linux/drivers/char/rtc.c
<<
>>
Prefs
   1/*
   2 *      Real Time Clock interface for Linux
   3 *
   4 *      Copyright (C) 1996 Paul Gortmaker
   5 *
   6 *      This driver allows use of the real time clock (built into
   7 *      nearly all computers) from user space. It exports the /dev/rtc
   8 *      interface supporting various ioctl() and also the
   9 *      /proc/driver/rtc pseudo-file for status information.
  10 *
  11 *      The ioctls can be used to set the interrupt behaviour and
  12 *      generation rate from the RTC via IRQ 8. Then the /dev/rtc
  13 *      interface can be used to make use of these timer interrupts,
  14 *      be they interval or alarm based.
  15 *
  16 *      The /dev/rtc interface will block on reads until an interrupt
  17 *      has been received. If a RTC interrupt has already happened,
  18 *      it will output an unsigned long and then block. The output value
  19 *      contains the interrupt status in the low byte and the number of
  20 *      interrupts since the last read in the remaining high bytes. The
  21 *      /dev/rtc interface can also be used with the select(2) call.
  22 *
  23 *      This program is free software; you can redistribute it and/or
  24 *      modify it under the terms of the GNU General Public License
  25 *      as published by the Free Software Foundation; either version
  26 *      2 of the License, or (at your option) any later version.
  27 *
  28 *      Based on other minimal char device drivers, like Alan's
  29 *      watchdog, Ted's random, etc. etc.
  30 *
  31 *      1.07    Paul Gortmaker.
  32 *      1.08    Miquel van Smoorenburg: disallow certain things on the
  33 *              DEC Alpha as the CMOS clock is also used for other things.
  34 *      1.09    Nikita Schmidt: epoch support and some Alpha cleanup.
  35 *      1.09a   Pete Zaitcev: Sun SPARC
  36 *      1.09b   Jeff Garzik: Modularize, init cleanup
  37 *      1.09c   Jeff Garzik: SMP cleanup
  38 *      1.10    Paul Barton-Davis: add support for async I/O
  39 *      1.10a   Andrea Arcangeli: Alpha updates
  40 *      1.10b   Andrew Morton: SMP lock fix
  41 *      1.10c   Cesar Barros: SMP locking fixes and cleanup
  42 *      1.10d   Paul Gortmaker: delete paranoia check in rtc_exit
  43 *      1.10e   Maciej W. Rozycki: Handle DECstation's year weirdness.
  44 *      1.11    Takashi Iwai: Kernel access functions
  45 *                            rtc_register/rtc_unregister/rtc_control
  46 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
  47 *      1.12    Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
  48 *              CONFIG_HPET_EMULATE_RTC
  49 *      1.12a   Maciej W. Rozycki: Handle memory-mapped chips properly.
  50 *      1.12ac  Alan Cox: Allow read access to the day of week register
  51 *      1.12b   David John: Remove calls to the BKL.
  52 */
  53
  54#define RTC_VERSION             "1.12b"
  55
  56/*
  57 *      Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
  58 *      interrupts disabled. Due to the index-port/data-port (0x70/0x71)
  59 *      design of the RTC, we don't want two different things trying to
  60 *      get to it at once. (e.g. the periodic 11 min sync from time.c vs.
  61 *      this driver.)
  62 */
  63
  64#include <linux/interrupt.h>
  65#include <linux/module.h>
  66#include <linux/kernel.h>
  67#include <linux/types.h>
  68#include <linux/miscdevice.h>
  69#include <linux/ioport.h>
  70#include <linux/fcntl.h>
  71#include <linux/mc146818rtc.h>
  72#include <linux/init.h>
  73#include <linux/poll.h>
  74#include <linux/proc_fs.h>
  75#include <linux/seq_file.h>
  76#include <linux/spinlock.h>
  77#include <linux/sched.h>
  78#include <linux/sysctl.h>
  79#include <linux/wait.h>
  80#include <linux/bcd.h>
  81#include <linux/delay.h>
  82#include <linux/uaccess.h>
  83
  84#include <asm/current.h>
  85#include <asm/system.h>
  86
  87#ifdef CONFIG_X86
  88#include <asm/hpet.h>
  89#endif
  90
  91#ifdef CONFIG_SPARC32
  92#include <linux/of.h>
  93#include <linux/of_device.h>
  94#include <asm/io.h>
  95
  96static unsigned long rtc_port;
  97static int rtc_irq;
  98#endif
  99
 100#ifdef  CONFIG_HPET_EMULATE_RTC
 101#undef  RTC_IRQ
 102#endif
 103
 104#ifdef RTC_IRQ
 105static int rtc_has_irq = 1;
 106#endif
 107
 108#ifndef CONFIG_HPET_EMULATE_RTC
 109#define is_hpet_enabled()                       0
 110#define hpet_set_alarm_time(hrs, min, sec)      0
 111#define hpet_set_periodic_freq(arg)             0
 112#define hpet_mask_rtc_irq_bit(arg)              0
 113#define hpet_set_rtc_irq_bit(arg)               0
 114#define hpet_rtc_timer_init()                   do { } while (0)
 115#define hpet_rtc_dropped_irq()                  0
 116#define hpet_register_irq_handler(h)            ({ 0; })
 117#define hpet_unregister_irq_handler(h)          ({ 0; })
 118#ifdef RTC_IRQ
 119static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
 120{
 121        return 0;
 122}
 123#endif
 124#endif
 125
 126/*
 127 *      We sponge a minor off of the misc major. No need slurping
 128 *      up another valuable major dev number for this. If you add
 129 *      an ioctl, make sure you don't conflict with SPARC's RTC
 130 *      ioctls.
