linux/drivers/clocksource/tcb_clksrc.c
<<
>>
Prefs
   1#include <linux/init.h>
   2#include <linux/clocksource.h>
   3#include <linux/clockchips.h>
   4#include <linux/interrupt.h>
   5#include <linux/irq.h>
   6
   7#include <linux/clk.h>
   8#include <linux/err.h>
   9#include <linux/ioport.h>
  10#include <linux/io.h>
  11#include <linux/platform_device.h>
  12#include <linux/atmel_tc.h>
  13
  14
  15/*
  16 * We're configured to use a specific TC block, one that's not hooked
  17 * up to external hardware, to provide a time solution:
  18 *
  19 *   - Two channels combine to create a free-running 32 bit counter
  20 *     with a base rate of 5+ MHz, packaged as a clocksource (with
  21 *     resolution better than 200 nsec).
  22 *
  23 *   - The third channel may be used to provide a 16-bit clockevent
  24 *     source, used in either periodic or oneshot mode.  This runs
  25 *     at 32 KiHZ, and can handle delays of up to two seconds.
  26 *
  27 * A boot clocksource and clockevent source are also currently needed,
  28 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
  29 * this code can be used when init_timers() is called, well before most
  30 * devices are set up.  (Some low end AT91 parts, which can run uClinux,
  31 * have only the timers in one TC block... they currently don't support
  32 * the tclib code, because of that initialization issue.)
  33 *
  34 * REVISIT behavior during system suspend states... we should disable
  35 * all clocks and save the power.  Easily done for clockevent devices,
  36 * but clocksources won't necessarily get the needed notifications.
  37 * For deeper system sleep states, this will be mandatory...
  38 */
  39
  40static void __iomem *tcaddr;
  41
  42static cycle_t tc_get_cycles(struct clocksource *cs)
  43{
  44        unsigned long   flags;
  45        u32             lower, upper;
  46
  47        raw_local_irq_save(flags);
  48        do {
  49                upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
  50                lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
  51        } while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
  52
  53        raw_local_irq_restore(flags);
  54        return (upper << 16) | lower;
  55}
  56
  57static struct clocksource clksrc = {
  58        .name           = "tcb_clksrc",
  59        .rating         = 200,
  60        .read           = tc_get_cycles,
  61        .mask           = CLOCKSOURCE_MASK(32),
  62        .shift          = 18,
  63        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
  64};
  65
  66#ifdef CONFIG_GENERIC_CLOCKEVENTS
  67
  68struct tc_clkevt_device {
  69        struct clock_event_device       clkevt;
  70        struct clk                      *clk;
  71        void __iomem                    *regs;
  72};
  73
  74static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
  75{
  76        return container_of(clkevt, struct tc_clkevt_device, clkevt);
  77}
  78
  79/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
  80 * because using one of the divided clocks would usually mean the
  81 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
  82 *
  83 * A divided clock could be good for high resolution timers, since
  84 * 30.5 usec resolution can seem "low".
  85 */
  86static u32 timer_clock;
  87
  88static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
  89{
  90        struct tc_clkevt_device *tcd = to_tc_clkevt(d);
  91        void __iomem            *regs = tcd->regs;
  92
  93        if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
  94                        || tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
  95                __raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
  96                __raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
  97                clk_disable(tcd->clk);
  98        }
  99
 100        switch (m) {
 101
 102        /* By not making the gentime core emulate periodic mode on top
 103         * of oneshot, we get lower overhead and improved accuracy.
