linux/drivers/char/tty_io.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/char/tty_io.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   9 * or rs-channels. It also implements echoing, cooked mode etc.
  10 *
  11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  12 *
  13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  14 * tty_struct and tty_queue structures.  Previously there was an array
  15 * of 256 tty_struct's which was statically allocated, and the
  16 * tty_queue structures were allocated at boot time.  Both are now
  17 * dynamically allocated only when the tty is open.
  18 *
  19 * Also restructured routines so that there is more of a separation
  20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  21 * the low-level tty routines (serial.c, pty.c, console.c).  This
  22 * makes for cleaner and more compact code.  -TYT, 9/17/92
  23 *
  24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  25 * which can be dynamically activated and de-activated by the line
  26 * discipline handling modules (like SLIP).
  27 *
  28 * NOTE: pay no attention to the line discipline code (yet); its
  29 * interface is still subject to change in this version...
  30 * -- TYT, 1/31/92
  31 *
  32 * Added functionality to the OPOST tty handling.  No delays, but all
  33 * other bits should be there.
  34 *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  35 *
  36 * Rewrote canonical mode and added more termios flags.
  37 *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  38 *
  39 * Reorganized FASYNC support so mouse code can share it.
  40 *      -- ctm@ardi.com, 9Sep95
  41 *
  42 * New TIOCLINUX variants added.
  43 *      -- mj@k332.feld.cvut.cz, 19-Nov-95
  44 *
  45 * Restrict vt switching via ioctl()
  46 *      -- grif@cs.ucr.edu, 5-Dec-95
  47 *
  48 * Move console and virtual terminal code to more appropriate files,
  49 * implement CONFIG_VT and generalize console device interface.
  50 *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  51 *
  52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  53 *      -- Bill Hawes <whawes@star.net>, June 97
  54 *
  55 * Added devfs support.
  56 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  57 *
  58 * Added support for a Unix98-style ptmx device.
  59 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  60 *
  61 * Reduced memory usage for older ARM systems
  62 *      -- Russell King <rmk@arm.linux.org.uk>
  63 *
  64 * Move do_SAK() into process context.  Less stack use in devfs functions.
  65 * alloc_tty_struct() always uses kmalloc()
  66 *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  67 */
  68
  69#include <linux/types.h>
  70#include <linux/major.h>
  71#include <linux/errno.h>
  72#include <linux/signal.h>
  73#include <linux/fcntl.h>
  74#include <linux/sched.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/proc_fs.h>
  91#include <linux/init.h>
  92#include <linux/module.h>
  93#include <linux/smp_lock.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99
 100#include <linux/uaccess.h>
 101#include <asm/system.h>
 102
 103#include <linux/kbd_kern.h>
 104#include <linux/vt_kern.h>
 105#include <linux/selection.h>
 106
 107#include <linux/kmod.h>
 108#include <linux/nsproxy.h>
 109
 110#undef TTY_DEBUG_HANGUP
 111
 112#define TTY_PARANOIA_CHECK 1
 113#define CHECK_TTY_COUNT 1
 114
 115struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
 116        .c_iflag = ICRNL | IXON,
 117        .c_oflag = OPOST | ONLCR,
 118        .c_cflag = B38400 | CS8 | CREAD | HUPCL,
 119        .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 120                   ECHOCTL | ECHOKE | IEXTEN,
 121        .c_cc = INIT_C_CC,
 122        .c_ispeed = 38400,
 123        .c_ospeed = 38400
 124};
 125
 126EXPORT_SYMBOL(tty_std_termios);
 127
 128/* This list gets poked at by procfs and various bits of boot up code. This
 129   could do with some rationalisation such as pulling the tty proc function
 130   into this file */
 131
 132LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
 133
 134/* Mutex to protect creating and releasing a tty. This is shared with
 135   vt.c for deeply disgusting hack reasons */
 136DEFINE_MUTEX(tty_mutex);
 137EXPORT_SYMBOL(tty_mutex);
 138
 139static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 140static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 141ssize_t redirected_tty_write(struct file *, const char __user *,
 142                                                        size_t, loff_t *);
 143static unsigned int tty_poll(struct file *, poll_table *);
 144static int tty_open(struct inode *, struct file *);
 145static int tty_release(struct inode *, struct file *);
 146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147#ifdef CONFIG_COMPAT
 148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 149                                unsigned long arg);
 150#else
 151#define tty_compat_ioctl NULL
 152#endif
 153static int tty_fasync(int fd, struct file *filp, int on);
 154static void release_tty(struct tty_struct *tty, int idx);
 155static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 156static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 157
 158/**
 159 *      alloc_tty_struct        -       allocate a tty object
 160 *
 161 *      Return a new empty tty structure. The data fields have not
 162 *      been initialized in any way but has been zeroed
 163 *
 164 *      Locking: none
 165 */
 166
 167struct tty_struct *alloc_tty_struct(void)
 168{
 169        return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 170}
 171
 172/**
 173 *      free_tty_struct         -       free a disused tty
 174 *      @tty: tty struct to free
 175 *
 176 *      Free the write buffers, tty queue and tty memory itself.
 177 *
 178 *      Locking: none. Must be called after tty is definitely unused
 179 */
 180
 181void free_tty_struct(struct tty_struct *tty)
 182{
 183        kfree(tty->write_buf);
 184        tty_buffer_free_all(tty);
 185        kfree(tty);
 186}
 187
 188#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 189
 190/**
 191 *      tty_name        -       return tty naming
 192 *      @tty: tty structure
 193 *      @buf: buffer for output
 194 *
 195 *      Convert a tty structure into a name. The name reflects the kernel
 196 *      naming policy and if udev is in use may not reflect user space
 197 *
 198 *      Locking: none
 199 */
 200
 201char *tty_name(struct tty_struct *tty, char *buf)
 202{
 203        if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 204                strcpy(buf, "NULL tty");
 205        else
 206                strcpy(buf, tty->name);
 207        return buf;
 208}
 209
 210EXPORT_SYMBOL(tty_name);
 211
 212int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 213                              const char *routine)
 214{
 215#ifdef TTY_PARANOIA_CHECK
 216        if (!tty) {
 217                printk(KERN_WARNING
 218                        "null TTY for (%d:%d) in %s\n",
 219                        imajor(inode), iminor(inode), routine);
 220                return 1;
 221        }
 222        if (tty->magic != TTY_MAGIC) {
 223                printk(KERN_WARNING
 224                        "bad magic number for tty struct (%d:%d) in %s\n",
 225                        imajor(inode), iminor(inode), routine);
 226                return 1;
 227        }
 228#endif
 229        return 0;
 230}
 231
 232static int check_tty_count(struct tty_struct *tty, const char *routine)
 233{
 234#ifdef CHECK_TTY_COUNT
 235        struct list_head *p;
 236        int count = 0;
 237
 238        file_list_lock();
 239        list_for_each(p, &tty->tty_files) {
 240                count++;
 241        }
 242        file_list_unlock();
 243        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 244            tty->driver->subtype == PTY_TYPE_SLAVE &&
 245            tty->link && tty->link->count)
 246                count++;
 247        if (tty->count != count) {
 248                printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 249                                    "!= #fd's(%d) in %s\n",
 250                       tty->name, tty->count, count, routine);
 251                return count;
 252        }
 253#endif
 254        return 0;
 255}
 256
 257/**
 258 *      get_tty_driver          -       find device of a tty
 259 *      @dev_t: device identifier
 260 *      @index: returns the index of the tty
 261 *
 262 *      This routine returns a tty driver structure, given a device number
 263 *      and also passes back the index number.
 264 *
 265 *      Locking: caller must hold tty_mutex
 266 */
 267
 268static struct tty_driver *get_tty_driver(dev_t device, int *index)
 269{
 270        struct tty_driver *p;
 271
 272        list_for_each_entry(p, &tty_drivers, tty_drivers) {
 273                dev_t base = MKDEV(p->major, p->minor_start);
 274                if (device < base || device >= base + p->num)
 275                        continue;
 276                *index = device - base;
 277                return tty_driver_kref_get(p);
 278        }
 279        return NULL;
 280}
 281
 282#ifdef CONFIG_CONSOLE_POLL
 283
 284/**
 285 *      tty_find_polling_driver -       find device of a polled tty
 286 *      @name: name string to match
 287 *      @line: pointer to resulting tty line nr
 288 *
 289 *      This routine returns a tty driver structure, given a name
 290 *      and the condition that the tty driver is capable of polled
 291 *      operation.
 292 */
 293struct tty_driver *tty_find_polling_driver(char *name, int *line)
 294{
 295        struct tty_driver *p, *res = NULL;
 296        int tty_line = 0;
 297        int len;
 298        char *str, *stp;
 299
 300        for (str = name; *str; str++)
 301                if ((*str >= '0' && *str <= '9') || *str == ',')
 302                        break;
 303        if (!*str)
 304                return NULL;
 305
 306        len = str - name;
 307        tty_line = simple_strtoul(str, &str, 10);
 308
 309        mutex_lock(&tty_mutex);
 310        /* Search through the tty devices to look for a match */
 311        list_for_each_entry(p, &tty_drivers, tty_drivers) {
 312                if (strncmp(name, p->name, len) != 0)
 313                        continue;
 314                stp = str;
 315                if (*stp == ',')
 316                        stp++;
 317                if (*stp == '\0')
 318                        stp = NULL;
 319
 320                if (tty_line >= 0 && tty_line <= p->num && p->ops &&
 321                    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 322                        res = tty_driver_kref_get(p);
 323                        *line = tty_line;
 324                        break;
 325                }
 326        }
 327        mutex_unlock(&tty_mutex);
 328
 329        return res;
 330}
 331EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 332#endif
 333
 334/**
 335 *      tty_check_change        -       check for POSIX terminal changes
 336 *      @tty: tty to check
 337 *
 338 *      If we try to write to, or set the state of, a terminal and we're
 339 *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
 340 *      ignored, go ahead and perform the operation.  (POSIX 7.2)
 341 *
 342 *      Locking: ctrl_lock
 343 */
 344
 345int tty_check_change(struct tty_struct *tty)
 346{
 347        unsigned long flags;
 348        int ret = 0;
 349
 350        if (current->signal->tty != tty)
 351                return 0;
 352
 353        spin_lock_irqsave(&tty->ctrl_lock, flags);
 354
 355        if (!tty->pgrp) {
 356                printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 357                goto out_unlock;
 358        }
 359        if (task_pgrp(current) == tty->pgrp)
 360                goto out_unlock;
 361        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 362        if (is_ignored(SIGTTOU))
 363                goto out;
 364        if (is_current_pgrp_orphaned()) {
 365                ret = -EIO;
 366                goto out;
 367        }
 368        kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 369        set_thread_flag(TIF_SIGPENDING);
 370        ret = -ERESTARTSYS;
 371out:
 372        return ret;
 373out_unlock:
 374        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 375        return ret;
 376}
 377
 378EXPORT_SYMBOL(tty_check_change);
 379
 380static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 381                                size_t count, loff_t *ppos)
 382{
 383        return 0;
 384}
 385
 386static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 387                                 size_t count, loff_t *ppos)
 388{
 389        return -EIO;
 390}
 391
 392/* No kernel lock held - none needed ;) */
 393static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 394{
 395        return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 396}
 397
 398static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 399                unsigned long arg)
 400{
 401        return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 402}
 403
 404static long hung_up_tty_compat_ioctl(struct file *file,
 405                                     unsigned int cmd, unsigned long arg)
 406{
 407        return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 408}
 409
 410static const struct file_operations tty_fops = {
 411        .llseek         = no_llseek,
 412        .read           = tty_read,
 413        .write          = tty_write,
 414        .poll           = tty_poll,
 415        .unlocked_ioctl = tty_ioctl,
 416        .compat_ioctl   = tty_compat_ioctl,
 417        .open           = tty_open,
 418        .release        = tty_release,
 419        .fasync         = tty_fasync,
 420};
 421
 422static const struct file_operations console_fops = {
 423        .llseek         = no_llseek,
 424        .read           = tty_read,
 425        .write          = redirected_tty_write,
 426        .poll           = tty_poll,
 427        .unlocked_ioctl = tty_ioctl,
 428        .compat_ioctl   = tty_compat_ioctl,
 429        .open           = tty_open,
 430        .release        = tty_release,
 431        .fasync         = tty_fasync,
 432};
 433
 434static const struct file_operations hung_up_tty_fops = {
 435        .llseek         = no_llseek,
 436        .read           = hung_up_tty_read,
 437        .write          = hung_up_tty_write,
 438        .poll           = hung_up_tty_poll,
 439        .unlocked_ioctl = hung_up_tty_ioctl,
 440        .compat_ioctl   = hung_up_tty_compat_ioctl,
 441        .release        = tty_release,
 442};
 443
 444static DEFINE_SPINLOCK(redirect_lock);
 445static struct file *redirect;
 446
 447/**
 448 *      tty_wakeup      -       request more data
 449 *      @tty: terminal
 450 *
 451 *      Internal and external helper for wakeups of tty. This function
 452 *      informs the line discipline if present that the driver is ready
 453 *      to receive more output data.