 131 */
 132
 133static struct fasync_struct *rtc_async_queue;
 134
 135static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
 136
 137#ifdef RTC_IRQ
 138static void rtc_dropped_irq(unsigned long data);
 139
 140static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
 141#endif
 142
 143static ssize_t rtc_read(struct file *file, char __user *buf,
 144                        size_t count, loff_t *ppos);
 145
 146static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
 148
 149#ifdef RTC_IRQ
 150static unsigned int rtc_poll(struct file *file, poll_table *wait);
 151#endif
 152
 153static void get_rtc_alm_time(struct rtc_time *alm_tm);
 154#ifdef RTC_IRQ
 155static void set_rtc_irq_bit_locked(unsigned char bit);
 156static void mask_rtc_irq_bit_locked(unsigned char bit);
 157
 158static inline void set_rtc_irq_bit(unsigned char bit)
 159{
 160        spin_lock_irq(&rtc_lock);
 161        set_rtc_irq_bit_locked(bit);
 162        spin_unlock_irq(&rtc_lock);
 163}
 164
 165static void mask_rtc_irq_bit(unsigned char bit)
 166{
 167        spin_lock_irq(&rtc_lock);
 168        mask_rtc_irq_bit_locked(bit);
 169        spin_unlock_irq(&rtc_lock);
 170}
 171#endif
 172
 173#ifdef CONFIG_PROC_FS
 174static int rtc_proc_open(struct inode *inode, struct file *file);
 175#endif
 176
 177/*
 178 *      Bits in rtc_status. (6 bits of room for future expansion)
 179 */
 180
 181#define RTC_IS_OPEN             0x01    /* means /dev/rtc is in use     */
 182#define RTC_TIMER_ON            0x02    /* missed irq timer active      */
 183
 184/*
 185 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
 186 * protected by the spin lock rtc_lock. However, ioctl can still disable the
 187 * timer in rtc_status and then with del_timer after the interrupt has read
 188 * rtc_status but before mod_timer is called, which would then reenable the
 189 * timer (but you would need to have an awful timing before you'd trip on it)
 190 */
 191static unsigned long rtc_status;        /* bitmapped status byte.       */
 192static unsigned long rtc_freq;          /* Current periodic IRQ rate    */
 193static unsigned long rtc_irq_data;      /* our output to the world      */
 194static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
 195
 196#ifdef RTC_IRQ
 197/*
 198 * rtc_task_lock nests inside rtc_lock.
 199 */
 200static DEFINE_SPINLOCK(rtc_task_lock);
 201static rtc_task_t *rtc_callback;
 202#endif
 203
 204/*
 205 *      If this driver ever becomes modularised, it will be really nice
 206 *      to make the epoch retain its value across module reload...
 207 */
 208
 209static unsigned long epoch = 1900;      /* year corresponding to 0x00   */
 210
 211static const unsigned char days_in_mo[] =
 212{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
 213
 214/*
 215 * Returns true if a clock update is in progress
 216 */
 217static inline unsigned char rtc_is_updating(void)
 218{
 219        unsigned long flags;
 220        unsigned char uip;
 221
 222        spin_lock_irqsave(&rtc_lock, flags);
 223        uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
 224        spin_unlock_irqrestore(&rtc_lock, flags);
 225        return uip;
 226}
 227
 228#ifdef RTC_IRQ
 229/*
 230 *      A very tiny interrupt handler. It runs with IRQF_DISABLED set,
 231 *      but there is possibility of conflicting with the set_rtc_mmss()
 232 *      call (the rtc irq and the timer irq can easily run at the same
 233 *      time in two different CPUs). So we need to serialize
 234 *      accesses to the chip with the rtc_lock spinlock that each
 235 *      architecture should implement in the timer code.
 236 *      (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
 237 */
 238
 239static irqreturn_t rtc_interrupt(int irq, void *dev_id)
 240{
 241        /*
 242         *      Can be an alarm interrupt, update complete interrupt,
 243         *      or a periodic interrupt. We store the status in the
 244         *      low byte and the number of interrupts received since
 245         *      the last read in the remainder of rtc_irq_data.
 246         */
 247
 248        spin_lock(&rtc_lock);
 249        rtc_irq_data += 0x100;
 250        rtc_irq_data &= ~0xff;
 251        if (is_hpet_enabled()) {
 252                /*
 253                 * In this case it is HPET RTC interrupt handler
 254                 * calling us, with the interrupt information
 255                 * passed as arg1, instead of irq.
 256                 */
 257                rtc_irq_data |= (unsigned long)irq & 0xF0;
 258        } else {
 259                rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
 260        }
 261
 262        if (rtc_status & RTC_TIMER_ON)
 263                mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
 264
 265        spin_unlock(&rtc_lock);
 266
 267        /* Now do the rest of the actions */
 268        spin_lock(&rtc_task_lock);
 269        if (rtc_callback)
 270                rtc_callback->func(rtc_callback->private_data);
 271        spin_unlock(&rtc_task_lock);
 272        wake_up_interruptible(&rtc_wait);
 273
 274        kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
 275
 276        return IRQ_HANDLED;
 277}
 278#endif
 279
 280/*
 281 * sysctl-tuning infrastructure.
 282 */
 283static ctl_table rtc_table[] = {
 284        {
 285                .ctl_name       = CTL_UNNUMBERED,
 286                .procname       = "max-user-freq",
 287                .data           = &rtc_max_user_freq,
 288                .maxlen         = sizeof(int),
 289                .mode           = 0644,
 290                .proc_handler   = &proc_dointvec,
 291        },
 292        { .ctl_name = 0 }
 293};
 294
 295static ctl_table rtc_root[] = {
 296        {
 297                .ctl_name       = CTL_UNNUMBERED,
 298                .procname       = "rtc",
 299                .mode           = 0555,
 300                .child          = rtc_table,
 301        },
 302        { .ctl_name = 0 }
 303};
 304
 305static ctl_table dev_root[] = {
 306        {
 307                .ctl_name       = CTL_DEV,
 308                .procname       = "dev",
 309                .mode           = 0555,
 310                .child          = rtc_root,
 311        },
 312        { .ctl_name = 0 }
 313};
 314
 315static struct ctl_table_header *sysctl_header;
 316
 317static int __init init_sysctl(void)
 318{
 319    sysctl_header = register_sysctl_table(dev_root);
 320    return 0;
 321}
 322
 323static void __exit cleanup_sysctl(void)
 324{
 325    unregister_sysctl_table(sysctl_header);
 326}
 327
 328/*
 329 *      Now all the various file operations that we export.
