include "rio_linux.h"
  50#include "pkt.h"
  51#include "daemon.h"
  52#include "rio.h"
  53#include "riospace.h"
  54#include "cmdpkt.h"
  55#include "map.h"
  56#include "rup.h"
  57#include "port.h"
  58#include "riodrvr.h"
  59#include "rioinfo.h"
  60#include "func.h"
  61#include "errors.h"
  62#include "pci.h"
  63
  64#include "parmmap.h"
  65#include "unixrup.h"
  66#include "board.h"
  67#include "host.h"
  68#include "phb.h"
  69#include "link.h"
  70#include "cmdblk.h"
  71#include "route.h"
  72
  73static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP);
  74
  75static const unsigned char RIOAtVec2Ctrl[] = {
  76        /* 0 */ INTERRUPT_DISABLE,
  77        /* 1 */ INTERRUPT_DISABLE,
  78        /* 2 */ INTERRUPT_DISABLE,
  79        /* 3 */ INTERRUPT_DISABLE,
  80        /* 4 */ INTERRUPT_DISABLE,
  81        /* 5 */ INTERRUPT_DISABLE,
  82        /* 6 */ INTERRUPT_DISABLE,
  83        /* 7 */ INTERRUPT_DISABLE,
  84        /* 8 */ INTERRUPT_DISABLE,
  85        /* 9 */ IRQ_9 | INTERRUPT_ENABLE,
  86        /* 10 */ INTERRUPT_DISABLE,
  87        /* 11 */ IRQ_11 | INTERRUPT_ENABLE,
  88        /* 12 */ IRQ_12 | INTERRUPT_ENABLE,
  89        /* 13 */ INTERRUPT_DISABLE,
  90        /* 14 */ INTERRUPT_DISABLE,
  91        /* 15 */ IRQ_15 | INTERRUPT_ENABLE
  92};
  93
  94/**
  95 *      RIOBootCodeRTA          -       Load RTA boot code
  96 *      @p: RIO to load
  97 *      @rbp: Download descriptor
  98 *
  99 *      Called when the user process initiates booting of the card firmware.
 100 *      Lads the firmware
 101 */
 102
 103int RIOBootCodeRTA(struct rio_info *p, struct DownLoad * rbp)
 104{
 105        int offset;
 106
 107        func_enter();
 108
 109        rio_dprintk(RIO_DEBUG_BOOT, "Data at user address %p\n", rbp->DataP);
 110
 111        /*
 112         ** Check that we have set asside enough memory for this
 113         */
 114        if (rbp->Count > SIXTY_FOUR_K) {
 115                rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
 116                p->RIOError.Error = HOST_FILE_TOO_LARGE;
 117                func_exit();
 118                return -ENOMEM;
 119        }
 120
 121        if (p->RIOBooting) {
 122                rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
 123                p->RIOError.Error = BOOT_IN_PROGRESS;
 124                func_exit();
 125                return -EBUSY;
 126        }
 127
 128        /*
 129         ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
 130         ** so calculate how far we have to move the data up the buffer
 131         ** to achieve this.
 132         */
 133        offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE;
 134
 135        /*
 136         ** Be clean, and clear the 'unused' portion of the boot buffer,
 137         ** because it will (eventually) be part of the Rta run time environment
 138         ** and so should be zeroed.
 139         */
 140        memset(p->RIOBootPackets, 0, offset);
 141
 142        /*
 143         ** Copy the data from user space into the array
 144         */
 145
 146        if (copy_from_user(((u8 *)p->RIOBootPackets) + offset, rbp->DataP, rbp->Count)) {
 147                rio_dprintk(RIO_DEBUG_BOOT, "Bad data copy from user space\n");
 148                p->RIOError.Error = COPYIN_FAILED;
 149                func_exit();
 150                return -EFAULT;
 151        }
 152
 153        /*
 154         ** Make sure that our copy of the size includes that offset we discussed
 155         ** earlier.
 156         */
 157        p->RIONumBootPkts = (rbp->Count + offset) / RTA_BOOT_DATA_SIZE;
 158        p->RIOBootCount = rbp->Count;
 159
 160        func_exit();
 161        return 0;
 162}
 163
 164/**
 165 *      rio_start_card_running          -       host card start
 166 *      @HostP: The RIO to kick off
 167 *
 168 *      Start a RIO processor unit running. Encapsulates the knowledge
 169 *      of the card type.
 170 */
 171
 172void rio_start_card_running(struct Host *HostP)
 173{
 174        switch (HostP->Type) {
 175        case RIO_AT:
 176                rio_dprintk(RIO_DEBUG_BOOT, "Start ISA card running\n");
 177                writeb(BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF], &HostP->Control);
 178                break;
 179        case RIO_PCI:
 180                /*
 181                 ** PCI is much the same as MCA. Everything is once again memory
 182                 ** mapped, so we are writing to memory registers instead of io
 183                 ** ports.
 184                 */
 185                rio_dprintk(RIO_DEBUG_BOOT, "Start PCI card running\n");
 186                writeb(PCITpBootFromRam | PCITpBusEnable | HostP->Mode, &HostP->Control);
 187                break;
 188        default:
 189                rio_dprintk(RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
 190                break;
 191        }
 192        return;
 193}
 194
 195/*
 196** Load in the host boot code - load it directly onto all halted hosts
 197** of the correct type.