 454 */
 455
 456void tty_wakeup(struct tty_struct *tty)
 457{
 458        struct tty_ldisc *ld;
 459
 460        if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 461                ld = tty_ldisc_ref(tty);
 462                if (ld) {
 463                        if (ld->ops->write_wakeup)
 464                                ld->ops->write_wakeup(tty);
 465                        tty_ldisc_deref(ld);
 466                }
 467        }
 468        wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 469}
 470
 471EXPORT_SYMBOL_GPL(tty_wakeup);
 472
 473/**
 474 *      do_tty_hangup           -       actual handler for hangup events
 475 *      @work: tty device
 476 *
 477 *      This can be called by the "eventd" kernel thread.  That is process
 478 *      synchronous but doesn't hold any locks, so we need to make sure we
 479 *      have the appropriate locks for what we're doing.
 480 *
 481 *      The hangup event clears any pending redirections onto the hung up
 482 *      device. It ensures future writes will error and it does the needed
 483 *      line discipline hangup and signal delivery. The tty object itself
 484 *      remains intact.
 485 *
 486 *      Locking:
 487 *              BKL
 488 *                redirect lock for undoing redirection
 489 *                file list lock for manipulating list of ttys
 490 *                tty_ldisc_lock from called functions
 491 *                termios_mutex resetting termios data
 492 *                tasklist_lock to walk task list for hangup event
 493 *                  ->siglock to protect ->signal/->sighand
 494 */
 495static void do_tty_hangup(struct work_struct *work)
 496{
 497        struct tty_struct *tty =
 498                container_of(work, struct tty_struct, hangup_work);
 499        struct file *cons_filp = NULL;
 500        struct file *filp, *f = NULL;
 501        struct task_struct *p;
 502        int    closecount = 0, n;
 503        unsigned long flags;
 504        int refs = 0;
 505
 506        if (!tty)
 507                return;
 508
 509        /* inuse_filps is protected by the single kernel lock */
 510        lock_kernel();
 511
 512        spin_lock(&redirect_lock);
 513        if (redirect && redirect->private_data == tty) {
 514                f = redirect;
 515                redirect = NULL;
 516        }
 517        spin_unlock(&redirect_lock);
 518
 519        check_tty_count(tty, "do_tty_hangup");
 520        file_list_lock();
 521        /* This breaks for file handles being sent over AF_UNIX sockets ? */
 522        list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
 523                if (filp->f_op->write == redirected_tty_write)
 524                        cons_filp = filp;
 525                if (filp->f_op->write != tty_write)
 526                        continue;
 527                closecount++;
 528                tty_fasync(-1, filp, 0);        /* can't block */
 529                filp->f_op = &hung_up_tty_fops;
 530        }
 531        file_list_unlock();
 532
 533        tty_ldisc_hangup(tty);
 534
 535        read_lock(&tasklist_lock);
 536        if (tty->session) {
 537                do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 538                        spin_lock_irq(&p->sighand->siglock);
 539                        if (p->signal->tty == tty) {
 540                                p->signal->tty = NULL;
 541                                /* We defer the dereferences outside fo
 542                                   the tasklist lock */
 543                                refs++;
 544                        }
 545                        if (!p->signal->leader) {
 546                                spin_unlock_irq(&p->sighand->siglock);
 547                                continue;
 548                        }
 549                        __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 550                        __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 551                        put_pid(p->signal->tty_old_pgrp);  /* A noop */
 552                        spin_lock_irqsave(&tty->ctrl_lock, flags);
 553                        if (tty->pgrp)
 554                                p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 555                        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 556                        spin_unlock_irq(&p->sighand->siglock);
 557                } while_each_pid_task(tty->session, PIDTYPE_SID, p);
 558        }
 559        read_unlock(&tasklist_lock);
 560
 561        spin_lock_irqsave(&tty->ctrl_lock, flags);
 562        clear_bit(TTY_THROTTLED, &tty->flags);
 563        clear_bit(TTY_PUSH, &tty->flags);
 564        clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 565        put_pid(tty->session);
 566        put_pid(tty->pgrp);
 567        tty->session = NULL;
 568        tty->pgrp = NULL;
 569        tty->ctrl_status = 0;
 570        set_bit(TTY_HUPPED, &tty->flags);
 571        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 572
 573        /* Account for the p->signal references we killed */
 574        while (refs--)
 575                tty_kref_put(tty);
 576
 577        /*
 578         * If one of the devices matches a console pointer, we
 579         * cannot just call hangup() because that will cause
 580         * tty->count and state->count to go out of sync.
 581         * So we just call close() the right number of times.
 582         */
 583        if (cons_filp) {
 584                if (tty->ops->close)
 585                        for (n = 0; n < closecount; n++)
 586                                tty->ops->close(tty, cons_filp);
 587        } else if (tty->ops->hangup)
 588                (tty->ops->hangup)(tty);
 589        /*
 590         * We don't want to have driver/ldisc interactions beyond
 591         * the ones we did here. The driver layer expects no
 592         * calls after ->hangup() from the ldisc side. However we
 593         * can't yet guarantee all that.
 594         */
 595        set_bit(TTY_HUPPED, &tty->flags);
 596        tty_ldisc_enable(tty);
 597        unlock_kernel();
 598        if (f)
 599                fput(f);
 600}
 601
 602/**
 603 *      tty_hangup              -       trigger a hangup event
 604 *      @tty: tty to hangup
 605 *
 606 *      A carrier loss (virtual or otherwise) has occurred on this like
 607 *      schedule a hangup sequence to run after this event.
 608 */
 609
 610void tty_hangup(struct tty_struct *tty)
 611{
 612#ifdef TTY_DEBUG_HANGUP
 613        char    buf[64];
 614        printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 615#endif
 616        schedule_work(&tty->hangup_work);
 617}
 618
 619EXPORT_SYMBOL(tty_hangup);
 620
 621/**
 622 *      tty_vhangup             -       process vhangup
 623 *      @tty: tty to hangup
 624 *
 625 *      The user has asked via system call for the terminal to be hung up.
 626 *      We do this synchronously so that when the syscall returns the process
 627 *      is complete. That guarantee is necessary for security reasons.
 628 */
 629
 630void tty_vhangup(struct tty_struct *tty)
 631{
 632#ifdef TTY_DEBUG_HANGUP
 633        char    buf[64];
 634
 635        printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 636#endif
 637        do_tty_hangup(&tty->hangup_work);
 638}
 639
 640EXPORT_SYMBOL(tty_vhangup);
 641
 642/**
 643 *      tty_vhangup_self        -       process vhangup for own ctty
 644 *
 645 *      Perform a vhangup on the current controlling tty
 646 */
 647
 648void tty_vhangup_self(void)
 649{
 650        struct tty_struct *tty;
 651
 652        tty = get_current_tty();
 653        if (tty) {
 654                tty_vhangup(tty);
 655                tty_kref_put(tty);
 656        }
 657}
 658
 659/**
 660 *      tty_hung_up_p           -       was tty hung up
 661 *      @filp: file pointer of tty
 662 *
 663 *      Return true if the tty has been subject to a vhangup or a carrier
 664 *      loss
 665 */
 666
 667int tty_hung_up_p(struct file *filp)
 668{
 669        return (filp->f_op == &hung_up_tty_fops);
 670}
 671
 672EXPORT_SYMBOL(tty_hung_up_p);
 673
 674static void session_clear_tty(struct pid *session)
 675{
 676        struct task_struct *p;
 677        do_each_pid_task(session, PIDTYPE_SID, p) {
 678                proc_clear_tty(p);
 679        } while_each_pid_task(session, PIDTYPE_SID, p);
 680}
 681
 682/**
 683 *      disassociate_ctty       -       disconnect controlling tty
 684 *      @on_exit: true if exiting so need to "hang up" the session
 685 *
 686 *      This function is typically called only by the session leader, when
 687 *      it wants to disassociate itself from its controlling tty.
 688 *
 689 *      It performs the following functions:
 690 *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
 691 *      (2)  Clears the tty from being controlling the session
 692 *      (3)  Clears the controlling tty for all processes in the
 693 *              session group.
 694 *
 695 *      The argument on_exit is set to 1 if called when a process is
 696 *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
 697 *
 698 *      Locking:
 699 *              BKL is taken for hysterical raisins
 700 *                tty_mutex is taken to protect tty
 701 *                ->siglock is taken to protect ->signal/->sighand
 702 *                tasklist_lock is taken to walk process list for sessions
 703 *                  ->siglock is taken to protect ->signal/->sighand
 704 */
 705
 706void disassociate_ctty(int on_exit)
 707{
 708        struct tty_struct *tty;
 709        struct pid *tty_pgrp = NULL;
 710
 711
 712        tty = get_current_tty();
 713        if (tty) {
 714                tty_pgrp = get_pid(tty->pgrp);
 715                lock_kernel();
 716                if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
 717                        tty_vhangup(tty);
 718                unlock_kernel();
 719                tty_kref_put(tty);
 720        } else if (on_exit) {
 721                struct pid *old_pgrp;
 722                spin_lock_irq(&current->sighand->siglock);
 723                old_pgrp = current->signal->tty_old_pgrp;
 724                current->signal->tty_old_pgrp = NULL;
 725                spin_unlock_irq(&current->sighand->siglock);
 726                if (old_pgrp) {
 727                        kill_pgrp(old_pgrp, SIGHUP, on_exit);
 728                        kill_pgrp(old_pgrp, SIGCONT, on_exit);
 729                        put_pid(old_pgrp);
 730                }
 731                return;
 732        }
 733        if (tty_pgrp) {
 734                kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 735                if (!on_exit)
 736                        kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 737                put_pid(tty_pgrp);
 738        }
 739
 740        spin_lock_irq(&current->sighand->siglock);
 741        put_pid(current->signal->tty_old_pgrp);
 742        current->signal->tty_old_pgrp = NULL;
 743        spin_unlock_irq(&current->sighand->siglock);
 744
 745        tty = get_current_tty();
 746        if (tty) {
 747                unsigned long flags;
 748                spin_lock_irqsave(&tty->ctrl_lock, flags);
 749                put_pid(tty->session);
 750                put_pid(tty->pgrp);
 751                tty->session = NULL;
 752                tty->pgrp = NULL;
 753                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 754                tty_kref_put(tty);
 755        } else {
 756#ifdef TTY_DEBUG_HANGUP
 757                printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 758                       " = NULL", tty);
 759#endif
 760        }
 761
 762        /* Now clear signal->tty under the lock */
 763        read_lock(&tasklist_lock);
 764        session_clear_tty(task_session(current));
 765        read_unlock(&tasklist_lock);
 766}
 767
 768/**
 769 *
 770 *      no_tty  - Ensure the current process does not have a controlling tty
 771 */
 772void no_tty(void)
 773{
 774        struct task_struct *tsk = current;
 775        lock_kernel();
 776        if (tsk->signal->leader)
 777                disassociate_ctty(0);
 778        unlock_kernel();
 779        proc_clear_tty(tsk);
 780}
 781
 782
 783/**
 784 *      stop_tty        -       propagate flow control
 785 *      @tty: tty to stop
 786 *
 787 *      Perform flow control to the driver. For PTY/TTY pairs we
 788 *      must also propagate the TIOCKPKT status. May be called
 789 *      on an already stopped device and will not re-call the driver
 790 *      method.
 791 *
 792 *      This functionality is used by both the line disciplines for
 793 *      halting incoming flow and by the driver. It may therefore be
 794 *      called from any context, may be under the tty atomic_write_lock
 795 *      but not always.