 330 */
 331
 332static ssize_t rtc_read(struct file *file, char __user *buf,
 333                        size_t count, loff_t *ppos)
 334{
 335#ifndef RTC_IRQ
 336        return -EIO;
 337#else
 338        DECLARE_WAITQUEUE(wait, current);
 339        unsigned long data;
 340        ssize_t retval;
 341
 342        if (rtc_has_irq == 0)
 343                return -EIO;
 344
 345        /*
 346         * Historically this function used to assume that sizeof(unsigned long)
 347         * is the same in userspace and kernelspace.  This lead to problems
 348         * for configurations with multiple ABIs such a the MIPS o32 and 64
 349         * ABIs supported on the same kernel.  So now we support read of both
 350         * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
 351         * userspace ABI.
 352         */
 353        if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
 354                return -EINVAL;
 355
 356        add_wait_queue(&rtc_wait, &wait);
 357
 358        do {
 359                /* First make it right. Then make it fast. Putting this whole
 360                 * block within the parentheses of a while would be too
 361                 * confusing. And no, xchg() is not the answer. */
 362
 363                __set_current_state(TASK_INTERRUPTIBLE);
 364
 365                spin_lock_irq(&rtc_lock);
 366                data = rtc_irq_data;
 367                rtc_irq_data = 0;
 368                spin_unlock_irq(&rtc_lock);
 369
 370                if (data != 0)
 371                        break;
 372
 373                if (file->f_flags & O_NONBLOCK) {
 374                        retval = -EAGAIN;
 375                        goto out;
 376                }
 377                if (signal_pending(current)) {
 378                        retval = -ERESTARTSYS;
 379                        goto out;
 380                }
 381                schedule();
 382        } while (1);
 383
 384        if (count == sizeof(unsigned int)) {
 385                retval = put_user(data,
 386                                  (unsigned int __user *)buf) ?: sizeof(int);
 387        } else {
 388                retval = put_user(data,
 389                                  (unsigned long __user *)buf) ?: sizeof(long);
 390        }
 391        if (!retval)
 392                retval = count;
 393 out:
 394        __set_current_state(TASK_RUNNING);
 395        remove_wait_queue(&rtc_wait, &wait);
 396
 397        return retval;
 398#endif
 399}
 400
 401static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
 402{
 403        struct rtc_time wtime;
 404
 405#ifdef RTC_IRQ
 406        if (rtc_has_irq == 0) {
 407                switch (cmd) {
 408                case RTC_AIE_OFF:
 409                case RTC_AIE_ON:
 410                case RTC_PIE_OFF:
 411                case RTC_PIE_ON:
 412                case RTC_UIE_OFF:
 413                case RTC_UIE_ON:
 414                case RTC_IRQP_READ:
 415                case RTC_IRQP_SET:
 416                        return -EINVAL;
 417                };
 418        }
 419#endif
 420
 421        switch (cmd) {
 422#ifdef RTC_IRQ
 423        case RTC_AIE_OFF:       /* Mask alarm int. enab. bit    */
 424        {
 425                mask_rtc_irq_bit(RTC_AIE);
 426                return 0;
 427        }
 428        case RTC_AIE_ON:        /* Allow alarm interrupts.      */
 429        {
 430                set_rtc_irq_bit(RTC_AIE);
 431                return 0;
 432        }
 433        case RTC_PIE_OFF:       /* Mask periodic int. enab. bit */
 434        {
 435                /* can be called from isr via rtc_control() */
 436                unsigned long flags;
 437
 438                spin_lock_irqsave(&rtc_lock, flags);
 439                mask_rtc_irq_bit_locked(RTC_PIE);
 440                if (rtc_status & RTC_TIMER_ON) {
 441                        rtc_status &= ~RTC_TIMER_ON;
 442                        del_timer(&rtc_irq_timer);
 443                }
 444                spin_unlock_irqrestore(&rtc_lock, flags);
 445
 446                return 0;
 447        }
 448        case RTC_PIE_ON:        /* Allow periodic ints          */
 449        {
 450                /* can be called from isr via rtc_control() */
 451                unsigned long flags;
 452
 453                /*
 454                 * We don't really want Joe User enabling more
 455                 * than 64Hz of interrupts on a multi-user machine.
 456                 */
 457                if (!kernel && (rtc_freq > rtc_max_user_freq) &&
 458                                                (!capable(CAP_SYS_RESOURCE)))
 459                        return -EACCES;
 460
 461                spin_lock_irqsave(&rtc_lock, flags);
 462                if (!(rtc_status & RTC_TIMER_ON)) {
 463                        mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
 464                                        2*HZ/100);
 465                        rtc_status |= RTC_TIMER_ON;
 466                }
 467                set_rtc_irq_bit_locked(RTC_PIE);
 468                spin_unlock_irqrestore(&rtc_lock, flags);
 469
 470                return 0;
 471        }
 472        case RTC_UIE_OFF:       /* Mask ints from RTC updates.  */
 473        {
 474                mask_rtc_irq_bit(RTC_UIE);
 475                return 0;
 476        }
 477        case RTC_UIE_ON:        /* Allow ints for RTC updates.  */
 478        {
 479                set_rtc_irq_bit(RTC_UIE);
 480                return 0;
 481        }
 482#endif
 483        case RTC_ALM_READ:      /* Read the present alarm time */
 484        {
 485                /*
 486                 * This returns a struct rtc_time. Reading >= 0xc0
 487                 * means "don't care" or "match all". Only the tm_hour,
 488                 * tm_min, and tm_sec values are filled in.
 489                 */
 490                memset(&wtime, 0, sizeof(struct rtc_time));
 491                get_rtc_alm_time(&wtime);
 492                break;
 493        }
 494        case RTC_ALM_SET:       /* Store a time into the alarm */
 495        {
 496                /*
 497                 * This expects a struct rtc_time. Writing 0xff means
 498                 * "don't care" or "match all". Only the tm_hour,
 499                 * tm_min and tm_sec are used.