 198**
 199** Put your rubber pants on before messing with this code - even the magic
 200** numbers have trouble understanding what they are doing here.
 201*/
 202
 203int RIOBootCodeHOST(struct rio_info *p, struct DownLoad *rbp)
 204{
 205        struct Host *HostP;
 206        u8 __iomem *Cad;
 207        PARM_MAP __iomem *ParmMapP;
 208        int RupN;
 209        int PortN;
 210        unsigned int host;
 211        u8 __iomem *StartP;
 212        u8 __iomem *DestP;
 213        int wait_count;
 214        u16 OldParmMap;
 215        u16 offset;             /* It is very important that this is a u16 */
 216        u8 *DownCode = NULL;
 217        unsigned long flags;
 218
 219        HostP = NULL;           /* Assure the compiler we've initialized it */
 220
 221
 222        /* Walk the hosts */
 223        for (host = 0; host < p->RIONumHosts; host++) {
 224                rio_dprintk(RIO_DEBUG_BOOT, "Attempt to boot host %d\n", host);
 225                HostP = &p->RIOHosts[host];
 226
 227                rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
 228
 229                /* Don't boot hosts already running */
 230                if ((HostP->Flags & RUN_STATE) != RC_WAITING) {
 231                        rio_dprintk(RIO_DEBUG_BOOT, "%s %d already running\n", "Host", host);
 232                        continue;
 233                }
 234
 235                /*
 236                 ** Grab a pointer to the card (ioremapped)
 237                 */
 238                Cad = HostP->Caddr;
 239
 240                /*
 241                 ** We are going to (try) and load in rbp->Count bytes.
 242                 ** The last byte will reside at p->RIOConf.HostLoadBase-1;
 243                 ** Therefore, we need to start copying at address
 244                 ** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
 245                 */
 246                StartP = &Cad[p->RIOConf.HostLoadBase - rbp->Count];
 247
 248                rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for host is %p\n", Cad);
 249                rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for download is %p\n", StartP);
 250                rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
 251                rio_dprintk(RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);
 252
 253                /* Make sure it fits */
 254                if (p->RIOConf.HostLoadBase < rbp->Count) {
 255                        rio_dprintk(RIO_DEBUG_BOOT, "Bin too large\n");
 256                        p->RIOError.Error = HOST_FILE_TOO_LARGE;
 257                        func_exit();
 258                        return -EFBIG;
 259                }
 260                /*
 261                 ** Ensure that the host really is stopped.
 262                 ** Disable it's external bus & twang its reset line.
 263                 */
 264                RIOHostReset(HostP->Type, HostP->CardP, HostP->Slot);
 265
 266                /*
 267                 ** Copy the data directly from user space to the SRAM.
 268                 ** This ain't going to be none too clever if the download
 269                 ** code is bigger than this segment.
 270                 */
 271                rio_dprintk(RIO_DEBUG_BOOT, "Copy in code\n");
 272
 273                /* Buffer to local memory as we want to use I/O space and
 274                   some cards only do 8 or 16 bit I/O */
 275
 276                DownCode = vmalloc(rbp->Count);
 277                if (!DownCode) {
 278                        p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
 279                        func_exit();
 280                        return -ENOMEM;
 281                }
 282                if (copy_from_user(DownCode, rbp->DataP, rbp->Count)) {
 283                        kfree(DownCode);
 284                        p->RIOError.Error = COPYIN_FAILED;
 285                        func_exit();
 286                        return -EFAULT;
 287                }
 288                HostP->Copy(DownCode, StartP, rbp->Count);
 289                vfree(DownCode);
 290
 291                rio_dprintk(RIO_DEBUG_BOOT, "Copy completed\n");
 292
 293                /*
 294                 **                     S T O P !
 295                 **
 296                 ** Upto this point the code has been fairly rational, and possibly
 297                 ** even straight forward. What follows is a pile of crud that will
 298                 ** magically turn into six bytes of transputer assembler. Normally
 299                 ** you would expect an array or something, but, being me, I have
 300                 ** chosen [been told] to use a technique whereby the startup code
 301                 ** will be correct if we change the loadbase for the code. Which
 302                 ** brings us onto another issue - the loadbase is the *end* of the
 303                 ** code, not the start.
 304                 **
 305                 ** If I were you I wouldn't start from here.
 306                 */
 307
 308                /*
 309                 ** We now need to insert a short boot section into
 310                 ** the memory at the end of Sram2. This is normally (de)composed
 311                 ** of the last eight bytes of the download code. The
 312                 ** download has been assembled/compiled to expect to be
 313                 ** loaded from 0x7FFF downwards. We have loaded it
 314                 ** at some other address. The startup code goes into the small
 315                 ** ram window at Sram2, in the last 8 bytes, which are really
 316                 ** at addresses 0x7FF8-0x7FFF.
 317                 **
 318                 ** If the loadbase is, say, 0x7C00, then we need to branch to
 319                 ** address 0x7BFE to run the host.bin startup code. We assemble
 320                 ** this jump manually.