 796 *
 797 *      Locking:
 798 *              Uses the tty control lock internally
 799 */
 800
 801void stop_tty(struct tty_struct *tty)
 802{
 803        unsigned long flags;
 804        spin_lock_irqsave(&tty->ctrl_lock, flags);
 805        if (tty->stopped) {
 806                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 807                return;
 808        }
 809        tty->stopped = 1;
 810        if (tty->link && tty->link->packet) {
 811                tty->ctrl_status &= ~TIOCPKT_START;
 812                tty->ctrl_status |= TIOCPKT_STOP;
 813                wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 814        }
 815        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 816        if (tty->ops->stop)
 817                (tty->ops->stop)(tty);
 818}
 819
 820EXPORT_SYMBOL(stop_tty);
 821
 822/**
 823 *      start_tty       -       propagate flow control
 824 *      @tty: tty to start
 825 *
 826 *      Start a tty that has been stopped if at all possible. Perform
 827 *      any necessary wakeups and propagate the TIOCPKT status. If this
 828 *      is the tty was previous stopped and is being started then the
 829 *      driver start method is invoked and the line discipline woken.
 830 *
 831 *      Locking:
 832 *              ctrl_lock
 833 */
 834
 835void start_tty(struct tty_struct *tty)
 836{
 837        unsigned long flags;
 838        spin_lock_irqsave(&tty->ctrl_lock, flags);
 839        if (!tty->stopped || tty->flow_stopped) {
 840                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 841                return;
 842        }
 843        tty->stopped = 0;
 844        if (tty->link && tty->link->packet) {
 845                tty->ctrl_status &= ~TIOCPKT_STOP;
 846                tty->ctrl_status |= TIOCPKT_START;
 847                wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 848        }
 849        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 850        if (tty->ops->start)
 851                (tty->ops->start)(tty);
 852        /* If we have a running line discipline it may need kicking */
 853        tty_wakeup(tty);
 854}
 855
 856EXPORT_SYMBOL(start_tty);
 857
 858/**
 859 *      tty_read        -       read method for tty device files
 860 *      @file: pointer to tty file
 861 *      @buf: user buffer
 862 *      @count: size of user buffer
 863 *      @ppos: unused
 864 *
 865 *      Perform the read system call function on this terminal device. Checks
 866 *      for hung up devices before calling the line discipline method.
 867 *
 868 *      Locking:
 869 *              Locks the line discipline internally while needed. Multiple
 870 *      read calls may be outstanding in parallel.
 871 */
 872
 873static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 874                        loff_t *ppos)
 875{
 876        int i;
 877        struct tty_struct *tty;
 878        struct inode *inode;
 879        struct tty_ldisc *ld;
 880
 881        tty = (struct tty_struct *)file->private_data;
 882        inode = file->f_path.dentry->d_inode;
 883        if (tty_paranoia_check(tty, inode, "tty_read"))
 884                return -EIO;
 885        if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 886                return -EIO;
 887
 888        /* We want to wait for the line discipline to sort out in this
 889           situation */
 890        ld = tty_ldisc_ref_wait(tty);
 891        if (ld->ops->read)
 892                i = (ld->ops->read)(tty, file, buf, count);
 893        else
 894                i = -EIO;
 895        tty_ldisc_deref(ld);
 896        if (i > 0)
 897                inode->i_atime = current_fs_time(inode->i_sb);
 898        return i;
 899}
 900
 901void tty_write_unlock(struct tty_struct *tty)
 902{
 903        mutex_unlock(&tty->atomic_write_lock);
 904        wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 905}
 906
 907int tty_write_lock(struct tty_struct *tty, int ndelay)
 908{
 909        if (!mutex_trylock(&tty->atomic_write_lock)) {
 910                if (ndelay)
 911                        return -EAGAIN;
 912                if (mutex_lock_interruptible(&tty->atomic_write_lock))
 913                        return -ERESTARTSYS;
 914        }
 915        return 0;
 916}
 917
 918/*
 919 * Split writes up in sane blocksizes to avoid
 920 * denial-of-service type attacks
 921 */
 922static inline ssize_t do_tty_write(
 923        ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 924        struct tty_struct *tty,
 925        struct file *file,
 926        const char __user *buf,
 927        size_t count)
 928{
 929        ssize_t ret, written = 0;
 930        unsigned int chunk;
 931
 932        ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 933        if (ret < 0)
 934                return ret;
 935
 936        /*
 937         * We chunk up writes into a temporary buffer. This
 938         * simplifies low-level drivers immensely, since they
 939         * don't have locking issues and user mode accesses.
 940         *
 941         * But if TTY_NO_WRITE_SPLIT is set, we should use a
 942         * big chunk-size..
 943         *
 944         * The default chunk-size is 2kB, because the NTTY
 945         * layer has problems with bigger chunks. It will
 946         * claim to be able to handle more characters than
 947         * it actually does.
 948         *
 949         * FIXME: This can probably go away now except that 64K chunks
 950         * are too likely to fail unless switched to vmalloc...
 951         */
 952        chunk = 2048;
 953        if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 954                chunk = 65536;
 955        if (count < chunk)
 956                chunk = count;
 957
 958        /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 959        if (tty->write_cnt < chunk) {
 960                unsigned char *buf_chunk;
 961
 962                if (chunk < 1024)
 963                        chunk = 1024;
 964
 965                buf_chunk = kmalloc(chunk, GFP_KERNEL);
 966                if (!buf_chunk) {
 967                        ret = -ENOMEM;
 968                        goto out;
 969                }
 970                kfree(tty->write_buf);
 971                tty->write_cnt = chunk;
 972                tty->write_buf = buf_chunk;
 973        }
 974
 975        /* Do the write .. */
 976        for (;;) {
 977                size_t size = count;
 978                if (size > chunk)
 979                        size = chunk;
 980                ret = -EFAULT;
 981                if (copy_from_user(tty->write_buf, buf, size))
 982                        break;
 983                ret = write(tty, file, tty->write_buf, size);
 984                if (ret <= 0)
 985                        break;
 986                written += ret;
 987                buf += ret;
 988                count -= ret;
 989                if (!count)
 990                        break;
 991                ret = -ERESTARTSYS;
 992                if (signal_pending(current))
 993                        break;
 994                cond_resched();
 995        }
 996        if (written) {
 997                struct inode *inode = file->f_path.dentry->d_inode;
 998                inode->i_mtime = current_fs_time(inode->i_sb);
 999                ret = written;
1000        }
1001out:
1002        tty_write_unlock(tty);
1003        return ret;
1004}
1005
1006/**
1007 * tty_write_message - write a message to a certain tty, not just the console.
1008 * @tty: the destination tty_struct
1009 * @msg: the message to write
1010 *
1011 * This is used for messages that need to be redirected to a specific tty.
1012 * We don't put it into the syslog queue right now maybe in the future if
1013 * really needed.
1014 *
1015 * We must still hold the BKL and test the CLOSING flag for the moment.
1016 */
1017
1018void tty_write_message(struct tty_struct *tty, char *msg)
1019{
1020        lock_kernel();
1021        if (tty) {
1022                mutex_lock(&tty->atomic_write_lock);
1023                if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1024                        tty->ops->write(tty, msg, strlen(msg));
1025                tty_write_unlock(tty);
1026        }
1027        unlock_kernel();
1028        return;
1029}
1030
1031
1032/**
1033 *      tty_write               -       write method for tty device file
1034 *      @file: tty file pointer
1035 *      @buf: user data to write
1036 *      @count: bytes to write
1037 *      @ppos: unused
1038 *
1039 *      Write data to a tty device via the line discipline.
1040 *
1041 *      Locking:
1042 *              Locks the line discipline as required
1043 *              Writes to the tty driver are serialized by the atomic_write_lock
1044 *      and are then processed in chunks to the device. The line discipline
1045 *      write method will not be invoked in parallel for each device.
1046 */
1047
1048static ssize_t tty_write(struct file *file, const char __user *buf,
1049                                                size_t count, loff_t *ppos)
1050{
1051        struct tty_struct *tty;
1052        struct inode *inode = file->f_path.dentry->d_inode;
1053        ssize_t ret;
1054        struct tty_ldisc *ld;
1055
1056        tty = (struct tty_struct *)file->private_data;
1057        if (tty_paranoia_check(tty, inode, "tty_write"))
1058                return -EIO;
1059        if (!tty || !tty->ops->write ||
1060                (test_bit(TTY_IO_ERROR, &tty->flags)))
1061                        return -EIO;
1062        /* Short term debug to catch buggy drivers */
1063        if (tty->ops->write_room == NULL)
1064                printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1065                        tty->driver->name);
1066        ld = tty_ldisc_ref_wait(tty);
1067        if (!ld->ops->write)
1068                ret = -EIO;
1069        else
1070                ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1071        tty_ldisc_deref(ld);
1072        return ret;
1073}
1074
1075ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1076                                                size_t count, loff_t *ppos)
1077{
1078        struct file *p = NULL;
1079
1080        spin_lock(&redirect_lock);
1081        if (redirect) {
1082                get_file(redirect);
1083                p = redirect;
1084        }
1085        spin_unlock(&redirect_lock);
1086
1087        if (p) {
1088                ssize_t res;
1089                res = vfs_write(p, buf, count, &p->f_pos);
1090                fput(p);
1091                return res;
1092        }
1093        return tty_write(file, buf, count, ppos);
1094}
1095
1096static char ptychar[] = "pqrstuvwxyzabcde";
1097
1098/**
1099 *      pty_line_name   -       generate name for a pty
1100 *      @driver: the tty driver in use
1101 *      @index: the minor number
1102 *      @p: output buffer of at least 6 bytes
1103 *
1104 *      Generate a name from a driver reference and write it to the output
1105 *      buffer.
1106 *
1107 *      Locking: None
1108 */
1109static void pty_line_name(struct tty_driver *driver, int index, char *p)
1110{
1111        int i = index + driver->name_base;
1112        /* ->name is initialized to "ttyp", but "tty" is expected */
1113        sprintf(p, "%s%c%x",
1114                driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1115                ptychar[i >> 4 & 0xf], i & 0xf);
1116}
1117
1118/**
1119 *      tty_line_name   -       generate name for a tty
1120 *      @driver: the tty driver in use
1121 *      @index: the minor number
1122 *      @p: output buffer of at least 7 bytes
1123 *
1124 *      Generate a name from a driver reference and write it to the output
1125 *      buffer.
1126 *
1127 *      Locking: None
1128 */
1129static void tty_line_name(struct tty_driver *driver, int index, char *p)
1130{
1131        sprintf(p, "%s%d", driver->name, index + driver->name_base);
1132}
1133
1134/**
1135 *      tty_driver_lookup_tty() - find an existing tty, if any
1136 *      @driver: the driver for the tty
1137 *      @idx:    the minor number
1138 *
1139 *      Return the tty, if found or ERR_PTR() otherwise.
1140 *
1141 *      Locking: tty_mutex must be held. If tty is found, the mutex must
1142 *      be held until the 'fast-open' is also done. Will change once we
1143 *      have refcounting in the driver and per driver locking
1144 */
1145static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1146                struct inode *inode, int idx)
1147{
1148        struct tty_struct *tty;
1149
1150        if (driver->ops->lookup)
1151                return driver->ops->lookup(driver, inode, idx);
1152
1153        tty = driver->ttys[idx];
1154        return tty;
1155}
1156
1157/**
1158 *      tty_init_termios        -  helper for termios setup
1159 *      @tty: the tty to set up
1160 *
1161 *      Initialise the termios structures for this tty. Thus runs under
1162 *      the tty_mutex currently so we can be relaxed about ordering.
1163 */
1164
1165int tty_init_termios(struct tty_struct *tty)
1166{
1167        struct ktermios *tp;
1168        int idx = tty->index;
1169
1170        tp = tty->driver->termios[idx];
1171        if (tp == NULL) {
1172                tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1173                if (tp == NULL)
1174                        return -ENOMEM;
1175                memcpy(tp, &tty->driver->init_termios,
1176                                                sizeof(struct ktermios));
1177                tty->driver->termios[idx] = tp;
1178        }
1179        tty->termios = tp;
1180        tty->termios_locked = tp + 1;
1181
1182        /* Compatibility until drivers always set this */
1183        tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1184        tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1185        return 0;
1186}
1187EXPORT_SYMBOL_GPL(tty_init_termios);
1188
1189/**
1190 *      tty_driver_install_tty() - install a tty entry in the driver
1191 *      @driver: the driver for the tty
1192 *      @tty: the tty
1193 *
1194 *      Install a tty object into the driver tables. The tty->index field
1195 *      will be set by the time this is called. This method is responsible
1196 *      for ensuring any need additional structures are allocated and
1197 *      configured.