 500                 */
 501                unsigned char hrs, min, sec;
 502                struct rtc_time alm_tm;
 503
 504                if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
 505                                   sizeof(struct rtc_time)))
 506                        return -EFAULT;
 507
 508                hrs = alm_tm.tm_hour;
 509                min = alm_tm.tm_min;
 510                sec = alm_tm.tm_sec;
 511
 512                spin_lock_irq(&rtc_lock);
 513                if (hpet_set_alarm_time(hrs, min, sec)) {
 514                        /*
 515                         * Fallthru and set alarm time in CMOS too,
 516                         * so that we will get proper value in RTC_ALM_READ
 517                         */
 518                }
 519                if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
 520                                                        RTC_ALWAYS_BCD) {
 521                        if (sec < 60)
 522                                sec = bin2bcd(sec);
 523                        else
 524                                sec = 0xff;
 525
 526                        if (min < 60)
 527                                min = bin2bcd(min);
 528                        else
 529                                min = 0xff;
 530
 531                        if (hrs < 24)
 532                                hrs = bin2bcd(hrs);
 533                        else
 534                                hrs = 0xff;
 535                }
 536                CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 537                CMOS_WRITE(min, RTC_MINUTES_ALARM);
 538                CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 539                spin_unlock_irq(&rtc_lock);
 540
 541                return 0;
 542        }
 543        case RTC_RD_TIME:       /* Read the time/date from RTC  */
 544        {
 545                memset(&wtime, 0, sizeof(struct rtc_time));
 546                rtc_get_rtc_time(&wtime);
 547                break;
 548        }
 549        case RTC_SET_TIME:      /* Set the RTC */
 550        {
 551                struct rtc_time rtc_tm;
 552                unsigned char mon, day, hrs, min, sec, leap_yr;
 553                unsigned char save_control, save_freq_select;
 554                unsigned int yrs;
 555#ifdef CONFIG_MACH_DECSTATION
 556                unsigned int real_yrs;
 557#endif
 558
 559                if (!capable(CAP_SYS_TIME))
 560                        return -EACCES;
 561
 562                if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
 563                                   sizeof(struct rtc_time)))
 564                        return -EFAULT;
 565
 566                yrs = rtc_tm.tm_year + 1900;
 567                mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
 568                day = rtc_tm.tm_mday;
 569                hrs = rtc_tm.tm_hour;
 570                min = rtc_tm.tm_min;
 571                sec = rtc_tm.tm_sec;
 572
 573                if (yrs < 1970)
 574                        return -EINVAL;
 575
 576                leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
 577
 578                if ((mon > 12) || (day == 0))
 579                        return -EINVAL;
 580
 581                if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
 582                        return -EINVAL;
 583
 584                if ((hrs >= 24) || (min >= 60) || (sec >= 60))
 585                        return -EINVAL;
 586
 587                yrs -= epoch;
 588                if (yrs > 255)          /* They are unsigned */
 589                        return -EINVAL;
 590
 591                spin_lock_irq(&rtc_lock);
 592#ifdef CONFIG_MACH_DECSTATION
 593                real_yrs = yrs;
 594                yrs = 72;
 595
 596                /*
 597                 * We want to keep the year set to 73 until March
 598                 * for non-leap years, so that Feb, 29th is handled
 599                 * correctly.
 600                 */
 601                if (!leap_yr && mon < 3) {
 602                        real_yrs--;
 603                        yrs = 73;
 604                }
 605#endif
 606                /* These limits and adjustments are independent of
 607                 * whether the chip is in binary mode or not.
 608                 */
 609                if (yrs > 169) {
 610                        spin_unlock_irq(&rtc_lock);
 611                        return -EINVAL;
 612                }
 613                if (yrs >= 100)
 614                        yrs -= 100;
 615
 616                if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
 617                    || RTC_ALWAYS_BCD) {
 618                        sec = bin2bcd(sec);
 619                        min = bin2bcd(min);
 620                        hrs = bin2bcd(hrs);
 621                        day = bin2bcd(day);
 622                        mon = bin2bcd(mon);
 623                        yrs = bin2bcd(yrs);
 624                }
 625
 626                save_control = CMOS_READ(RTC_CONTROL);
 627                CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
 628                save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
 629                CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
 630
 631#ifdef CONFIG_MACH_DECSTATION
 632                CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
 633#endif
 634                CMOS_WRITE(yrs, RTC_YEAR);
 635                CMOS_WRITE(mon, RTC_MONTH);
 636                CMOS_WRITE(day, RTC_DAY_OF_MONTH);
 637                CMOS_WRITE(hrs, RTC_HOURS);
 638                CMOS_WRITE(min, RTC_MINUTES);
 639                CMOS_WRITE(sec, RTC_SECONDS);
 640
 641                CMOS_WRITE(save_control, RTC_CONTROL);
 642                CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
 643
 644                spin_unlock_irq(&rtc_lock);
 645                return 0;
 646        }
 647#ifdef RTC_IRQ
 648        case RTC_IRQP_READ:     /* Read the periodic IRQ rate.  */
 649        {
 650                return put_user(rtc_freq, (unsigned long __user *)arg);
 651        }
 652        case RTC_IRQP_SET:      /* Set periodic IRQ rate.       */
 653        {
 654                int tmp = 0;
 655                unsigned char val;
 656                /* can be called from isr via rtc_control() */
 657                unsigned long flags;
 658
 659                /*
 660                 * The max we can do is 8192Hz.
 661                 */
 662                if ((arg < 2) || (arg > 8192))
 663                        return -EINVAL;
 664                /*
 665                 * We don't really want Joe User generating more
 666                 * than 64Hz of interrupts on a multi-user machine.
 667                 */
 668                if (!kernel && (arg > rtc_max_user_freq) &&
 669                                        !capable(CAP_SYS_RESOURCE))
 670                        return -EACCES;
 671
 672                while (arg > (1<<tmp))
 673                        tmp++;
 674
 675                /*
 676                 * Check that the input was really a power of 2.