 321                 **
 322                 ** The two byte sequence 60 08 is loaded into memory at address
 323                 ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
 324                 ** which adds '0' to the .O register, complements .O, and then shifts
 325                 ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
 326                 ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
 327                 ** location. Now, the branch starts from the value of .PC (or .IP or
 328                 ** whatever the bloody register is called on this chip), and the .PC
 329                 ** will be pointing to the location AFTER the branch, in this case
 330                 ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
 331                 **
 332                 ** A long branch is coded at 0x7FF8. This consists of loading a four
 333                 ** byte offset into .O using nfix (as above) and pfix operators. The
 334                 ** pfix operates in exactly the same way as the nfix operator, but
 335                 ** without the complement operation. The offset, of course, must be
 336                 ** relative to the address of the byte AFTER the branch instruction,
 337                 ** which will be (urm) 0x7FFC, so, our final destination of the branch
 338                 ** (loadbase-2), has to be reached from here. Imagine that the loadbase
 339                 ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
 340                 ** is the first byte of the initial two byte short local branch of the
 341                 ** download code).
 342                 **
 343                 ** To code a jump from 0x7FFC (which is where the branch will start
 344                 ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
 345                 ** 0x7BFE.
 346                 ** This will be coded as four bytes:
 347                 ** 60 2C 20 02
 348                 ** being nfix .O+0
 349                 **        pfix .O+C
 350                 **        pfix .O+0
 351                 **        jump .O+2
 352                 **
 353                 ** The nfix operator is used, so that the startup code will be
 354                 ** compatible with the whole Tp family. (lies, damn lies, it'll never
 355                 ** work in a month of Sundays).
 356                 **
 357                 ** The nfix nyble is the 1s complement of the nyble value you
 358                 ** want to load - in this case we wanted 'F' so we nfix loaded '0'.
 359                 */
 360
 361
 362                /*
 363                 ** Dest points to the top 8 bytes of Sram2. The Tp jumps
 364                 ** to 0x7FFE at reset time, and starts executing. This is
 365                 ** a short branch to 0x7FF8, where a long branch is coded.
 366                 */
 367
 368                DestP = &Cad[0x7FF8];   /* <<<---- READ THE ABOVE COMMENTS */
 369
 370#define NFIX(N) (0x60 | (N))    /* .O  = (~(.O + N))<<4 */
 371#define PFIX(N) (0x20 | (N))    /* .O  =   (.O + N)<<4  */
 372#define JUMP(N) (0x00 | (N))    /* .PC =   .PC + .O      */
 373
 374                /*
 375                 ** 0x7FFC is the address of the location following the last byte of
 376                 ** the four byte jump instruction.
 377                 ** READ THE ABOVE COMMENTS
 378                 **
 379                 ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
 380                 ** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
 381                 ** cos I don't understand 2's complement).
 382                 */
 383                offset = (p->RIOConf.HostLoadBase - 2) - 0x7FFC;
 384
 385                writeb(NFIX(((unsigned short) (~offset) >> (unsigned short) 12) & 0xF), DestP);
 386                writeb(PFIX((offset >> 8) & 0xF), DestP + 1);
 387                writeb(PFIX((offset >> 4) & 0xF), DestP + 2);
 388                writeb(JUMP(offset & 0xF), DestP + 3);
 389
 390                writeb(NFIX(0), DestP + 6);
 391                writeb(JUMP(8), DestP + 7);
 392
 393                rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
 394                rio_dprintk(RIO_DEBUG_BOOT, "startup offset is 0x%x\n", offset);
 395
 396                /*
 397                 ** Flag what is going on
 398                 */
 399                HostP->Flags &= ~RUN_STATE;
 400                HostP->Flags |= RC_STARTUP;
 401
 402                /*
 403                 ** Grab a copy of the current ParmMap pointer, so we
 404                 ** can tell when it has changed.
 405                 */
 406                OldParmMap = readw(&HostP->__ParmMapR);
 407
 408                rio_dprintk(RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n", OldParmMap);
 409
 410                /*
 411                 ** And start it running (I hope).
 412                 ** As there is nothing dodgy or obscure about the
 413                 ** above code, this is guaranteed to work every time.
 414                 */
 415                rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
 416
 417                rio_start_card_running(HostP);
 418
 419                rio_dprintk(RIO_DEBUG_BOOT, "Set control port\n");
 420
 421                /*
 422                 ** Now, wait for upto five seconds for the Tp to setup the parmmap
 423                 ** pointer:
 424                 */
 425                for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && (readw(&HostP->__ParmMapR) == OldParmMap); wait_count++) {
 426                        rio_dprintk(RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n", wait_count, readw(&HostP->__ParmMapR));
 427                        mdelay(100);
 428
 429                }
 430
 431                /*
 432                 ** If the parmmap pointer is unchanged, then the host code
 433                 ** has crashed & burned in a really spectacular way
 434                 */
 435                if (readw(&HostP->__ParmMapR) == OldParmMap) {
 436                        rio_dprintk(RIO_DEBUG_BOOT, "parmmap 0x%x\n", readw(&HostP->__ParmMapR));
 437                        rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
 438                        HostP->Flags &= ~RUN_STATE;
 439                        HostP->Flags |= RC_STUFFED;
 440                        RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
 441                        continue;
 442                }
 443
 444                rio_dprintk(RIO_DEBUG_BOOT, "Running 0x%x\n", readw(&HostP->__ParmMapR));
 445
 446                /*
 447                 ** Well, the board thought it was OK, and setup its parmmap
 448                 ** pointer. For the time being, we will pretend that this
 449                 ** board is running, and check out what the error flag says.