1198 *
1199 *      Locking: tty_mutex for now
1200 */
1201static int tty_driver_install_tty(struct tty_driver *driver,
1202                                                struct tty_struct *tty)
1203{
1204        int idx = tty->index;
1205
1206        if (driver->ops->install)
1207                return driver->ops->install(driver, tty);
1208
1209        if (tty_init_termios(tty) == 0) {
1210                tty_driver_kref_get(driver);
1211                tty->count++;
1212                driver->ttys[idx] = tty;
1213                return 0;
1214        }
1215        return -ENOMEM;
1216}
1217
1218/**
1219 *      tty_driver_remove_tty() - remove a tty from the driver tables
1220 *      @driver: the driver for the tty
1221 *      @idx:    the minor number
1222 *
1223 *      Remvoe a tty object from the driver tables. The tty->index field
1224 *      will be set by the time this is called.
1225 *
1226 *      Locking: tty_mutex for now
1227 */
1228static void tty_driver_remove_tty(struct tty_driver *driver,
1229                                                struct tty_struct *tty)
1230{
1231        if (driver->ops->remove)
1232                driver->ops->remove(driver, tty);
1233        else
1234                driver->ttys[tty->index] = NULL;
1235}
1236
1237/*
1238 *      tty_reopen()    - fast re-open of an open tty
1239 *      @tty    - the tty to open
1240 *
1241 *      Return 0 on success, -errno on error.
1242 *
1243 *      Locking: tty_mutex must be held from the time the tty was found
1244 *               till this open completes.
1245 */
1246static int tty_reopen(struct tty_struct *tty)
1247{
1248        struct tty_driver *driver = tty->driver;
1249
1250        if (test_bit(TTY_CLOSING, &tty->flags))
1251                return -EIO;
1252
1253        if (driver->type == TTY_DRIVER_TYPE_PTY &&
1254            driver->subtype == PTY_TYPE_MASTER) {
1255                /*
1256                 * special case for PTY masters: only one open permitted,
1257                 * and the slave side open count is incremented as well.
1258                 */
1259                if (tty->count)
1260                        return -EIO;
1261
1262                tty->link->count++;
1263        }
1264        tty->count++;
1265        tty->driver = driver; /* N.B. why do this every time?? */
1266
1267        mutex_lock(&tty->ldisc_mutex);
1268        WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1269        mutex_unlock(&tty->ldisc_mutex);
1270
1271        return 0;
1272}
1273
1274/**
1275 *      tty_init_dev            -       initialise a tty device
1276 *      @driver: tty driver we are opening a device on
1277 *      @idx: device index
1278 *      @ret_tty: returned tty structure
1279 *      @first_ok: ok to open a new device (used by ptmx)
1280 *
1281 *      Prepare a tty device. This may not be a "new" clean device but
1282 *      could also be an active device. The pty drivers require special
1283 *      handling because of this.
1284 *
1285 *      Locking:
1286 *              The function is called under the tty_mutex, which
1287 *      protects us from the tty struct or driver itself going away.
1288 *
1289 *      On exit the tty device has the line discipline attached and
1290 *      a reference count of 1. If a pair was created for pty/tty use
1291 *      and the other was a pty master then it too has a reference count of 1.
1292 *
1293 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1294 * failed open.  The new code protects the open with a mutex, so it's
1295 * really quite straightforward.  The mutex locking can probably be
1296 * relaxed for the (most common) case of reopening a tty.
1297 */
1298
1299struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1300                                                                int first_ok)
1301{
1302        struct tty_struct *tty;
1303        int retval;
1304
1305        /* Check if pty master is being opened multiple times */
1306        if (driver->subtype == PTY_TYPE_MASTER &&
1307                (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1308                return ERR_PTR(-EIO);
1309
1310        /*
1311         * First time open is complex, especially for PTY devices.
1312         * This code guarantees that either everything succeeds and the
1313         * TTY is ready for operation, or else the table slots are vacated
1314         * and the allocated memory released.  (Except that the termios
1315         * and locked termios may be retained.)
1316         */
1317
1318        if (!try_module_get(driver->owner))
1319                return ERR_PTR(-ENODEV);
1320
1321        tty = alloc_tty_struct();
1322        if (!tty)
1323                goto fail_no_mem;
1324        initialize_tty_struct(tty, driver, idx);
1325
1326        retval = tty_driver_install_tty(driver, tty);
1327        if (retval < 0) {
1328                free_tty_struct(tty);
1329                module_put(driver->owner);
1330                return ERR_PTR(retval);
1331        }
1332
1333        /*
1334         * Structures all installed ... call the ldisc open routines.
1335         * If we fail here just call release_tty to clean up.  No need
1336         * to decrement the use counts, as release_tty doesn't care.
1337         */
1338
1339        retval = tty_ldisc_setup(tty, tty->link);
1340        if (retval)
1341                goto release_mem_out;
1342        return tty;
1343
1344fail_no_mem:
1345        module_put(driver->owner);
1346        return ERR_PTR(-ENOMEM);
1347
1348        /* call the tty release_tty routine to clean out this slot */
1349release_mem_out:
1350        if (printk_ratelimit())
1351                printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1352                                 "clearing slot %d\n", idx);
1353        release_tty(tty, idx);
1354        return ERR_PTR(retval);
1355}
1356
1357void tty_free_termios(struct tty_struct *tty)
1358{
1359        struct ktermios *tp;
1360        int idx = tty->index;
1361        /* Kill this flag and push into drivers for locking etc */
1362        if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1363                /* FIXME: Locking on ->termios array */
1364                tp = tty->termios;
1365                tty->driver->termios[idx] = NULL;
1366                kfree(tp);
1367        }
1368}
1369EXPORT_SYMBOL(tty_free_termios);
1370
1371void tty_shutdown(struct tty_struct *tty)
1372{
1373        tty_driver_remove_tty(tty->driver, tty);
1374        tty_free_termios(tty);
1375}
1376EXPORT_SYMBOL(tty_shutdown);
1377
1378/**
1379 *      release_one_tty         -       release tty structure memory
1380 *      @kref: kref of tty we are obliterating
1381 *
1382 *      Releases memory associated with a tty structure, and clears out the
1383 *      driver table slots. This function is called when a device is no longer
1384 *      in use. It also gets called when setup of a device fails.
1385 *
1386 *      Locking:
1387 *              tty_mutex - sometimes only
1388 *              takes the file list lock internally when working on the list
1389 *      of ttys that the driver keeps.
1390 *
1391 *      This method gets called from a work queue so that the driver private
1392 *      cleanup ops can sleep (needed for USB at least)
1393 */
1394static void release_one_tty(struct work_struct *work)
1395{
1396        struct tty_struct *tty =
1397                container_of(work, struct tty_struct, hangup_work);
1398        struct tty_driver *driver = tty->driver;
1399
1400        if (tty->ops->cleanup)
1401                tty->ops->cleanup(tty);
1402
1403        tty->magic = 0;
1404        tty_driver_kref_put(driver);
1405        module_put(driver->owner);
1406
1407        file_list_lock();
1408        list_del_init(&tty->tty_files);
1409        file_list_unlock();
1410
1411        free_tty_struct(tty);
1412}
1413
1414static void queue_release_one_tty(struct kref *kref)
1415{
1416        struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1417
1418        if (tty->ops->shutdown)
1419                tty->ops->shutdown(tty);
1420        else
1421                tty_shutdown(tty);
1422
1423        /* The hangup queue is now free so we can reuse it rather than
1424           waste a chunk of memory for each port */
1425        INIT_WORK(&tty->hangup_work, release_one_tty);
1426        schedule_work(&tty->hangup_work);
1427}
1428
1429/**
1430 *      tty_kref_put            -       release a tty kref
1431 *      @tty: tty device
1432 *
1433 *      Release a reference to a tty device and if need be let the kref
1434 *      layer destruct the object for us
1435 */
1436
1437void tty_kref_put(struct tty_struct *tty)
1438{
1439        if (tty)
1440                kref_put(&tty->kref, queue_release_one_tty);
1441}
1442EXPORT_SYMBOL(tty_kref_put);
1443
1444/**
1445 *      release_tty             -       release tty structure memory
1446 *
1447 *      Release both @tty and a possible linked partner (think pty pair),
1448 *      and decrement the refcount of the backing module.
1449 *
1450 *      Locking:
1451 *              tty_mutex - sometimes only
1452 *              takes the file list lock internally when working on the list
1453 *      of ttys that the driver keeps.
1454 *              FIXME: should we require tty_mutex is held here ??
1455 *
1456 */
1457static void release_tty(struct tty_struct *tty, int idx)
1458{
1459        /* This should always be true but check for the moment */
1460        WARN_ON(tty->index != idx);
1461
1462        if (tty->link)
1463                tty_kref_put(tty->link);
1464        tty_kref_put(tty);
1465}
1466
1467/*
1468 * Even releasing the tty structures is a tricky business.. We have
1469 * to be very careful that the structures are all released at the
1470 * same time, as interrupts might otherwise get the wrong pointers.
1471 *
1472 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1473 * lead to double frees or releasing memory still in use.
1474 */
1475void tty_release_dev(struct file *filp)
1476{
1477        struct tty_struct *tty, *o_tty;
1478        int     pty_master, tty_closing, o_tty_closing, do_sleep;
1479        int     devpts;
1480        int     idx;
1481        char    buf[64];
1482        struct  inode *inode;
1483
1484        inode = filp->f_path.dentry->d_inode;
1485        tty = (struct tty_struct *)filp->private_data;
1486        if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1487                return;
1488
1489        check_tty_count(tty, "tty_release_dev");
1490
1491        tty_fasync(-1, filp, 0);
1492
1493        idx = tty->index;
1494        pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1495                      tty->driver->subtype == PTY_TYPE_MASTER);
1496        devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1497        o_tty = tty->link;
1498
1499#ifdef TTY_PARANOIA_CHECK
1500        if (idx < 0 || idx >= tty->driver->num) {
1501                printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1502                                  "free (%s)\n", tty->name);
1503                return;
1504        }
1505        if (!devpts) {
1506                if (tty != tty->driver->ttys[idx]) {
1507                        printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1508                               "for (%s)\n", idx, tty->name);
1509                        return;
1510                }
1511                if (tty->termios != tty->driver->termios[idx]) {
1512                        printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1513                               "for (%s)\n",
1514                               idx, tty->name);
1515                        return;
1516                }
1517        }
1518#endif
1519
1520#ifdef TTY_DEBUG_HANGUP
1521        printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1522               tty_name(tty, buf), tty->count);
1523#endif
1524
1525#ifdef TTY_PARANOIA_CHECK
1526        if (tty->driver->other &&
1527             !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1528                if (o_tty != tty->driver->other->ttys[idx]) {
1529                        printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1530                                          "not o_tty for (%s)\n",
1531                               idx, tty->name);
1532                        return;
1533                }
1534                if (o_tty->termios != tty->driver->other->termios[idx]) {
1535                        printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1536                                          "not o_termios for (%s)\n",
1537                               idx, tty->name);
1538                        return;
1539                }
1540                if (o_tty->link != tty) {
1541                        printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1542                        return;
1543                }
1544        }
1545#endif
1546        if (tty->ops->close)
1547                tty->ops->close(tty, filp);
1548
1549        /*
1550         * Sanity check: if tty->count is going to zero, there shouldn't be
1551         * any waiters on tty->read_wait or tty->write_wait.  We test the
1552         * wait queues and kick everyone out _before_ actually starting to
1553         * close.  This ensures that we won't block while releasing the tty
1554         * structure.
1555         *
1556         * The test for the o_tty closing is necessary, since the master and
1557         * slave sides may close in any order.  If the slave side closes out
1558         * first, its count will be one, since the master side holds an open.
1559         * Thus this test wouldn't be triggered at the time the slave closes,
1560         * so we do it now.
1561         *
1562         * Note that it's possible for the tty to be opened again while we're
1563         * flushing out waiters.  By recalculating the closing flags before
1564         * each iteration we avoid any problems.