 677                 */
 678                if (arg != (1<<tmp))
 679                        return -EINVAL;
 680
 681                rtc_freq = arg;
 682
 683                spin_lock_irqsave(&rtc_lock, flags);
 684                if (hpet_set_periodic_freq(arg)) {
 685                        spin_unlock_irqrestore(&rtc_lock, flags);
 686                        return 0;
 687                }
 688
 689                val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
 690                val |= (16 - tmp);
 691                CMOS_WRITE(val, RTC_FREQ_SELECT);
 692                spin_unlock_irqrestore(&rtc_lock, flags);
 693                return 0;
 694        }
 695#endif
 696        case RTC_EPOCH_READ:    /* Read the epoch.      */
 697        {
 698                return put_user(epoch, (unsigned long __user *)arg);
 699        }
 700        case RTC_EPOCH_SET:     /* Set the epoch.       */
 701        {
 702                /*
 703                 * There were no RTC clocks before 1900.
 704                 */
 705                if (arg < 1900)
 706                        return -EINVAL;
 707
 708                if (!capable(CAP_SYS_TIME))
 709                        return -EACCES;
 710
 711                epoch = arg;
 712                return 0;
 713        }
 714        default:
 715                return -ENOTTY;
 716        }
 717        return copy_to_user((void __user *)arg,
 718                            &wtime, sizeof wtime) ? -EFAULT : 0;
 719}
 720
 721static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 722{
 723        long ret;
 724        ret = rtc_do_ioctl(cmd, arg, 0);
 725        return ret;
 726}
 727
 728/*
 729 *      We enforce only one user at a time here with the open/close.
 730 *      Also clear the previous interrupt data on an open, and clean
 731 *      up things on a close.
 732 */
 733static int rtc_open(struct inode *inode, struct file *file)
 734{
 735        spin_lock_irq(&rtc_lock);
 736
 737        if (rtc_status & RTC_IS_OPEN)
 738                goto out_busy;
 739
 740        rtc_status |= RTC_IS_OPEN;
 741
 742        rtc_irq_data = 0;
 743        spin_unlock_irq(&rtc_lock);
 744        return 0;
 745
 746out_busy:
 747        spin_unlock_irq(&rtc_lock);
 748        return -EBUSY;
 749}
 750
 751static int rtc_fasync(int fd, struct file *filp, int on)
 752{
 753        return fasync_helper(fd, filp, on, &rtc_async_queue);
 754}
 755
 756static int rtc_release(struct inode *inode, struct file *file)
 757{
 758#ifdef RTC_IRQ
 759        unsigned char tmp;
 760
 761        if (rtc_has_irq == 0)
 762                goto no_irq;
 763
 764        /*
 765         * Turn off all interrupts once the device is no longer
 766         * in use, and clear the data.
 767         */
 768
 769        spin_lock_irq(&rtc_lock);
 770        if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
 771                tmp = CMOS_READ(RTC_CONTROL);
 772                tmp &=  ~RTC_PIE;
 773                tmp &=  ~RTC_AIE;
 774                tmp &=  ~RTC_UIE;
 775                CMOS_WRITE(tmp, RTC_CONTROL);
 776                CMOS_READ(RTC_INTR_FLAGS);
 777        }
 778        if (rtc_status & RTC_TIMER_ON) {
 779                rtc_status &= ~RTC_TIMER_ON;
 780                del_timer(&rtc_irq_timer);
 781        }
 782        spin_unlock_irq(&rtc_lock);
 783
 784no_irq:
 785#endif
 786
 787        spin_lock_irq(&rtc_lock);
 788        rtc_irq_data = 0;
 789        rtc_status &= ~RTC_IS_OPEN;
 790        spin_unlock_irq(&rtc_lock);
 791
 792        return 0;
 793}
 794
 795#ifdef RTC_IRQ
 796static unsigned int rtc_poll(struct file *file, poll_table *wait)
 797{
 798        unsigned long l;
 799
 800        if (rtc_has_irq == 0)
 801                return 0;
 802
 803        poll_wait(file, &rtc_wait, wait);
 804
 805        spin_lock_irq(&rtc_lock);
 806        l = rtc_irq_data;
 807        spin_unlock_irq(&rtc_lock);
 808
 809        if (l != 0)
 810                return POLLIN | POLLRDNORM;
 811        return 0;
 812}
 813#endif
 814
 815int rtc_register(rtc_task_t *task)
 816{
 817#ifndef RTC_IRQ
 818        return -EIO;
 819#else
 820        if (task == NULL || task->func == NULL)
 821                return -EINVAL;
 822        spin_lock_irq(&rtc_lock);
 823        if (rtc_status & RTC_IS_OPEN) {
 824                spin_unlock_irq(&rtc_lock);
 825                return -EBUSY;
 826        }
 827        spin_lock(&rtc_task_lock);
 828        if (rtc_callback) {
 829                spin_unlock(&rtc_task_lock);
 830                spin_unlock_irq(&rtc_lock);
 831                return -EBUSY;
 832        }
 833        rtc_status |= RTC_IS_OPEN;
 834        rtc_callback = task;
 835        spin_unlock(&rtc_task_lock);
 836        spin_unlock_irq(&rtc_lock);
 837        return 0;
 838#endif
 839}
 840EXPORT_SYMBOL(rtc_register);
 841
 842int rtc_unregister(rtc_task_t *task)
 843{
 844#ifndef RTC_IRQ
 845        return -EIO;
 846#else
 847        unsigned char tmp;
 848
 849        spin_lock_irq(&rtc_lock);
 850        spin_lock(&rtc_task_lock);
 851        if (rtc_callback != task) {
 852                spin_unlock(&rtc_task_lock);
 853                spin_unlock_irq(&rtc_lock);
 854                return -ENXIO;
 855        }
 856        rtc_callback = NULL;
 857
 858        /* disable controls */
 859        if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
 860                tmp = CMOS_READ(RTC_CONTROL);
 861                tmp &= ~RTC_PIE;
 862                tmp &= ~RTC_AIE;
 863                tmp &= ~RTC_UIE;
 864                CMOS_WRITE(tmp, RTC_CONTROL);
 865                CMOS_READ(RTC_INTR_FLAGS);
 866        }
 867        if (rtc_status & RTC_TIMER_ON) {
 868                rtc_status &= ~RTC_TIMER_ON;
 869                del_timer(&rtc_irq_timer);
 870        }
 871        rtc_status &= ~RTC_IS_OPEN;
 872        spin_unlock(&rtc_task_lock);
 873        spin_unlock_irq(&rtc_lock);
 874        return 0;
 875#endif
 876}
 877EXPORT_SYMBOL(rtc_unregister);
 878
 879int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
 880{
 881#ifndef RTC_IRQ
 882        return -EIO;
 883#else
 884        unsigned long flags;
 885        if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
 886                return -EINVAL;
 887        spin_lock_irqsave(&rtc_task_lock, flags);
 888        if (rtc_callback != task) {
 889                spin_unlock_irqrestore(&rtc_task_lock, flags);
 890                return -ENXIO;
 891        }
 892        spin_unlock_irqrestore(&rtc_task_lock, flags);
 893        return rtc_do_ioctl(cmd, arg, 1);
 894#endif
 895}
 896EXPORT_SYMBOL(rtc_control);
 897
 898/*
 899 *      The various file operations we support.