 450                 */
 451
 452                /*
 453                 ** Grab a 32 bit pointer to the parmmap structure
 454                 */
 455                ParmMapP = (PARM_MAP __iomem *) RIO_PTR(Cad, readw(&HostP->__ParmMapR));
 456                rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
 457                ParmMapP = (PARM_MAP __iomem *)(Cad + readw(&HostP->__ParmMapR));
 458                rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
 459
 460                /*
 461                 ** The links entry should be 0xFFFF; we set it up
 462                 ** with a mask to say how many PHBs to use, and
 463                 ** which links to use.
 464                 */
 465                if (readw(&ParmMapP->links) != 0xFFFF) {
 466                        rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
 467                        rio_dprintk(RIO_DEBUG_BOOT, "Links = 0x%x\n", readw(&ParmMapP->links));
 468                        HostP->Flags &= ~RUN_STATE;
 469                        HostP->Flags |= RC_STUFFED;
 470                        RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
 471                        continue;
 472                }
 473
 474                writew(RIO_LINK_ENABLE, &ParmMapP->links);
 475
 476                /*
 477                 ** now wait for the card to set all the parmmap->XXX stuff
 478                 ** this is a wait of upto two seconds....
 479                 */
 480                rio_dprintk(RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n", p->RIOConf.StartupTime);
 481                HostP->timeout_id = 0;
 482                for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && !readw(&ParmMapP->init_done); wait_count++) {
 483                        rio_dprintk(RIO_DEBUG_BOOT, "Waiting for init_done\n");
 484                        mdelay(100);
 485                }
 486                rio_dprintk(RIO_DEBUG_BOOT, "OK! init_done!\n");
 487
 488                if (readw(&ParmMapP->error) != E_NO_ERROR || !readw(&ParmMapP->init_done)) {
 489                        rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
 490                        rio_dprintk(RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
 491                        HostP->Flags &= ~RUN_STATE;
 492                        HostP->Flags |= RC_STUFFED;
 493                        RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
 494                        continue;
 495                }
 496
 497                rio_dprintk(RIO_DEBUG_BOOT, "Got init_done\n");
 498
 499                /*
 500                 ** It runs! It runs!
 501                 */
 502                rio_dprintk(RIO_DEBUG_BOOT, "Host ID %x Running\n", HostP->UniqueNum);
 503
 504                /*
 505                 ** set the time period between interrupts.
 506                 */
 507                writew(p->RIOConf.Timer, &ParmMapP->timer);
 508
 509                /*
 510                 ** Translate all the 16 bit pointers in the __ParmMapR into
 511                 ** 32 bit pointers for the driver in ioremap space.
 512                 */
 513                HostP->ParmMapP = ParmMapP;
 514                HostP->PhbP = (struct PHB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_ptr));
 515                HostP->RupP = (struct RUP __iomem *) RIO_PTR(Cad, readw(&ParmMapP->rups));
 516                HostP->PhbNumP = (unsigned short __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_num_ptr));
 517                HostP->LinkStrP = (struct LPB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->link_str_ptr));
 518
 519                /*
 520                 ** point the UnixRups at the real Rups
 521                 */
 522                for (RupN = 0; RupN < MAX_RUP; RupN++) {
 523                        HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN];
 524                        HostP->UnixRups[RupN].Id = RupN + 1;
 525                        HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
 526                        spin_lock_init(&HostP->UnixRups[RupN].RupLock);
 527                }
 528
 529                for (RupN = 0; RupN < LINKS_PER_UNIT; RupN++) {
 530                        HostP->UnixRups[RupN + MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup;
 531                        HostP->UnixRups[RupN + MAX_RUP].Id = 0;
 532                        HostP->UnixRups[RupN + MAX_RUP].BaseSysPort = NO_PORT;
 533                        spin_lock_init(&HostP->UnixRups[RupN + MAX_RUP].RupLock);
 534                }
 535
 536                /*
 537                 ** point the PortP->Phbs at the real Phbs
 538                 */
 539                for (PortN = p->RIOFirstPortsMapped; PortN < p->RIOLastPortsMapped + PORTS_PER_RTA; PortN++) {
 540                        if (p->RIOPortp[PortN]->HostP == HostP) {
 541                                struct Port *PortP = p->RIOPortp[PortN];
 542                                struct PHB __iomem *PhbP;
 543                                /* int oldspl; */
 544
 545                                if (!PortP->Mapped)
 546                                        continue;
 547
 548                                PhbP = &HostP->PhbP[PortP->HostPort];
 549                                rio_spin_lock_irqsave(&PortP->portSem, flags);
 550
 551                                PortP->PhbP = PhbP;
 552
 553                                PortP->TxAdd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_add));
 554                                PortP->TxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_start));
 555                                PortP->TxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_end));
 556                                PortP->RxRemove = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_remove));
 557                                PortP->RxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_start));
 558                                PortP->RxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_end));
 559
 560                                rio_spin_unlock_irqrestore(&PortP->portSem, flags);
 561                                /*
 562                                 ** point the UnixRup at the base SysPort
 563                                 */
 564                                if (!(PortN % PORTS_PER_RTA))
 565                                        HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
 566                        }
 567                }
 568
 569                rio_dprintk(RIO_DEBUG_BOOT, "Set the card running... \n");
 570                /*
 571                 ** last thing - show the world that everything is in place
 572                 */
 573                HostP->Flags &= ~RUN_STATE;
 574                HostP->Flags |= RC_RUNNING;
 575        }
 576        /*
 577         ** MPX always uses a poller. This is actually patched into the system
 578         ** configuration and called directly from each clock tick.