1565         */
1566        while (1) {
1567                /* Guard against races with tty->count changes elsewhere and
1568                   opens on /dev/tty */
1569
1570                mutex_lock(&tty_mutex);
1571                tty_closing = tty->count <= 1;
1572                o_tty_closing = o_tty &&
1573                        (o_tty->count <= (pty_master ? 1 : 0));
1574                do_sleep = 0;
1575
1576                if (tty_closing) {
1577                        if (waitqueue_active(&tty->read_wait)) {
1578                                wake_up_poll(&tty->read_wait, POLLIN);
1579                                do_sleep++;
1580                        }
1581                        if (waitqueue_active(&tty->write_wait)) {
1582                                wake_up_poll(&tty->write_wait, POLLOUT);
1583                                do_sleep++;
1584                        }
1585                }
1586                if (o_tty_closing) {
1587                        if (waitqueue_active(&o_tty->read_wait)) {
1588                                wake_up_poll(&o_tty->read_wait, POLLIN);
1589                                do_sleep++;
1590                        }
1591                        if (waitqueue_active(&o_tty->write_wait)) {
1592                                wake_up_poll(&o_tty->write_wait, POLLOUT);
1593                                do_sleep++;
1594                        }
1595                }
1596                if (!do_sleep)
1597                        break;
1598
1599                printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1600                                    "active!\n", tty_name(tty, buf));
1601                mutex_unlock(&tty_mutex);
1602                schedule();
1603        }
1604
1605        /*
1606         * The closing flags are now consistent with the open counts on
1607         * both sides, and we've completed the last operation that could
1608         * block, so it's safe to proceed with closing.
1609         */
1610        if (pty_master) {
1611                if (--o_tty->count < 0) {
1612                        printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1613                                            "(%d) for %s\n",
1614                               o_tty->count, tty_name(o_tty, buf));
1615                        o_tty->count = 0;
1616                }
1617        }
1618        if (--tty->count < 0) {
1619                printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1620                       tty->count, tty_name(tty, buf));
1621                tty->count = 0;
1622        }
1623
1624        /*
1625         * We've decremented tty->count, so we need to remove this file
1626         * descriptor off the tty->tty_files list; this serves two
1627         * purposes:
1628         *  - check_tty_count sees the correct number of file descriptors
1629         *    associated with this tty.
1630         *  - do_tty_hangup no longer sees this file descriptor as
1631         *    something that needs to be handled for hangups.
1632         */
1633        file_kill(filp);
1634        filp->private_data = NULL;
1635
1636        /*
1637         * Perform some housekeeping before deciding whether to return.
1638         *
1639         * Set the TTY_CLOSING flag if this was the last open.  In the
1640         * case of a pty we may have to wait around for the other side
1641         * to close, and TTY_CLOSING makes sure we can't be reopened.
1642         */
1643        if (tty_closing)
1644                set_bit(TTY_CLOSING, &tty->flags);
1645        if (o_tty_closing)
1646                set_bit(TTY_CLOSING, &o_tty->flags);
1647
1648        /*
1649         * If _either_ side is closing, make sure there aren't any
1650         * processes that still think tty or o_tty is their controlling
1651         * tty.
1652         */
1653        if (tty_closing || o_tty_closing) {
1654                read_lock(&tasklist_lock);
1655                session_clear_tty(tty->session);
1656                if (o_tty)
1657                        session_clear_tty(o_tty->session);
1658                read_unlock(&tasklist_lock);
1659        }
1660
1661        mutex_unlock(&tty_mutex);
1662
1663        /* check whether both sides are closing ... */
1664        if (!tty_closing || (o_tty && !o_tty_closing))
1665                return;
1666
1667#ifdef TTY_DEBUG_HANGUP
1668        printk(KERN_DEBUG "freeing tty structure...");
1669#endif
1670        /*
1671         * Ask the line discipline code to release its structures
1672         */
1673        tty_ldisc_release(tty, o_tty);
1674        /*
1675         * The release_tty function takes care of the details of clearing
1676         * the slots and preserving the termios structure.
1677         */
1678        release_tty(tty, idx);
1679
1680        /* Make this pty number available for reallocation */
1681        if (devpts)
1682                devpts_kill_index(inode, idx);
1683}
1684
1685/**
1686 *      __tty_open              -       open a tty device
1687 *      @inode: inode of device file
1688 *      @filp: file pointer to tty
1689 *
1690 *      tty_open and tty_release keep up the tty count that contains the
1691 *      number of opens done on a tty. We cannot use the inode-count, as
1692 *      different inodes might point to the same tty.
1693 *
1694 *      Open-counting is needed for pty masters, as well as for keeping
1695 *      track of serial lines: DTR is dropped when the last close happens.
1696 *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1697 *
1698 *      The termios state of a pty is reset on first open so that
1699 *      settings don't persist across reuse.
1700 *
1701 *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1702 *               tty->count should protect the rest.
1703 *               ->siglock protects ->signal/->sighand
1704 */
1705
1706static int __tty_open(struct inode *inode, struct file *filp)
1707{
1708        struct tty_struct *tty = NULL;
1709        int noctty, retval;
1710        struct tty_driver *driver;
1711        int index;
1712        dev_t device = inode->i_rdev;
1713        unsigned saved_flags = filp->f_flags;
1714
1715        nonseekable_open(inode, filp);
1716
1717retry_open:
1718        noctty = filp->f_flags & O_NOCTTY;
1719        index  = -1;
1720        retval = 0;
1721
1722        mutex_lock(&tty_mutex);
1723
1724        if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1725                tty = get_current_tty();
1726                if (!tty) {
1727                        mutex_unlock(&tty_mutex);
1728                        return -ENXIO;
1729                }
1730                driver = tty_driver_kref_get(tty->driver);
1731                index = tty->index;
1732                filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1733                /* noctty = 1; */
1734                /* FIXME: Should we take a driver reference ? */
1735                tty_kref_put(tty);
1736                goto got_driver;
1737        }
1738#ifdef CONFIG_VT
1739        if (device == MKDEV(TTY_MAJOR, 0)) {
1740                extern struct tty_driver *console_driver;
1741                driver = tty_driver_kref_get(console_driver);
1742                index = fg_console;
1743                noctty = 1;
1744                goto got_driver;
1745        }
1746#endif
1747        if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1748                struct tty_driver *console_driver = console_device(&index);
1749                if (console_driver) {
1750                        driver = tty_driver_kref_get(console_driver);
1751                        if (driver) {
1752                                /* Don't let /dev/console block */
1753                                filp->f_flags |= O_NONBLOCK;
1754                                noctty = 1;
1755                                goto got_driver;
1756                        }
1757                }
1758                mutex_unlock(&tty_mutex);
1759                return -ENODEV;
1760        }
1761
1762        driver = get_tty_driver(device, &index);
1763        if (!driver) {
1764                mutex_unlock(&tty_mutex);
1765                return -ENODEV;
1766        }
1767got_driver:
1768        if (!tty) {
1769                /* check whether we're reopening an existing tty */
1770                tty = tty_driver_lookup_tty(driver, inode, index);
1771
1772                if (IS_ERR(tty)) {
1773                        mutex_unlock(&tty_mutex);
1774                        return PTR_ERR(tty);
1775                }
1776        }
1777
1778        if (tty) {
1779                retval = tty_reopen(tty);
1780                if (retval)
1781                        tty = ERR_PTR(retval);
1782        } else
1783                tty = tty_init_dev(driver, index, 0);
1784
1785        mutex_unlock(&tty_mutex);
1786        tty_driver_kref_put(driver);
1787        if (IS_ERR(tty))
1788                return PTR_ERR(tty);
1789
1790        filp->private_data = tty;
1791        file_move(filp, &tty->tty_files);
1792        check_tty_count(tty, "tty_open");
1793        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1794            tty->driver->subtype == PTY_TYPE_MASTER)
1795                noctty = 1;
1796#ifdef TTY_DEBUG_HANGUP
1797        printk(KERN_DEBUG "opening %s...", tty->name);
1798#endif
1799        if (!retval) {
1800                if (tty->ops->open)
1801                        retval = tty->ops->open(tty, filp);
1802                else
1803                        retval = -ENODEV;
1804        }
1805        filp->f_flags = saved_flags;
1806
1807        if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1808                                                !capable(CAP_SYS_ADMIN))
1809                retval = -EBUSY;
1810
1811        if (retval) {
1812#ifdef TTY_DEBUG_HANGUP
1813                printk(KERN_DEBUG "error %d in opening %s...", retval,
1814                       tty->name);
1815#endif
1816                tty_release_dev(filp);
1817                if (retval != -ERESTARTSYS)
1818                        return retval;
1819                if (signal_pending(current))
1820                        return retval;
1821                schedule();
1822                /*
1823                 * Need to reset f_op in case a hangup happened.
1824                 */
1825                if (filp->f_op == &hung_up_tty_fops)
1826                        filp->f_op = &tty_fops;
1827                goto retry_open;
1828        }
1829
1830        mutex_lock(&tty_mutex);
1831        spin_lock_irq(&current->sighand->siglock);
1832        if (!noctty &&
1833            current->signal->leader &&
1834            !current->signal->tty &&
1835            tty->session == NULL)
1836                __proc_set_tty(current, tty);
1837        spin_unlock_irq(&current->sighand->siglock);
1838        mutex_unlock(&tty_mutex);
1839        return 0;
1840}
1841
1842/* BKL pushdown: scary code avoidance wrapper */
1843static int tty_open(struct inode *inode, struct file *filp)
1844{
1845        int ret;
1846
1847        lock_kernel();
1848        ret = __tty_open(inode, filp);
1849        unlock_kernel();
1850        return ret;
1851}
1852
1853
1854
1855
1856/**
1857 *      tty_release             -       vfs callback for close
1858 *      @inode: inode of tty
1859 *      @filp: file pointer for handle to tty
1860 *
1861 *      Called the last time each file handle is closed that references
1862 *      this tty. There may however be several such references.
1863 *
1864 *      Locking:
1865 *              Takes bkl. See tty_release_dev
1866 */
1867
1868static int tty_release(struct inode *inode, struct file *filp)
1869{
1870        lock_kernel();
1871        tty_release_dev(filp);
1872        unlock_kernel();
1873        return 0;
1874}
1875
1876/**
1877 *      tty_poll        -       check tty status
1878 *      @filp: file being polled
1879 *      @wait: poll wait structures to update
1880 *
1881 *      Call the line discipline polling method to obtain the poll
1882 *      status of the device.
1883 *
1884 *      Locking: locks called line discipline but ldisc poll method
1885 *      may be re-entered freely by other callers.
1886 */
1887
1888static unsigned int tty_poll(struct file *filp, poll_table *wait)
1889{
1890        struct tty_struct *tty;
1891        struct tty_ldisc *ld;
1892        int ret = 0;
1893
1894        tty = (struct tty_struct *)filp->private_data;
1895        if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1896                return 0;
1897
1898        ld = tty_ldisc_ref_wait(tty);
1899        if (ld->ops->poll)
1900                ret = (ld->ops->poll)(tty, filp, wait);
1901        tty_ldisc_deref(ld);
1902        return ret;
1903}
1904
1905static int tty_fasync(int fd, struct file *filp, int on)
1906{
1907        struct tty_struct *tty;
1908        unsigned long flags;
1909        int retval = 0;
1910
1911        lock_kernel();
1912        tty = (struct tty_struct *)filp->private_data;
1913        if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1914                goto out;
1915
1916        retval = fasync_helper(fd, filp, on, &tty->fasync);
1917        if (retval <= 0)
1918                goto out;
1919
1920        if (on) {
1921                enum pid_type type;
1922                struct pid *pid;
1923                if (!waitqueue_active(&tty->read_wait))
1924                        tty->minimum_to_wake = 1;
1925                spin_lock_irqsave(&tty->ctrl_lock, flags);
1926                if (tty->pgrp) {
1927                        pid = tty->pgrp;
1928                        type = PIDTYPE_PGID;
1929                } else {
1930                        pid = task_pid(current);
1931                        type = PIDTYPE_PID;
1932                }
1933                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1934                retval = __f_setown(filp, pid, type, 0);
1935                if (retval)
1936                        goto out;
1937        } else {
1938                if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1939                        tty->minimum_to_wake = N_TTY_BUF_SIZE;
1940        }
1941        retval = 0;
1942out:
1943        unlock_kernel();
1944        return retval;
1945}
1946
1947/**
1948 *      tiocsti                 -       fake input character
1949 *      @tty: tty to fake input into
1950 *      @p: pointer to character
1951 *
1952 *      Fake input to a tty device. Does the necessary locking and
1953 *      input management.