 900 */
 901
 902static const struct file_operations rtc_fops = {
 903        .owner          = THIS_MODULE,
 904        .llseek         = no_llseek,
 905        .read           = rtc_read,
 906#ifdef RTC_IRQ
 907        .poll           = rtc_poll,
 908#endif
 909        .unlocked_ioctl = rtc_ioctl,
 910        .open           = rtc_open,
 911        .release        = rtc_release,
 912        .fasync         = rtc_fasync,
 913};
 914
 915static struct miscdevice rtc_dev = {
 916        .minor          = RTC_MINOR,
 917        .name           = "rtc",
 918        .fops           = &rtc_fops,
 919};
 920
 921#ifdef CONFIG_PROC_FS
 922static const struct file_operations rtc_proc_fops = {
 923        .owner          = THIS_MODULE,
 924        .open           = rtc_proc_open,
 925        .read           = seq_read,
 926        .llseek         = seq_lseek,
 927        .release        = single_release,
 928};
 929#endif
 930
 931static resource_size_t rtc_size;
 932
 933static struct resource * __init rtc_request_region(resource_size_t size)
 934{
 935        struct resource *r;
 936
 937        if (RTC_IOMAPPED)
 938                r = request_region(RTC_PORT(0), size, "rtc");
 939        else
 940                r = request_mem_region(RTC_PORT(0), size, "rtc");
 941
 942        if (r)
 943                rtc_size = size;
 944
 945        return r;
 946}
 947
 948static void rtc_release_region(void)
 949{
 950        if (RTC_IOMAPPED)
 951                release_region(RTC_PORT(0), rtc_size);
 952        else
 953                release_mem_region(RTC_PORT(0), rtc_size);
 954}
 955
 956static int __init rtc_init(void)
 957{
 958#ifdef CONFIG_PROC_FS
 959        struct proc_dir_entry *ent;
 960#endif
 961#if defined(__alpha__) || defined(__mips__)
 962        unsigned int year, ctrl;
 963        char *guess = NULL;
 964#endif
 965#ifdef CONFIG_SPARC32
 966        struct device_node *ebus_dp;
 967        struct of_device *op;
 968#else
 969        void *r;
 970#ifdef RTC_IRQ
 971        irq_handler_t rtc_int_handler_ptr;
 972#endif
 973#endif
 974
 975#ifdef CONFIG_SPARC32
 976        for_each_node_by_name(ebus_dp, "ebus") {
 977                struct device_node *dp;
 978                for (dp = ebus_dp; dp; dp = dp->sibling) {
 979                        if (!strcmp(dp->name, "rtc")) {
 980                                op = of_find_device_by_node(dp);
 981                                if (op) {
 982                                        rtc_port = op->resource[0].start;
 983                                        rtc_irq = op->irqs[0];
 984                                        goto found;
 985                                }
 986                        }
 987                }
 988        }
 989        rtc_has_irq = 0;
 990        printk(KERN_ERR "rtc_init: no PC rtc found\n");
 991        return -EIO;
 992
 993found:
 994        if (!rtc_irq) {
 995                rtc_has_irq = 0;
 996                goto no_irq;
 997        }
 998
 999        /*
1000         * XXX Interrupt pin #7 in Espresso is shared between RTC and
1001         * PCI Slot 2 INTA# (and some INTx# in Slot 1).
1002         */
1003        if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1004                        (void *)&rtc_port)) {
1005                rtc_has_irq = 0;
1006                printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1007                return -EIO;
1008        }
1009no_irq:
1010#else
1011        r = rtc_request_region(RTC_IO_EXTENT);
1012
1013        /*
1014         * If we've already requested a smaller range (for example, because
1015         * PNPBIOS or ACPI told us how the device is configured), the request
1016         * above might fail because it's too big.
1017         *
1018         * If so, request just the range we actually use.
1019         */
1020        if (!r)
1021                r = rtc_request_region(RTC_IO_EXTENT_USED);
1022        if (!r) {
1023#ifdef RTC_IRQ
1024                rtc_has_irq = 0;
1025#endif
1026                printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1027                       (long)(RTC_PORT(0)));
1028                return -EIO;
1029        }
1030
1031#ifdef RTC_IRQ
1032        if (is_hpet_enabled()) {
1033                int err;
1034
1035                rtc_int_handler_ptr = hpet_rtc_interrupt;
1036                err = hpet_register_irq_handler(rtc_interrupt);
1037                if (err != 0) {
1038                        printk(KERN_WARNING "hpet_register_irq_handler failed "
1039                                        "in rtc_init().");
1040                        return err;
1041                }
1042        } else {
1043                rtc_int_handler_ptr = rtc_interrupt;
1044        }
1045
1046        if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1047                        "rtc", NULL)) {
1048                /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1049                rtc_has_irq = 0;
1050                printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1051                rtc_release_region();
1052
1053                return -EIO;
1054        }
1055        hpet_rtc_timer_init();
1056
1057#endif
1058
1059#endif /* CONFIG_SPARC32 vs. others */
1060
1061        if (misc_register(&rtc_dev)) {
1062#ifdef RTC_IRQ
1063                free_irq(RTC_IRQ, NULL);
1064                hpet_unregister_irq_handler(rtc_interrupt);
1065                rtc_has_irq = 0;
1066#endif
1067                rtc_release_region();
1068                return -ENODEV;
1069        }
1070
1071#ifdef CONFIG_PROC_FS
1072        ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1073        if (!ent)
1074                printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1075#endif
1076
1077#if defined(__alpha__) || defined(__mips__)
1078        rtc_freq = HZ;
1079
1080        /* Each operating system on an Alpha uses its own epoch.