 579         **
 580         */
 581        p->RIOPolling = 1;
 582
 583        p->RIOSystemUp++;
 584
 585        rio_dprintk(RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
 586        func_exit();
 587        return 0;
 588}
 589
 590
 591
 592/**
 593 *      RIOBootRup              -       Boot an RTA
 594 *      @p: rio we are working with
 595 *      @Rup: Rup number
 596 *      @HostP: host object
 597 *      @PacketP: packet to use
 598 *
 599 *      If we have successfully processed this boot, then
 600 *      return 1. If we havent, then return 0.
 601 */
 602
 603int RIOBootRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem *PacketP)
 604{
 605        struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data;
 606        struct PktCmd_M *PktReplyP;
 607        struct CmdBlk *CmdBlkP;
 608        unsigned int sequence;
 609
 610        /*
 611         ** If we haven't been told what to boot, we can't boot it.
 612         */
 613        if (p->RIONumBootPkts == 0) {
 614                rio_dprintk(RIO_DEBUG_BOOT, "No RTA code to download yet\n");
 615                return 0;
 616        }
 617
 618        /*
 619         ** Special case of boot completed - if we get one of these then we
 620         ** don't need a command block. For all other cases we do, so handle
 621         ** this first and then get a command block, then handle every other
 622         ** case, relinquishing the command block if disaster strikes!
 623         */
 624        if ((readb(&PacketP->len) & PKT_CMD_BIT) && (readb(&PktCmdP->Command) == BOOT_COMPLETED))
 625                return RIOBootComplete(p, HostP, Rup, PktCmdP);
 626
 627        /*
 628         ** Try to allocate a command block. This is in kernel space
 629         */
 630        if (!(CmdBlkP = RIOGetCmdBlk())) {
 631                rio_dprintk(RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
 632                return 0;
 633        }
 634
 635        /*
 636         ** Fill in the default info on the command block
 637         */
 638        CmdBlkP->Packet.dest_unit = Rup < (unsigned short) MAX_RUP ? Rup : 0;
 639        CmdBlkP->Packet.dest_port = BOOT_RUP;
 640        CmdBlkP->Packet.src_unit = 0;
 641        CmdBlkP->Packet.src_port = BOOT_RUP;
 642
 643        CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
 644        PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data;
 645
 646        /*
 647         ** process COMMANDS on the boot rup!
 648         */
 649        if (readb(&PacketP->len) & PKT_CMD_BIT) {
 650                /*
 651                 ** We only expect one type of command - a BOOT_REQUEST!
 652                 */
 653                if (readb(&PktCmdP->Command) != BOOT_REQUEST) {
 654                        rio_dprintk(RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %Zd\n", readb(&PktCmdP->Command), Rup, HostP - p->RIOHosts);
 655                        RIOFreeCmdBlk(CmdBlkP);
 656                        return 1;
 657                }
 658
 659                /*
 660                 ** Build a Boot Sequence command block
 661                 **
 662                 ** We no longer need to use "Boot Mode", we'll always allow
 663                 ** boot requests - the boot will not complete if the device
 664                 ** appears in the bindings table.
 665                 **
 666                 ** We'll just (always) set the command field in packet reply
 667                 ** to allow an attempted boot sequence :
 668                 */
 669                PktReplyP->Command = BOOT_SEQUENCE;
 670
 671                PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
 672                PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase;
 673                PktReplyP->BootSequence.CodeSize = p->RIOBootCount;
 674
 675                CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT;
 676
 677                memcpy((void *) &CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN], "BOOT", 4);
 678
 679                rio_dprintk(RIO_DEBUG_BOOT, "Boot RTA on Host %Zd Rup %d - %d (0x%x) packets to 0x%x\n", HostP - p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase);
 680
 681                /*
 682                 ** If this host is in slave mode, send the RTA an invalid boot
 683                 ** sequence command block to force it to kill the boot. We wait
 684                 ** for half a second before sending this packet to prevent the RTA
 685                 ** attempting to boot too often. The master host should then grab
 686                 ** the RTA and make it its own.
 687                 */
 688                p->RIOBooting++;
 689                RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
 690                return 1;
 691        }
 692
 693        /*
 694         ** It is a request for boot data.
 695         */
 696        sequence = readw(&PktCmdP->Sequence);
 697
 698        rio_dprintk(RIO_DEBUG_BOOT, "Boot block %d on Host %Zd Rup%d\n", sequence, HostP - p->RIOHosts, Rup);
 699
 700        if (sequence >= p->RIONumBootPkts) {
 701                rio_dprintk(RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts);
 702        }
 703
 704        PktReplyP->Sequence = sequence;
 705        memcpy(PktReplyP->BootData, p->RIOBootPackets[p->RIONumBootPkts - sequence - 1], RTA_BOOT_DATA_SIZE);
 706        CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
 707        RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
 708        return 1;
 709}
 710
 711/**
 712 *      RIOBootComplete         -       RTA boot is done
 713 *      @p: RIO we are working with
 714 *      @HostP: Host structure
 715 *      @Rup: RUP being used
 716 *      @PktCmdP: Packet command that was used
 717 *
 718 *      This function is called when an RTA been booted.