1954 *
1955 *      FIXME: does not honour flow control ??
1956 *
1957 *      Locking:
1958 *              Called functions take tty_ldisc_lock
1959 *              current->signal->tty check is safe without locks
1960 *
1961 *      FIXME: may race normal receive processing
1962 */
1963
1964static int tiocsti(struct tty_struct *tty, char __user *p)
1965{
1966        char ch, mbz = 0;
1967        struct tty_ldisc *ld;
1968
1969        if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1970                return -EPERM;
1971        if (get_user(ch, p))
1972                return -EFAULT;
1973        tty_audit_tiocsti(tty, ch);
1974        ld = tty_ldisc_ref_wait(tty);
1975        ld->ops->receive_buf(tty, &ch, &mbz, 1);
1976        tty_ldisc_deref(ld);
1977        return 0;
1978}
1979
1980/**
1981 *      tiocgwinsz              -       implement window query ioctl
1982 *      @tty; tty
1983 *      @arg: user buffer for result
1984 *
1985 *      Copies the kernel idea of the window size into the user buffer.
1986 *
1987 *      Locking: tty->termios_mutex is taken to ensure the winsize data
1988 *              is consistent.
1989 */
1990
1991static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
1992{
1993        int err;
1994
1995        mutex_lock(&tty->termios_mutex);
1996        err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
1997        mutex_unlock(&tty->termios_mutex);
1998
1999        return err ? -EFAULT: 0;
2000}
2001
2002/**
2003 *      tty_do_resize           -       resize event
2004 *      @tty: tty being resized
2005 *      @rows: rows (character)
2006 *      @cols: cols (character)
2007 *
2008 *      Update the termios variables and send the neccessary signals to
2009 *      peform a terminal resize correctly
2010 */
2011
2012int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2013{
2014        struct pid *pgrp;
2015        unsigned long flags;
2016
2017        /* Lock the tty */
2018        mutex_lock(&tty->termios_mutex);
2019        if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2020                goto done;
2021        /* Get the PID values and reference them so we can
2022           avoid holding the tty ctrl lock while sending signals */
2023        spin_lock_irqsave(&tty->ctrl_lock, flags);
2024        pgrp = get_pid(tty->pgrp);
2025        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2026
2027        if (pgrp)
2028                kill_pgrp(pgrp, SIGWINCH, 1);
2029        put_pid(pgrp);
2030
2031        tty->winsize = *ws;
2032done:
2033        mutex_unlock(&tty->termios_mutex);
2034        return 0;
2035}
2036
2037/**
2038 *      tiocswinsz              -       implement window size set ioctl
2039 *      @tty; tty side of tty
2040 *      @arg: user buffer for result
2041 *
2042 *      Copies the user idea of the window size to the kernel. Traditionally
2043 *      this is just advisory information but for the Linux console it
2044 *      actually has driver level meaning and triggers a VC resize.
2045 *
2046 *      Locking:
2047 *              Driver dependant. The default do_resize method takes the
2048 *      tty termios mutex and ctrl_lock. The console takes its own lock
2049 *      then calls into the default method.
2050 */
2051
2052static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2053{
2054        struct winsize tmp_ws;
2055        if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2056                return -EFAULT;
2057
2058        if (tty->ops->resize)
2059                return tty->ops->resize(tty, &tmp_ws);
2060        else
2061                return tty_do_resize(tty, &tmp_ws);
2062}
2063
2064/**
2065 *      tioccons        -       allow admin to move logical console
2066 *      @file: the file to become console
2067 *
2068 *      Allow the adminstrator to move the redirected console device
2069 *
2070 *      Locking: uses redirect_lock to guard the redirect information
2071 */
2072
2073static int tioccons(struct file *file)
2074{
2075        if (!capable(CAP_SYS_ADMIN))
2076                return -EPERM;
2077        if (file->f_op->write == redirected_tty_write) {
2078                struct file *f;
2079                spin_lock(&redirect_lock);
2080                f = redirect;
2081                redirect = NULL;
2082                spin_unlock(&redirect_lock);
2083                if (f)
2084                        fput(f);
2085                return 0;
2086        }
2087        spin_lock(&redirect_lock);
2088        if (redirect) {
2089                spin_unlock(&redirect_lock);
2090                return -EBUSY;
2091        }
2092        get_file(file);
2093        redirect = file;
2094        spin_unlock(&redirect_lock);
2095        return 0;
2096}
2097
2098/**
2099 *      fionbio         -       non blocking ioctl
2100 *      @file: file to set blocking value
2101 *      @p: user parameter
2102 *
2103 *      Historical tty interfaces had a blocking control ioctl before
2104 *      the generic functionality existed. This piece of history is preserved
2105 *      in the expected tty API of posix OS's.
2106 *
2107 *      Locking: none, the open file handle ensures it won't go away.
2108 */
2109
2110static int fionbio(struct file *file, int __user *p)
2111{
2112        int nonblock;
2113
2114        if (get_user(nonblock, p))
2115                return -EFAULT;
2116
2117        spin_lock(&file->f_lock);
2118        if (nonblock)
2119                file->f_flags |= O_NONBLOCK;
2120        else
2121                file->f_flags &= ~O_NONBLOCK;
2122        spin_unlock(&file->f_lock);
2123        return 0;
2124}
2125
2126/**
2127 *      tiocsctty       -       set controlling tty
2128 *      @tty: tty structure
2129 *      @arg: user argument
2130 *
2131 *      This ioctl is used to manage job control. It permits a session
2132 *      leader to set this tty as the controlling tty for the session.
2133 *
2134 *      Locking:
2135 *              Takes tty_mutex() to protect tty instance
2136 *              Takes tasklist_lock internally to walk sessions
2137 *              Takes ->siglock() when updating signal->tty
2138 */
2139
2140static int tiocsctty(struct tty_struct *tty, int arg)
2141{
2142        int ret = 0;
2143        if (current->signal->leader && (task_session(current) == tty->session))
2144                return ret;
2145
2146        mutex_lock(&tty_mutex);
2147        /*
2148         * The process must be a session leader and
2149         * not have a controlling tty already.
2150         */
2151        if (!current->signal->leader || current->signal->tty) {
2152                ret = -EPERM;
2153                goto unlock;
2154        }
2155
2156        if (tty->session) {
2157                /*
2158                 * This tty is already the controlling
2159                 * tty for another session group!
2160                 */
2161                if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2162                        /*
2163                         * Steal it away
2164                         */
2165                        read_lock(&tasklist_lock);
2166                        session_clear_tty(tty->session);
2167                        read_unlock(&tasklist_lock);
2168                } else {
2169                        ret = -EPERM;
2170                        goto unlock;
2171                }
2172        }
2173        proc_set_tty(current, tty);
2174unlock:
2175        mutex_unlock(&tty_mutex);
2176        return ret;
2177}
2178
2179/**
2180 *      tty_get_pgrp    -       return a ref counted pgrp pid
2181 *      @tty: tty to read
2182 *
2183 *      Returns a refcounted instance of the pid struct for the process
2184 *      group controlling the tty.
2185 */
2186
2187struct pid *tty_get_pgrp(struct tty_struct *tty)
2188{
2189        unsigned long flags;
2190        struct pid *pgrp;
2191
2192        spin_lock_irqsave(&tty->ctrl_lock, flags);
2193        pgrp = get_pid(tty->pgrp);
2194        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2195
2196        return pgrp;
2197}
2198EXPORT_SYMBOL_GPL(tty_get_pgrp);
2199
2200/**
2201 *      tiocgpgrp               -       get process group
2202 *      @tty: tty passed by user
2203 *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2204 *      @p: returned pid
2205 *
2206 *      Obtain the process group of the tty. If there is no process group
2207 *      return an error.
2208 *
2209 *      Locking: none. Reference to current->signal->tty is safe.
2210 */
2211
2212static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2213{
2214        struct pid *pid;
2215        int ret;
2216        /*
2217         * (tty == real_tty) is a cheap way of
2218         * testing if the tty is NOT a master pty.
2219         */
2220        if (tty == real_tty && current->signal->tty != real_tty)
2221                return -ENOTTY;
2222        pid = tty_get_pgrp(real_tty);
2223        ret =  put_user(pid_vnr(pid), p);
2224        put_pid(pid);
2225        return ret;
2226}
2227
2228/**
2229 *      tiocspgrp               -       attempt to set process group
2230 *      @tty: tty passed by user
2231 *      @real_tty: tty side device matching tty passed by user
2232 *      @p: pid pointer
2233 *
2234 *      Set the process group of the tty to the session passed. Only
2235 *      permitted where the tty session is our session.
2236 *
2237 *      Locking: RCU, ctrl lock
2238 */
2239
2240static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2241{
2242        struct pid *pgrp;
2243        pid_t pgrp_nr;
2244        int retval = tty_check_change(real_tty);
2245        unsigned long flags;
2246
2247        if (retval == -EIO)
2248                return -ENOTTY;
2249        if (retval)
2250                return retval;
2251        if (!current->signal->tty ||
2252            (current->signal->tty != real_tty) ||
2253            (real_tty->session != task_session(current)))
2254                return -ENOTTY;
2255        if (get_user(pgrp_nr, p))
2256                return -EFAULT;
2257        if (pgrp_nr < 0)
2258                return -EINVAL;
2259        rcu_read_lock();
2260        pgrp = find_vpid(pgrp_nr);
2261        retval = -ESRCH;
2262        if (!pgrp)
2263                goto out_unlock;
2264        retval = -EPERM;
2265        if (session_of_pgrp(pgrp) != task_session(current))
2266                goto out_unlock;
2267        retval = 0;
2268        spin_lock_irqsave(&tty->ctrl_lock, flags);
2269        put_pid(real_tty->pgrp);
2270        real_tty->pgrp = get_pid(pgrp);
2271        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2272out_unlock:
2273        rcu_read_unlock();
2274        return retval;
2275}
2276
2277/**
2278 *      tiocgsid                -       get session id
2279 *      @tty: tty passed by user
2280 *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2281 *      @p: pointer to returned session id
2282 *
2283 *      Obtain the session id of the tty. If there is no session
2284 *      return an error.
2285 *
2286 *      Locking: none. Reference to current->signal->tty is safe.
2287 */
2288
2289static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2290{
2291        /*
2292         * (tty == real_tty) is a cheap way of
2293         * testing if the tty is NOT a master pty.
2294        */
2295        if (tty == real_tty && current->signal->tty != real_tty)
2296                return -ENOTTY;
2297        if (!real_tty->session)
2298                return -ENOTTY;
2299        return put_user(pid_vnr(real_tty->session), p);
2300}
2301
2302/**
2303 *      tiocsetd        -       set line discipline
2304 *      @tty: tty device
2305 *      @p: pointer to user data
2306 *
2307 *      Set the line discipline according to user request.
2308 *
2309 *      Locking: see tty_set_ldisc, this function is just a helper
2310 */
2311
2312static int tiocsetd(struct tty_struct *tty, int __user *p)
2313{
2314        int ldisc;
2315        int ret;
2316
2317        if (get_user(ldisc, p))
2318                return -EFAULT;
2319
2320        lock_kernel();
2321        ret = tty_set_ldisc(tty, ldisc);
2322        unlock_kernel();
2323
2324        return ret;
2325}
2326
2327/**
2328 *      send_break      -       performed time break
2329 *      @tty: device to break on
2330 *      @duration: timeout in mS
2331 *
2332 *      Perform a timed break on hardware that lacks its own driver level
2333 *      timed break functionality.
2334 *
2335 *      Locking:
2336 *              atomic_write_lock serializes
2337 *
2338 */
2339
2340static int send_break(struct tty_struct *tty, unsigned int duration)
2341{
2342        int retval;
2343
2344        if (tty->ops->break_ctl == NULL)
2345                return 0;
2346
2347        if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2348                retval = tty->ops->break_ctl(tty, duration);
2349        else {
2350                /* Do the work ourselves */
2351                if (tty_write_lock(tty, 0) < 0)
2352                        return -EINTR;
2353                retval = tty->ops->break_ctl(tty, -1);
2354                if (retval)
2355                        goto out;
2356                if (!signal_pending(current))
2357                        msleep_interruptible(duration);
2358                retval = tty->ops->break_ctl(tty, 0);
2359out:
2360                tty_write_unlock(tty);
2361                if (signal_pending(current))
2362                        retval = -EINTR;
2363        }
2364        return retval;
2365}
2366
2367/**
2368 *      tty_tiocmget            -       get modem status
2369 *      @tty: tty device
2370 *      @file: user file pointer
2371 *      @p: pointer to result
2372 *
2373 *      Obtain the modem status bits from the tty driver if the feature
2374 *      is supported. Return -EINVAL if it is not available.