1081           Let's try to guess which one we are using now. */
1082
1083        if (rtc_is_updating() != 0)
1084                msleep(20);
1085
1086        spin_lock_irq(&rtc_lock);
1087        year = CMOS_READ(RTC_YEAR);
1088        ctrl = CMOS_READ(RTC_CONTROL);
1089        spin_unlock_irq(&rtc_lock);
1090
1091        if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1092                year = bcd2bin(year);       /* This should never happen... */
1093
1094        if (year < 20) {
1095                epoch = 2000;
1096                guess = "SRM (post-2000)";
1097        } else if (year >= 20 && year < 48) {
1098                epoch = 1980;
1099                guess = "ARC console";
1100        } else if (year >= 48 && year < 72) {
1101                epoch = 1952;
1102                guess = "Digital UNIX";
1103#if defined(__mips__)
1104        } else if (year >= 72 && year < 74) {
1105                epoch = 2000;
1106                guess = "Digital DECstation";
1107#else
1108        } else if (year >= 70) {
1109                epoch = 1900;
1110                guess = "Standard PC (1900)";
1111#endif
1112        }
1113        if (guess)
1114                printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1115                        guess, epoch);
1116#endif
1117#ifdef RTC_IRQ
1118        if (rtc_has_irq == 0)
1119                goto no_irq2;
1120
1121        spin_lock_irq(&rtc_lock);
1122        rtc_freq = 1024;
1123        if (!hpet_set_periodic_freq(rtc_freq)) {
1124                /*
1125                 * Initialize periodic frequency to CMOS reset default,
1126                 * which is 1024Hz
1127                 */
1128                CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1129                           RTC_FREQ_SELECT);
1130        }
1131        spin_unlock_irq(&rtc_lock);
1132no_irq2:
1133#endif
1134
1135        (void) init_sysctl();
1136
1137        printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1138
1139        return 0;
1140}
1141
1142static void __exit rtc_exit(void)
1143{
1144        cleanup_sysctl();
1145        remove_proc_entry("driver/rtc", NULL);
1146        misc_deregister(&rtc_dev);
1147
1148#ifdef CONFIG_SPARC32
1149        if (rtc_has_irq)
1150                free_irq(rtc_irq, &rtc_port);
1151#else
1152        rtc_release_region();
1153#ifdef RTC_IRQ
1154        if (rtc_has_irq) {
1155                free_irq(RTC_IRQ, NULL);
1156                hpet_unregister_irq_handler(hpet_rtc_interrupt);
1157        }
1158#endif
1159#endif /* CONFIG_SPARC32 */
1160}
1161
1162module_init(rtc_init);
1163module_exit(rtc_exit);
1164
1165#ifdef RTC_IRQ
1166/*
1167 *      At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1168 *      (usually during an IDE disk interrupt, with IRQ unmasking off)
1169 *      Since the interrupt handler doesn't get called, the IRQ status
1170 *      byte doesn't get read, and the RTC stops generating interrupts.
1171 *      A timer is set, and will call this function if/when that happens.
1172 *      To get it out of this stalled state, we just read the status.
1173 *      At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1174 *      (You *really* shouldn't be trying to use a non-realtime system
1175 *      for something that requires a steady > 1KHz signal anyways.)
1176 */
1177
1178static void rtc_dropped_irq(unsigned long data)
1179{
1180        unsigned long freq;
1181
1182        spin_lock_irq(&rtc_lock);
1183
1184        if (hpet_rtc_dropped_irq()) {
1185                spin_unlock_irq(&rtc_lock);
1186                return;
1187        }
1188
1189        /* Just in case someone disabled the timer from behind our back... */
1190        if (rtc_status & RTC_TIMER_ON)
1191                mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1192
1193        rtc_irq_data += ((rtc_freq/HZ)<<8);
1194        rtc_irq_data &= ~0xff;
1195        rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);     /* restart */
1196
1197        freq = rtc_freq;
1198
1199        spin_unlock_irq(&rtc_lock);
1200
1201        if (printk_ratelimit()) {
1202                printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1203                        freq);
1204        }
1205
1206        /* Now we have new data */
1207        wake_up_interruptible(&rtc_wait);
1208
1209        kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1210}
1211#endif
1212
1213#ifdef CONFIG_PROC_FS
1214/*
1215 *      Info exported via "/proc/driver/rtc".
1216 */
1217
1218static int rtc_proc_show(struct seq_file *seq, void *v)
1219{
1220#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1221#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1222        struct rtc_time tm;
1223        unsigned char batt, ctrl;
1224        unsigned long freq;
1225
1226        spin_lock_irq(&rtc_lock);
1227        batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1228        ctrl = CMOS_READ(RTC_CONTROL);
1229        freq = rtc_freq;
1230        spin_unlock_irq(&rtc_lock);
1231
1232
1233        rtc_get_rtc_time(&tm);
1234
1235        /*
1236         * There is no way to tell if the luser has the RTC set for local
1237         * time or for Universal Standard Time (GMT). Probably local though.
1238         */
1239        seq_printf(seq,
1240                   "rtc_time\t: %02d:%02d:%02d\n"
1241                   "rtc_date\t: %04d-%02d-%02d\n"
1242                   "rtc_epoch\t: %04lu\n",
1243                   tm.tm_hour, tm.tm_min, tm.tm_sec,
1244                   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1245
1246        get_rtc_alm_time(&tm);
1247
1248        /*
1249         * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1250         * match any value for that particular field. Values that are
1251         * greater than a valid time, but less than 0xc0 shouldn't appear.