 719 *      If booted by a host, HostP->HostUniqueNum is the booting host.
 720 *      If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
 721 *      RtaUniq is the booted RTA.
 722 */
 723
 724static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP)
 725{
 726        struct Map *MapP = NULL;
 727        struct Map *MapP2 = NULL;
 728        int Flag;
 729        int found;
 730        int host, rta;
 731        int EmptySlot = -1;
 732        int entry, entry2;
 733        char *MyType, *MyName;
 734        unsigned int MyLink;
 735        unsigned short RtaType;
 736        u32 RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24);
 737
 738        p->RIOBooting = 0;
 739
 740        rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);
 741
 742        /*
 743         ** Determine type of unit (16/8 port RTA).
 744         */
 745
 746        RtaType = GetUnitType(RtaUniq);
 747        if (Rup >= (unsigned short) MAX_RUP)
 748                rio_dprintk(RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
 749        else
 750                rio_dprintk(RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
 751
 752        rio_dprintk(RIO_DEBUG_BOOT, "UniqNum is 0x%x\n", RtaUniq);
 753
 754        if (RtaUniq == 0x00000000 || RtaUniq == 0xffffffff) {
 755                rio_dprintk(RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
 756                return 1;
 757        }
 758
 759        /*
 760         ** If this RTA has just booted an RTA which doesn't belong to this
 761         ** system, or the system is in slave mode, do not attempt to create
 762         ** a new table entry for it.
 763         */
 764
 765        if (!RIOBootOk(p, HostP, RtaUniq)) {
 766                MyLink = readb(&PktCmdP->LinkNum);
 767                if (Rup < (unsigned short) MAX_RUP) {
 768                        /*
 769                         ** RtaUniq was clone booted (by this RTA). Instruct this RTA
 770                         ** to hold off further attempts to boot on this link for 30
 771                         ** seconds.
 772                         */
 773                        if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) {
 774                                rio_dprintk(RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 'A' + MyLink);
 775                        }
 776                } else
 777                        /*
 778                         ** RtaUniq was booted by this host. Set the booting link
 779                         ** to hold off for 30 seconds to give another unit a
 780                         ** chance to boot it.
 781                         */
 782                        writew(30, &HostP->LinkStrP[MyLink].WaitNoBoot);
 783                rio_dprintk(RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
 784                return 1;
 785        }
 786
 787        /*
 788         ** Check for a SLOT_IN_USE entry for this RTA attached to the
 789         ** current host card in the driver table.
 790         **
 791         ** If it exists, make a note that we have booted it. Other parts of
 792         ** the driver are interested in this information at a later date,
 793         ** in particular when the booting RTA asks for an ID for this unit,
 794         ** we must have set the BOOTED flag, and the NEWBOOT flag is used
 795         ** to force an open on any ports that where previously open on this
 796         ** unit.
 797         */
 798        for (entry = 0; entry < MAX_RUP; entry++) {
 799                unsigned int sysport;
 800
 801                if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
 802                        HostP->Mapping[entry].Flags |= RTA_BOOTED | RTA_NEWBOOT;
 803                        if ((sysport = HostP->Mapping[entry].SysPort) != NO_PORT) {
 804                                if (sysport < p->RIOFirstPortsBooted)
 805                                        p->RIOFirstPortsBooted = sysport;
 806                                if (sysport > p->RIOLastPortsBooted)
 807                                        p->RIOLastPortsBooted = sysport;
 808                                /*
 809                                 ** For a 16 port RTA, check the second bank of 8 ports
 810                                 */
 811                                if (RtaType == TYPE_RTA16) {
 812                                        entry2 = HostP->Mapping[entry].ID2 - 1;
 813                                        HostP->Mapping[entry2].Flags |= RTA_BOOTED | RTA_NEWBOOT;
 814                                        sysport = HostP->Mapping[entry2].SysPort;
 815                                        if (sysport < p->RIOFirstPortsBooted)
 816                                                p->RIOFirstPortsBooted = sysport;
 817                                        if (sysport > p->RIOLastPortsBooted)
 818                                                p->RIOLastPortsBooted = sysport;
 819                                }
 820                        }
 821                        if (RtaType == TYPE_RTA16)
 822                                rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", entry + 1, entry2 + 1);
 823                        else
 824                                rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given ID %d\n", entry + 1);
 825                        return 1;
 826                }
 827        }
 828
 829        rio_dprintk(RIO_DEBUG_BOOT, "RTA not configured for this host\n");
 830
 831        if (Rup >= (unsigned short) MAX_RUP) {
 832                /*
 833                 ** It was a host that did the booting
 834                 */
 835                MyType = "Host";
 836                MyName = HostP->Name;
 837        } else {
 838                /*
 839                 ** It was an RTA that did the booting
 840                 */
 841                MyType = "RTA";
 842                MyName = HostP->Mapping[Rup].Name;
 843        }
 844        MyLink = readb(&PktCmdP->LinkNum);
 845
 846        /*
 847         ** There is no SLOT_IN_USE entry for this RTA attached to the current
 848         ** host card in the driver table.