2375 *
2376 *      Locking: none (up to the driver)
2377 */
2378
2379static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2380{
2381        int retval = -EINVAL;
2382
2383        if (tty->ops->tiocmget) {
2384                retval = tty->ops->tiocmget(tty, file);
2385
2386                if (retval >= 0)
2387                        retval = put_user(retval, p);
2388        }
2389        return retval;
2390}
2391
2392/**
2393 *      tty_tiocmset            -       set modem status
2394 *      @tty: tty device
2395 *      @file: user file pointer
2396 *      @cmd: command - clear bits, set bits or set all
2397 *      @p: pointer to desired bits
2398 *
2399 *      Set the modem status bits from the tty driver if the feature
2400 *      is supported. Return -EINVAL if it is not available.
2401 *
2402 *      Locking: none (up to the driver)
2403 */
2404
2405static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2406             unsigned __user *p)
2407{
2408        int retval;
2409        unsigned int set, clear, val;
2410
2411        if (tty->ops->tiocmset == NULL)
2412                return -EINVAL;
2413
2414        retval = get_user(val, p);
2415        if (retval)
2416                return retval;
2417        set = clear = 0;
2418        switch (cmd) {
2419        case TIOCMBIS:
2420                set = val;
2421                break;
2422        case TIOCMBIC:
2423                clear = val;
2424                break;
2425        case TIOCMSET:
2426                set = val;
2427                clear = ~val;
2428                break;
2429        }
2430        set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2431        clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2432        return tty->ops->tiocmset(tty, file, set, clear);
2433}
2434
2435struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2436{
2437        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2438            tty->driver->subtype == PTY_TYPE_MASTER)
2439                tty = tty->link;
2440        return tty;
2441}
2442EXPORT_SYMBOL(tty_pair_get_tty);
2443
2444struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2445{
2446        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2447            tty->driver->subtype == PTY_TYPE_MASTER)
2448            return tty;
2449        return tty->link;
2450}
2451EXPORT_SYMBOL(tty_pair_get_pty);
2452
2453/*
2454 * Split this up, as gcc can choke on it otherwise..
2455 */
2456long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2457{
2458        struct tty_struct *tty, *real_tty;
2459        void __user *p = (void __user *)arg;
2460        int retval;
2461        struct tty_ldisc *ld;
2462        struct inode *inode = file->f_dentry->d_inode;
2463
2464        tty = (struct tty_struct *)file->private_data;
2465        if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2466                return -EINVAL;
2467
2468        real_tty = tty_pair_get_tty(tty);
2469
2470        /*
2471         * Factor out some common prep work
2472         */
2473        switch (cmd) {
2474        case TIOCSETD:
2475        case TIOCSBRK:
2476        case TIOCCBRK:
2477        case TCSBRK:
2478        case TCSBRKP:
2479                retval = tty_check_change(tty);
2480                if (retval)
2481                        return retval;
2482                if (cmd != TIOCCBRK) {
2483                        tty_wait_until_sent(tty, 0);
2484                        if (signal_pending(current))
2485                                return -EINTR;
2486                }
2487                break;
2488        }
2489
2490        /*
2491         *      Now do the stuff.
2492         */
2493        switch (cmd) {
2494        case TIOCSTI:
2495                return tiocsti(tty, p);
2496        case TIOCGWINSZ:
2497                return tiocgwinsz(real_tty, p);
2498        case TIOCSWINSZ:
2499                return tiocswinsz(real_tty, p);
2500        case TIOCCONS:
2501                return real_tty != tty ? -EINVAL : tioccons(file);
2502        case FIONBIO:
2503                return fionbio(file, p);
2504        case TIOCEXCL:
2505                set_bit(TTY_EXCLUSIVE, &tty->flags);
2506                return 0;
2507        case TIOCNXCL:
2508                clear_bit(TTY_EXCLUSIVE, &tty->flags);
2509                return 0;
2510        case TIOCNOTTY:
2511                if (current->signal->tty != tty)
2512                        return -ENOTTY;
2513                no_tty();
2514                return 0;
2515        case TIOCSCTTY:
2516                return tiocsctty(tty, arg);
2517        case TIOCGPGRP:
2518                return tiocgpgrp(tty, real_tty, p);
2519        case TIOCSPGRP:
2520                return tiocspgrp(tty, real_tty, p);
2521        case TIOCGSID:
2522                return tiocgsid(tty, real_tty, p);
2523        case TIOCGETD:
2524                return put_user(tty->ldisc->ops->num, (int __user *)p);
2525        case TIOCSETD:
2526                return tiocsetd(tty, p);
2527        /*
2528         * Break handling
2529         */
2530        case TIOCSBRK:  /* Turn break on, unconditionally */
2531                if (tty->ops->break_ctl)
2532                        return tty->ops->break_ctl(tty, -1);
2533                return 0;
2534        case TIOCCBRK:  /* Turn break off, unconditionally */
2535                if (tty->ops->break_ctl)
2536                        return tty->ops->break_ctl(tty, 0);
2537                return 0;
2538        case TCSBRK:   /* SVID version: non-zero arg --> no break */
2539                /* non-zero arg means wait for all output data
2540                 * to be sent (performed above) but don't send break.
2541                 * This is used by the tcdrain() termios function.
2542                 */
2543                if (!arg)
2544                        return send_break(tty, 250);
2545                return 0;
2546        case TCSBRKP:   /* support for POSIX tcsendbreak() */
2547                return send_break(tty, arg ? arg*100 : 250);
2548
2549        case TIOCMGET:
2550                return tty_tiocmget(tty, file, p);
2551        case TIOCMSET:
2552        case TIOCMBIC:
2553        case TIOCMBIS:
2554                return tty_tiocmset(tty, file, cmd, p);
2555        case TCFLSH:
2556                switch (arg) {
2557                case TCIFLUSH:
2558                case TCIOFLUSH:
2559                /* flush tty buffer and allow ldisc to process ioctl */
2560                        tty_buffer_flush(tty);
2561                        break;
2562                }
2563                break;
2564        }
2565        if (tty->ops->ioctl) {
2566                retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2567                if (retval != -ENOIOCTLCMD)
2568                        return retval;
2569        }
2570        ld = tty_ldisc_ref_wait(tty);
2571        retval = -EINVAL;
2572        if (ld->ops->ioctl) {
2573                retval = ld->ops->ioctl(tty, file, cmd, arg);
2574                if (retval == -ENOIOCTLCMD)
2575                        retval = -EINVAL;
2576        }
2577        tty_ldisc_deref(ld);
2578        return retval;
2579}
2580
2581#ifdef CONFIG_COMPAT
2582static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2583                                unsigned long arg)
2584{
2585        struct inode *inode = file->f_dentry->d_inode;
2586        struct tty_struct *tty = file->private_data;
2587        struct tty_ldisc *ld;
2588        int retval = -ENOIOCTLCMD;
2589
2590        if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2591                return -EINVAL;
2592
2593        if (tty->ops->compat_ioctl) {
2594                retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2595                if (retval != -ENOIOCTLCMD)
2596                        return retval;
2597        }
2598
2599        ld = tty_ldisc_ref_wait(tty);
2600        if (ld->ops->compat_ioctl)
2601                retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2602        tty_ldisc_deref(ld);
2603
2604        return retval;
2605}
2606#endif
2607
2608/*
2609 * This implements the "Secure Attention Key" ---  the idea is to
2610 * prevent trojan horses by killing all processes associated with this
2611 * tty when the user hits the "Secure Attention Key".  Required for
2612 * super-paranoid applications --- see the Orange Book for more details.
2613 *
2614 * This code could be nicer; ideally it should send a HUP, wait a few
2615 * seconds, then send a INT, and then a KILL signal.  But you then
2616 * have to coordinate with the init process, since all processes associated
2617 * with the current tty must be dead before the new getty is allowed
2618 * to spawn.
2619 *
2620 * Now, if it would be correct ;-/ The current code has a nasty hole -
2621 * it doesn't catch files in flight. We may send the descriptor to ourselves
2622 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2623 *
2624 * Nasty bug: do_SAK is being called in interrupt context.  This can
2625 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2626 */
2627void __do_SAK(struct tty_struct *tty)
2628{
2629#ifdef TTY_SOFT_SAK
2630        tty_hangup(tty);
2631#else
2632        struct task_struct *g, *p;
2633        struct pid *session;
2634        int             i;
2635        struct file     *filp;
2636        struct fdtable *fdt;
2637
2638        if (!tty)
2639                return;
2640        session = tty->session;
2641
2642        tty_ldisc_flush(tty);
2643
2644        tty_driver_flush_buffer(tty);
2645
2646        read_lock(&tasklist_lock);
2647        /* Kill the entire session */
2648        do_each_pid_task(session, PIDTYPE_SID, p) {
2649                printk(KERN_NOTICE "SAK: killed process %d"
2650                        " (%s): task_session(p)==tty->session\n",
2651                        task_pid_nr(p), p->comm);
2652                send_sig(SIGKILL, p, 1);
2653        } while_each_pid_task(session, PIDTYPE_SID, p);
2654        /* Now kill any processes that happen to have the
2655         * tty open.
2656         */
2657        do_each_thread(g, p) {
2658                if (p->signal->tty == tty) {
2659                        printk(KERN_NOTICE "SAK: killed process %d"
2660                            " (%s): task_session(p)==tty->session\n",
2661                            task_pid_nr(p), p->comm);
2662                        send_sig(SIGKILL, p, 1);
2663                        continue;
2664                }
2665                task_lock(p);
2666                if (p->files) {
2667                        /*
2668                         * We don't take a ref to the file, so we must
2669                         * hold ->file_lock instead.
2670                         */
2671                        spin_lock(&p->files->file_lock);
2672                        fdt = files_fdtable(p->files);
2673                        for (i = 0; i < fdt->max_fds; i++) {
2674                                filp = fcheck_files(p->files, i);
2675                                if (!filp)
2676                                        continue;
2677                                if (filp->f_op->read == tty_read &&
2678                                    filp->private_data == tty) {
2679                                        printk(KERN_NOTICE "SAK: killed process %d"
2680                                            " (%s): fd#%d opened to the tty\n",
2681                                            task_pid_nr(p), p->comm, i);
2682                                        force_sig(SIGKILL, p);
2683                                        break;
2684                                }
2685                        }
2686                        spin_unlock(&p->files->file_lock);
2687                }
2688                task_unlock(p);
2689        } while_each_thread(g, p);
2690        read_unlock(&tasklist_lock);
2691#endif
2692}
2693
2694static void do_SAK_work(struct work_struct *work)
2695{
2696        struct tty_struct *tty =
2697                container_of(work, struct tty_struct, SAK_work);
2698        __do_SAK(tty);
2699}
2700
2701/*
2702 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2703 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2704 * the values which we write to it will be identical to the values which it
2705 * already has. --akpm
2706 */
2707void do_SAK(struct tty_struct *tty)
2708{
2709        if (!tty)
2710                return;
2711        schedule_work(&tty->SAK_work);
2712}
2713
2714EXPORT_SYMBOL(do_SAK);
2715
2716/**
2717 *      initialize_tty_struct
2718 *      @tty: tty to initialize
2719 *
2720 *      This subroutine initializes a tty structure that has been newly
2721 *      allocated.