1252         */
1253        seq_puts(seq, "alarm\t\t: ");
1254        if (tm.tm_hour <= 24)
1255                seq_printf(seq, "%02d:", tm.tm_hour);
1256        else
1257                seq_puts(seq, "**:");
1258
1259        if (tm.tm_min <= 59)
1260                seq_printf(seq, "%02d:", tm.tm_min);
1261        else
1262                seq_puts(seq, "**:");
1263
1264        if (tm.tm_sec <= 59)
1265                seq_printf(seq, "%02d\n", tm.tm_sec);
1266        else
1267                seq_puts(seq, "**\n");
1268
1269        seq_printf(seq,
1270                   "DST_enable\t: %s\n"
1271                   "BCD\t\t: %s\n"
1272                   "24hr\t\t: %s\n"
1273                   "square_wave\t: %s\n"
1274                   "alarm_IRQ\t: %s\n"
1275                   "update_IRQ\t: %s\n"
1276                   "periodic_IRQ\t: %s\n"
1277                   "periodic_freq\t: %ld\n"
1278                   "batt_status\t: %s\n",
1279                   YN(RTC_DST_EN),
1280                   NY(RTC_DM_BINARY),
1281                   YN(RTC_24H),
1282                   YN(RTC_SQWE),
1283                   YN(RTC_AIE),
1284                   YN(RTC_UIE),
1285                   YN(RTC_PIE),
1286                   freq,
1287                   batt ? "okay" : "dead");
1288
1289        return  0;
1290#undef YN
1291#undef NY
1292}
1293
1294static int rtc_proc_open(struct inode *inode, struct file *file)
1295{
1296        return single_open(file, rtc_proc_show, NULL);
1297}
1298#endif
1299
1300static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1301{
1302        unsigned long uip_watchdog = jiffies, flags;
1303        unsigned char ctrl;
1304#ifdef CONFIG_MACH_DECSTATION
1305        unsigned int real_year;
1306#endif
1307
1308        /*
1309         * read RTC once any update in progress is done. The update
1310         * can take just over 2ms. We wait 20ms. There is no need to
1311         * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1312         * If you need to know *exactly* when a second has started, enable
1313         * periodic update complete interrupts, (via ioctl) and then
1314         * immediately read /dev/rtc which will block until you get the IRQ.
1315         * Once the read clears, read the RTC time (again via ioctl). Easy.
1316         */
1317
1318        while (rtc_is_updating() != 0 &&
1319               time_before(jiffies, uip_watchdog + 2*HZ/100))
1320                cpu_relax();
1321
1322        /*
1323         * Only the values that we read from the RTC are set. We leave
1324         * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1325         * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1326         * only updated by the RTC when initially set to a non-zero value.
1327         */
1328        spin_lock_irqsave(&rtc_lock, flags);
1329        rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1330        rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1331        rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1332        rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1333        rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1334        rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1335        /* Only set from 2.6.16 onwards */
1336        rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1337
1338#ifdef CONFIG_MACH_DECSTATION
1339        real_year = CMOS_READ(RTC_DEC_YEAR);
1340#endif
1341        ctrl = CMOS_READ(RTC_CONTROL);
1342        spin_unlock_irqrestore(&rtc_lock, flags);
1343
1344        if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1345                rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1346                rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1347                rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1348                rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1349                rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1350                rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1351                rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1352        }
1353
1354#ifdef CONFIG_MACH_DECSTATION
1355        rtc_tm->tm_year += real_year - 72;
1356#endif
1357
1358        /*
1359         * Account for differences between how the RTC uses the values
1360         * and how they are defined in a struct rtc_time;
1361         */
1362        rtc_tm->tm_year += epoch - 1900;
1363        if (rtc_tm->tm_year <= 69)
1364                rtc_tm->tm_year += 100;
1365
1366        rtc_tm->tm_mon--;
1367}
1368
1369static void get_rtc_alm_time(struct rtc_time *alm_tm)
1370{
1371        unsigned char ctrl;
1372
1373        /*
1374         * Only the values that we read from the RTC are set. That
1375         * means only tm_hour, tm_min, and tm_sec.
1376         */
1377        spin_lock_irq(&rtc_lock);
1378        alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1379        alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1380        alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1381        ctrl = CMOS_READ(RTC_CONTROL);
1382        spin_unlock_irq(&rtc_lock);
1383
1384        if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1385                alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1386                alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1387                alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1388        }
1389}
1390
1391#ifdef RTC_IRQ
1392/*
1393 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1394 * Rumour has it that if you frob the interrupt enable/disable
1395 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1396 * ensure you actually start getting interrupts. Probably for
1397 * compatibility with older/broken chipset RTC implementations.
1398 * We also clear out any old irq data after an ioctl() that
1399 * meddles with the interrupt enable/disable bits.
1400 */
1401
1402static void mask_rtc_irq_bit_locked(unsigned char bit)
1403{
1404        unsigned char val;
1405
1406        if (hpet_mask_rtc_irq_bit(bit))
1407                return;
1408        val = CMOS_READ(RTC_CONTROL);
1409        val &=  ~bit;
1410        CMOS_WRITE(val, RTC_CONTROL);
1411        CMOS_READ(RTC_INTR_FLAGS);
1412
1413        rtc_irq_data = 0;
1414}
1415
1416static void set_rtc_irq_bit_locked(unsigned char bit)
1417{
1418        unsigned char val;
1419
1420        if (hpet_set_rtc_irq_bit(bit))
1421                return;
1422        val = CMOS_READ(RTC_CONTROL);
1423        val |= bit;
1424        CMOS_WRITE(val, RTC_CONTROL);
1425        CMOS_READ(RTC_INTR_FLAGS);
1426
1427        rtc_irq_data = 0;
1428}
1429#endif
1430
1431MODULE_AUTHOR("Paul Gortmaker");
1432MODULE_LICENSE("GPL");
1433MODULE_ALIAS_MISCDEV(RTC_MINOR);
1434