 849         **
 850         ** Check for a SLOT_TENTATIVE entry for this RTA attached to the
 851         ** current host card in the driver table.
 852         **
 853         ** If we find one, then we re-use that slot.
 854         */
 855        for (entry = 0; entry < MAX_RUP; entry++) {
 856                if ((HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
 857                        if (RtaType == TYPE_RTA16) {
 858                                entry2 = HostP->Mapping[entry].ID2 - 1;
 859                                if ((HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq))
 860                                        rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", entry, entry2);
 861                                else
 862                                        continue;
 863                        } else
 864                                rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n", entry);
 865                        if (!p->RIONoMessage)
 866                                printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
 867                        return 1;
 868                }
 869        }
 870
 871        /*
 872         ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
 873         ** attached to the current host card in the driver table.
 874         **
 875         ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
 876         ** host for this RTA in the driver table.
 877         **
 878         ** For a SLOT_IN_USE entry on another host, we need to delete the RTA
 879         ** entry from the other host and add it to this host (using some of
 880         ** the functions from table.c which do this).
 881         ** For a SLOT_TENTATIVE entry on another host, we must cope with the
 882         ** following scenario:
 883         **
 884         ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
 885         **   in table)
 886         ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
 887         **   entries)
 888         ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
 889         ** + Unplug RTA and plug back into host A.
 890         ** + Configure RTA on host A. We now have the same RTA configured
 891         **   with different ports on two different hosts.
 892         */
 893        rio_dprintk(RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq);
 894        found = 0;
 895        Flag = 0;               /* Convince the compiler this variable is initialized */
 896        for (host = 0; !found && (host < p->RIONumHosts); host++) {
 897                for (rta = 0; rta < MAX_RUP; rta++) {
 898                        if ((p->RIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum == RtaUniq)) {
 899                                Flag = p->RIOHosts[host].Mapping[rta].Flags;
 900                                MapP = &p->RIOHosts[host].Mapping[rta];
 901                                if (RtaType == TYPE_RTA16) {
 902                                        MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
 903                                        rio_dprintk(RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", rta + 1, MapP->ID2, p->RIOHosts[host].Name);
 904                                } else
 905                                        rio_dprintk(RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", rta + 1, p->RIOHosts[host].Name);
 906                                found = 1;
 907                                break;
 908                        }
 909                }
 910        }
 911
 912        /*
 913         ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
 914         ** attached to the current host card in the driver table.
 915         **
 916         ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
 917         ** another host for this RTA in the driver table...
 918         **
 919         ** Check for a SLOT_IN_USE entry for this RTA in the config table.
 920         */
 921        if (!MapP) {
 922                rio_dprintk(RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n", RtaUniq);
 923                for (rta = 0; rta < TOTAL_MAP_ENTRIES; rta++) {
 924                        rio_dprintk(RIO_DEBUG_BOOT, "Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum);
 925
 926                        if ((p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq)) {
 927                                MapP = &p->RIOSavedTable[rta];
 928                                Flag = p->RIOSavedTable[rta].Flags;
 929                                if (RtaType == TYPE_RTA16) {
 930                                        for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) {
 931                                                if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
 932                                                        break;
 933                                        }
 934                                        MapP2 = &p->RIOSavedTable[entry2];
 935                                        rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", rta, entry2);
 936                                } else
 937                                        rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
 938                                break;
 939                        }
 940                }
 941        }
 942
 943        /*
 944         ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
 945         ** attached to the current host card in the driver table.
 946         **
 947         ** We may have found a SLOT_IN_USE entry on another host for this
 948         ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
 949         ** on another host for this RTA in the driver table.
 950         **
 951         ** Check the driver table for room to fit this newly discovered RTA.
 952         ** RIOFindFreeID() first looks for free slots and if it does not
 953         ** find any free slots it will then attempt to oust any
 954         ** tentative entry in the table.
 955         */
 956        EmptySlot = 1;
 957        if (RtaType == TYPE_RTA16) {
 958                if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) {
 959                        RIODefaultName(p, HostP, entry);
 960                        rio_fill_host_slot(entry, entry2, RtaUniq, HostP);
 961                        EmptySlot = 0;
 962                }
 963        } else {
 964                if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) {
 965                        RIODefaultName(p, HostP, entry);
 966                        rio_fill_host_slot(entry, 0, RtaUniq, HostP);
 967                        EmptySlot = 0;
 968                }
 969        }
 970
 971        /*
 972         ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
 973         ** attached to the current host card in the driver table.
 974         **
 975         ** If we found a SLOT_IN_USE entry on another host for this
 976         ** RTA in the config or driver table, and there are enough free
 977         ** slots in the driver table, then we need to move it over and
 978         ** delete it from the other host.
 979         ** If we found a SLOT_TENTATIVE entry on another host for this
 980         ** RTA in the driver table, just delete the other host entry.