2722 *
2723 *      Locking: none - tty in question must not be exposed at this point
2724 */
2725
2726void initialize_tty_struct(struct tty_struct *tty,
2727                struct tty_driver *driver, int idx)
2728{
2729        memset(tty, 0, sizeof(struct tty_struct));
2730        kref_init(&tty->kref);
2731        tty->magic = TTY_MAGIC;
2732        tty_ldisc_init(tty);
2733        tty->session = NULL;
2734        tty->pgrp = NULL;
2735        tty->overrun_time = jiffies;
2736        tty->buf.head = tty->buf.tail = NULL;
2737        tty_buffer_init(tty);
2738        mutex_init(&tty->termios_mutex);
2739        mutex_init(&tty->ldisc_mutex);
2740        init_waitqueue_head(&tty->write_wait);
2741        init_waitqueue_head(&tty->read_wait);
2742        INIT_WORK(&tty->hangup_work, do_tty_hangup);
2743        mutex_init(&tty->atomic_read_lock);
2744        mutex_init(&tty->atomic_write_lock);
2745        mutex_init(&tty->output_lock);
2746        mutex_init(&tty->echo_lock);
2747        spin_lock_init(&tty->read_lock);
2748        spin_lock_init(&tty->ctrl_lock);
2749        INIT_LIST_HEAD(&tty->tty_files);
2750        INIT_WORK(&tty->SAK_work, do_SAK_work);
2751
2752        tty->driver = driver;
2753        tty->ops = driver->ops;
2754        tty->index = idx;
2755        tty_line_name(driver, idx, tty->name);
2756}
2757
2758/**
2759 *      tty_put_char    -       write one character to a tty
2760 *      @tty: tty
2761 *      @ch: character
2762 *
2763 *      Write one byte to the tty using the provided put_char method
2764 *      if present. Returns the number of characters successfully output.
2765 *
2766 *      Note: the specific put_char operation in the driver layer may go
2767 *      away soon. Don't call it directly, use this method
2768 */
2769
2770int tty_put_char(struct tty_struct *tty, unsigned char ch)
2771{
2772        if (tty->ops->put_char)
2773                return tty->ops->put_char(tty, ch);
2774        return tty->ops->write(tty, &ch, 1);
2775}
2776EXPORT_SYMBOL_GPL(tty_put_char);
2777
2778struct class *tty_class;
2779
2780/**
2781 *      tty_register_device - register a tty device
2782 *      @driver: the tty driver that describes the tty device
2783 *      @index: the index in the tty driver for this tty device
2784 *      @device: a struct device that is associated with this tty device.
2785 *              This field is optional, if there is no known struct device
2786 *              for this tty device it can be set to NULL safely.
2787 *
2788 *      Returns a pointer to the struct device for this tty device
2789 *      (or ERR_PTR(-EFOO) on error).
2790 *
2791 *      This call is required to be made to register an individual tty device
2792 *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2793 *      that bit is not set, this function should not be called by a tty
2794 *      driver.
2795 *
2796 *      Locking: ??
2797 */
2798
2799struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2800                                   struct device *device)
2801{
2802        char name[64];
2803        dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2804
2805        if (index >= driver->num) {
2806                printk(KERN_ERR "Attempt to register invalid tty line number "
2807                       " (%d).\n", index);
2808                return ERR_PTR(-EINVAL);
2809        }
2810
2811        if (driver->type == TTY_DRIVER_TYPE_PTY)
2812                pty_line_name(driver, index, name);
2813        else
2814                tty_line_name(driver, index, name);
2815
2816        return device_create(tty_class, device, dev, NULL, name);
2817}
2818EXPORT_SYMBOL(tty_register_device);
2819
2820/**
2821 *      tty_unregister_device - unregister a tty device
2822 *      @driver: the tty driver that describes the tty device
2823 *      @index: the index in the tty driver for this tty device
2824 *
2825 *      If a tty device is registered with a call to tty_register_device() then
2826 *      this function must be called when the tty device is gone.
2827 *
2828 *      Locking: ??
2829 */
2830
2831void tty_unregister_device(struct tty_driver *driver, unsigned index)
2832{
2833        device_destroy(tty_class,
2834                MKDEV(driver->major, driver->minor_start) + index);
2835}
2836EXPORT_SYMBOL(tty_unregister_device);
2837
2838struct tty_driver *alloc_tty_driver(int lines)
2839{
2840        struct tty_driver *driver;
2841
2842        driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2843        if (driver) {
2844                kref_init(&driver->kref);
2845                driver->magic = TTY_DRIVER_MAGIC;
2846                driver->num = lines;
2847                /* later we'll move allocation of tables here */
2848        }
2849        return driver;
2850}
2851EXPORT_SYMBOL(alloc_tty_driver);
2852
2853static void destruct_tty_driver(struct kref *kref)
2854{
2855        struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2856        int i;
2857        struct ktermios *tp;
2858        void *p;
2859
2860        if (driver->flags & TTY_DRIVER_INSTALLED) {
2861                /*
2862                 * Free the termios and termios_locked structures because
2863                 * we don't want to get memory leaks when modular tty
2864                 * drivers are removed from the kernel.
2865                 */
2866                for (i = 0; i < driver->num; i++) {
2867                        tp = driver->termios[i];
2868                        if (tp) {
2869                                driver->termios[i] = NULL;
2870                                kfree(tp);
2871                        }
2872                        if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2873                                tty_unregister_device(driver, i);
2874                }
2875                p = driver->ttys;
2876                proc_tty_unregister_driver(driver);
2877                driver->ttys = NULL;
2878                driver->termios = NULL;
2879                kfree(p);
2880                cdev_del(&driver->cdev);
2881        }
2882        kfree(driver);
2883}
2884
2885void tty_driver_kref_put(struct tty_driver *driver)
2886{
2887        kref_put(&driver->kref, destruct_tty_driver);
2888}
2889EXPORT_SYMBOL(tty_driver_kref_put);
2890
2891void tty_set_operations(struct tty_driver *driver,
2892                        const struct tty_operations *op)
2893{
2894        driver->ops = op;
2895};
2896EXPORT_SYMBOL(tty_set_operations);
2897
2898void put_tty_driver(struct tty_driver *d)
2899{
2900        tty_driver_kref_put(d);
2901}
2902EXPORT_SYMBOL(put_tty_driver);
2903
2904/*
2905 * Called by a tty driver to register itself.
2906 */
2907int tty_register_driver(struct tty_driver *driver)
2908{
2909        int error;
2910        int i;
2911        dev_t dev;
2912        void **p = NULL;
2913
2914        if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2915                p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2916                if (!p)
2917                        return -ENOMEM;
2918        }
2919
2920        if (!driver->major) {
2921                error = alloc_chrdev_region(&dev, driver->minor_start,
2922                                                driver->num, driver->name);
2923                if (!error) {
2924                        driver->major = MAJOR(dev);
2925                        driver->minor_start = MINOR(dev);
2926                }
2927        } else {
2928                dev = MKDEV(driver->major, driver->minor_start);
2929                error = register_chrdev_region(dev, driver->num, driver->name);
2930        }
2931        if (error < 0) {
2932                kfree(p);
2933                return error;
2934        }
2935
2936        if (p) {
2937                driver->ttys = (struct tty_struct **)p;
2938                driver->termios = (struct ktermios **)(p + driver->num);
2939        } else {
2940                driver->ttys = NULL;
2941                driver->termios = NULL;
2942        }
2943
2944        cdev_init(&driver->cdev, &tty_fops);
2945        driver->cdev.owner = driver->owner;
2946        error = cdev_add(&driver->cdev, dev, driver->num);
2947        if (error) {
2948                unregister_chrdev_region(dev, driver->num);
2949                driver->ttys = NULL;
2950                driver->termios = NULL;
2951                kfree(p);
2952                return error;
2953        }
2954
2955        mutex_lock(&tty_mutex);
2956        list_add(&driver->tty_drivers, &tty_drivers);
2957        mutex_unlock(&tty_mutex);
2958
2959        if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2960                for (i = 0; i < driver->num; i++)
2961                    tty_register_device(driver, i, NULL);
2962        }
2963        proc_tty_register_driver(driver);
2964        driver->flags |= TTY_DRIVER_INSTALLED;
2965        return 0;
2966}
2967
2968EXPORT_SYMBOL(tty_register_driver);
2969
2970/*
2971 * Called by a tty driver to unregister itself.
2972 */
2973int tty_unregister_driver(struct tty_driver *driver)
2974{
2975#if 0
2976        /* FIXME */
2977        if (driver->refcount)
2978                return -EBUSY;
2979#endif
2980        unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
2981                                driver->num);
2982        mutex_lock(&tty_mutex);
2983        list_del(&driver->tty_drivers);
2984        mutex_unlock(&tty_mutex);
2985        return 0;
2986}
2987
2988EXPORT_SYMBOL(tty_unregister_driver);
2989
2990dev_t tty_devnum(struct tty_struct *tty)
2991{
2992        return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
2993}
2994EXPORT_SYMBOL(tty_devnum);
2995
2996void proc_clear_tty(struct task_struct *p)
2997{
2998        unsigned long flags;
2999        struct tty_struct *tty;
3000        spin_lock_irqsave(&p->sighand->siglock, flags);
3001        tty = p->signal->tty;
3002        p->signal->tty = NULL;
3003        spin_unlock_irqrestore(&p->sighand->siglock, flags);
3004        tty_kref_put(tty);
3005}
3006
3007/* Called under the sighand lock */
3008
3009static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3010{
3011        if (tty) {
3012                unsigned long flags;
3013                /* We should not have a session or pgrp to put here but.... */
3014                spin_lock_irqsave(&tty->ctrl_lock, flags);
3015                put_pid(tty->session);
3016                put_pid(tty->pgrp);
3017                tty->pgrp = get_pid(task_pgrp(tsk));
3018                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3019                tty->session = get_pid(task_session(tsk));
3020                if (tsk->signal->tty) {
3021                        printk(KERN_DEBUG "tty not NULL!!\n");
3022                        tty_kref_put(tsk->signal->tty);
3023                }
3024        }
3025        put_pid(tsk->signal->tty_old_pgrp);
3026        tsk->signal->tty = tty_kref_get(tty);
3027        tsk->signal->tty_old_pgrp = NULL;
3028}
3029
3030static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3031{
3032        spin_lock_irq(&tsk->sighand->siglock);
3033        __proc_set_tty(tsk, tty);
3034        spin_unlock_irq(&tsk->sighand->siglock);
3035}
3036
3037struct tty_struct *get_current_tty(void)
3038{
3039        struct tty_struct *tty;
3040        unsigned long flags;
3041
3042        spin_lock_irqsave(&current->sighand->siglock, flags);
3043        tty = tty_kref_get(current->signal->tty);
3044        spin_unlock_irqrestore(&current->sighand->siglock, flags);
3045        return tty;
3046}
3047EXPORT_SYMBOL_GPL(get_current_tty);
3048
3049void tty_default_fops(struct file_operations *fops)
3050{
3051        *fops = tty_fops;
3052}
3053
3054/*
3055 * Initialize the console device. This is called *early*, so
3056 * we can't necessarily depend on lots of kernel help here.
3057 * Just do some early initializations, and do the complex setup
3058 * later.
3059 */
3060void __init console_init(void)
3061{
3062        initcall_t *call;
3063
3064        /* Setup the default TTY line discipline. */
3065        tty_ldisc_begin();
3066
3067        /*
3068         * set up the console device so that later boot sequences can
3069         * inform about problems etc..
3070         */
3071        call = __con_initcall_start;
3072        while (call < __con_initcall_end) {
3073                (*call)();
3074                call++;
3075        }
3076}
3077
3078static char *tty_devnode(struct device *dev, mode_t *mode)
3079{
3080        if (!mode)
3081                return NULL;
3082        if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3083            dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3084                *mode = 0666;
3085        return NULL;
3086}
3087
3088static int __init tty_class_init(void)
3089{
3090        tty_class = class_create(THIS_MODULE, "tty");
3091        if (IS_ERR(tty_class))
3092                return PTR_ERR(tty_class);
3093        tty_class->devnode = tty_devnode;
3094        return 0;
3095}
3096
3097postcore_initcall(tty_class_init);
3098
3099/* 3/2004 jmc: why do these devices exist? */
3100
3101static struct cdev tty_cdev, console_cdev;
3102
3103/*
3104 * Ok, now we can initialize the rest of the tty devices and can count
3105 * on memory allocations, interrupts etc..
3106 */
3107static int __init tty_init(void)
3108{
3109        cdev_init(&tty_cdev, &tty_fops);
3110        if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3111            register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3112                panic("Couldn't register /dev/tty driver\n");
3113        device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3114                              "tty");
3115
3116        cdev_init(&console_cdev, &console_fops);
3117        if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3118            register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3119                panic("Couldn't register /dev/console driver\n");
3120        device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3121                              "console");
3122
3123#ifdef CONFIG_VT
3124        vty_init(&console_fops);
3125#endif
3126        return 0;
3127}
3128module_init(tty_init);
3129