 981         */
 982        if (EmptySlot == 0) {
 983                if (MapP) {
 984                        if (Flag & SLOT_IN_USE) {
 985                                rio_dprintk(RIO_DEBUG_BOOT, "This RTA configured on another host - move entry to current host (1)\n");
 986                                HostP->Mapping[entry].SysPort = MapP->SysPort;
 987                                memcpy(HostP->Mapping[entry].Name, MapP->Name, MAX_NAME_LEN);
 988                                HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
 989                                RIOReMapPorts(p, HostP, &HostP->Mapping[entry]);
 990                                if (HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted)
 991                                        p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
 992                                if (HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted)
 993                                        p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
 994                                rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) MapP->SysPort, MapP->Name);
 995                        } else {
 996                                rio_dprintk(RIO_DEBUG_BOOT, "This RTA has a tentative entry on another host - delete that entry (1)\n");
 997                                HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
 998                        }
 999                        if (RtaType == TYPE_RTA16) {
1000                                if (Flag & SLOT_IN_USE) {
1001                                        HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1002                                        HostP->Mapping[entry2].SysPort = MapP2->SysPort;
1003                                        /*
1004                                         ** Map second block of ttys for 16 port RTA
1005                                         */
1006                                        RIOReMapPorts(p, HostP, &HostP->Mapping[entry2]);
1007                                        if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
1008                                                p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
1009                                        if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
1010                                                p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
1011                                        rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name);
1012                                } else
1013                                        HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1014                                memset(MapP2, 0, sizeof(struct Map));
1015                        }
1016                        memset(MapP, 0, sizeof(struct Map));
1017                        if (!p->RIONoMessage)
1018                                printk("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType, MyName, MyLink + 'A');
1019                } else if (!p->RIONoMessage)
1020                        printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
1021                RIOSetChange(p);
1022                return 1;
1023        }
1024
1025        /*
1026         ** There is no room in the driver table to make an entry for the
1027         ** booted RTA. Keep a note of its Uniq Num in the overflow table,
1028         ** so we can ignore it's ID requests.
1029         */
1030        if (!p->RIONoMessage)
1031                printk("The RTA connected to %s '%s' (%c) cannot be configured.  You cannot configure more than 128 ports to one host card.\n", MyType, MyName, MyLink + 'A');
1032        for (entry = 0; entry < HostP->NumExtraBooted; entry++) {
1033                if (HostP->ExtraUnits[entry] == RtaUniq) {
1034                        /*
1035                         ** already got it!
1036                         */
1037                        return 1;
1038                }
1039        }
1040        /*
1041         ** If there is room, add the unit to the list of extras
1042         */
1043        if (HostP->NumExtraBooted < MAX_EXTRA_UNITS)
1044                HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
1045        return 1;
1046}
1047
1048
1049/*
1050** If the RTA or its host appears in the RIOBindTab[] structure then
1051** we mustn't boot the RTA and should return 0.
1052** This operation is slightly different from the other drivers for RIO
1053** in that this is designed to work with the new utilities
1054** not config.rio and is FAR SIMPLER.
1055** We no longer support the RIOBootMode variable. It is all done from the
1056** "boot/noboot" field in the rio.cf file.
1057*/
1058int RIOBootOk(struct rio_info *p, struct Host *HostP, unsigned long RtaUniq)
1059{
1060        int Entry;
1061        unsigned int HostUniq = HostP->UniqueNum;
1062
1063        /*
1064         ** Search bindings table for RTA or its parent.
1065         ** If it exists, return 0, else 1.
1066         */
1067        for (Entry = 0; (Entry < MAX_RTA_BINDINGS) && (p->RIOBindTab[Entry] != 0); Entry++) {
1068                if ((p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq))
1069                        return 0;
1070        }
1071        return 1;
1072}
1073
1074/*
1075** Make an empty slot tentative. If this is a 16 port RTA, make both
1076** slots tentative, and the second one RTA_SECOND_SLOT as well.
1077*/
1078
1079void rio_fill_host_slot(int entry, int entry2, unsigned int rta_uniq, struct Host *host)
1080{
1081        int link;
1082
1083        rio_dprintk(RIO_DEBUG_BOOT, "rio_fill_host_slot(%d, %d, 0x%x...)\n", entry, entry2, rta_uniq);
1084
1085        host->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
1086        host->Mapping[entry].SysPort = NO_PORT;
1087        host->Mapping[entry].RtaUniqueNum = rta_uniq;
1088        host->Mapping[entry].HostUniqueNum = host->UniqueNum;
1089        host->Mapping[entry].ID = entry + 1;
1090        host->Mapping[entry].ID2 = 0;
1091        if (entry2) {
1092                host->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT);
1093                host->Mapping[entry2].SysPort = NO_PORT;
1094                host->Mapping[entry2].RtaUniqueNum = rta_uniq;
1095                host->Mapping[entry2].HostUniqueNum = host->UniqueNum;
1096                host->Mapping[entry2].Name[0] = '\0';
1097                host->Mapping[entry2].ID = entry2 + 1;
1098                host->Mapping[entry2].ID2 = entry + 1;
1099                host->Mapping[entry].ID2 = entry2 + 1;
1100        }
1101        /*
1102         ** Must set these up, so that utilities show
1103         ** topology of 16 port RTAs correctly
1104         */
1105        for (link = 0; link < LINKS_PER_UNIT; link++) {
1106                host->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
1107                host->Mapping[entry].Topology[link].Link = NO_LINK;
1108                if (entry2) {
1109                        host->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT;
1110                        host->Mapping[entry2].Topology[link].Link = NO_LINK;
1111                }
1112        }
1113}
1114