 104         */
 105        case CLOCK_EVT_MODE_PERIODIC:
 106                clk_enable(tcd->clk);
 107
 108                /* slow clock, count up to RC, then irq and restart */
 109                __raw_writel(timer_clock
 110                                | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
 111                                regs + ATMEL_TC_REG(2, CMR));
 112                __raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
 113
 114                /* Enable clock and interrupts on RC compare */
 115                __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
 116
 117                /* go go gadget! */
 118                __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
 119                                regs + ATMEL_TC_REG(2, CCR));
 120                break;
 121
 122        case CLOCK_EVT_MODE_ONESHOT:
 123                clk_enable(tcd->clk);
 124
 125                /* slow clock, count up to RC, then irq and stop */
 126                __raw_writel(timer_clock | ATMEL_TC_CPCSTOP
 127                                | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
 128                                regs + ATMEL_TC_REG(2, CMR));
 129                __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
 130
 131                /* set_next_event() configures and starts the timer */
 132                break;
 133
 134        default:
 135                break;
 136        }
 137}
 138
 139static int tc_next_event(unsigned long delta, struct clock_event_device *d)
 140{
 141        __raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
 142
 143        /* go go gadget! */
 144        __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
 145                        tcaddr + ATMEL_TC_REG(2, CCR));
 146        return 0;
 147}
 148
 149static struct tc_clkevt_device clkevt = {
 150        .clkevt = {
 151                .name           = "tc_clkevt",
 152                .features       = CLOCK_EVT_FEAT_PERIODIC
 153                                        | CLOCK_EVT_FEAT_ONESHOT,
 154                .shift          = 32,
 155                /* Should be lower than at91rm9200's system timer */
 156                .rating         = 125,
 157                .set_next_event = tc_next_event,
 158                .set_mode       = tc_mode,
 159        },
 160};
 161
 162static irqreturn_t ch2_irq(int irq, void *handle)
 163{
 164        struct tc_clkevt_device *dev = handle;
 165        unsigned int            sr;
 166
 167        sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
 168        if (sr & ATMEL_TC_CPCS) {
 169                dev->clkevt.event_handler(&dev->clkevt);
 170                return IRQ_HANDLED;
 171        }
 172
 173        return IRQ_NONE;
 174}
 175
 176static struct irqaction tc_irqaction = {
 177        .name           = "tc_clkevt",
 178        .flags          = IRQF_TIMER | IRQF_DISABLED,
 179        .handler        = ch2_irq,
 180};
 181
 182static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
 183{
 184        struct clk *t2_clk = tc->clk[2];
 185        int irq = tc->irq[2];
 186
 187        clkevt.regs = tc->regs;
 188        clkevt.clk = t2_clk;
 189        tc_irqaction.dev_id = &clkevt;
 190
 191        timer_clock = clk32k_divisor_idx;
 192
 193        clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
 194        clkevt.clkevt.max_delta_ns
 195                = clockevent_delta2ns(0xffff, &clkevt.clkevt);
 196        clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
 197        clkevt.clkevt.cpumask = cpumask_of(0);
 198
 199        setup_irq(irq, &tc_irqaction);
 200
 201        clockevents_register_device(&clkevt.clkevt);
 202}
 203
 204#else /* !CONFIG_GENERIC_CLOCKEVENTS */
 205
 206static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
 207{
 208        /* NOTHING */
 209}
 210
 211#endif
 212
 213static int __init tcb_clksrc_init(void)
 214{
 215        static char bootinfo[] __initdata
 216                = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
 217
 218        struct platform_device *pdev;
 219        struct atmel_tc *tc;
 220        struct clk *t0_clk;
 221        u32 rate, divided_rate = 0;
 222        int best_divisor_idx = -1;
 223        int clk32k_divisor_idx = -1;
 224        int i;
 225
 226        tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
 227        if (!tc) {
 228                pr_debug("can't alloc TC for clocksource\n");
 229                return -ENODEV;
 230        }
 231        tcaddr = tc->regs;
 232        pdev = tc->pdev;
 233
 234        t0_clk = tc->clk[0];
 235        clk_enable(t0_clk);
 236
 237        /* How fast will we be counting?  Pick something over 5 MHz.  */
 238        rate = (u32) clk_get_rate(t0_clk);
 239        for (i = 0; i < 5; i++) {
 240                unsigned divisor = atmel_tc_divisors[i];
 241                unsigned tmp;
 242
 243                /* remember 32 KiHz clock for later */
 244                if (!divisor) {
 245                        clk32k_divisor_idx = i;
 246                        continue;
 247                }
 248
 249                tmp = rate / divisor;
 250                pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
 251                if (best_divisor_idx > 0) {
 252                        if (tmp < 5 * 1000 * 1000)
 253                                continue;
 254                }
 255                divided_rate = tmp;
 256                best_divisor_idx = i;
 257        }
 258
 259        clksrc.mult = clocksource_hz2mult(divided_rate, clksrc.shift);
 260
 261        printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
 262                        divided_rate / 1000000,
 263                        ((divided_rate + 500000) % 1000000) / 1000);
 264
 265        /* tclib will give us three clocks no matter what the
 266         * underlying platform supports.
 267         */
 268        clk_enable(tc->clk[1]);
 269
 270        /* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
 271        __raw_writel(best_divisor_idx                   /* likely divide-by-8 */
 272                        | ATMEL_TC_WAVE
 273                        | ATMEL_TC_WAVESEL_UP           /* free-run */
 274                        | ATMEL_TC_ACPA_SET             /* TIOA0 rises at 0 */
 275                        | ATMEL_TC_ACPC_CLEAR,          /* (duty cycle 50%) */
 276                        tcaddr + ATMEL_TC_REG(0, CMR));
 277        __raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
 278        __raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
 279        __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));      /* no irqs */
 280        __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
 281
 282        /* channel 1:  waveform mode, input TIOA0 */
 283        __raw_writel(ATMEL_TC_XC1                       /* input: TIOA0 */
 284                        | ATMEL_TC_WAVE
 285                        | ATMEL_TC_WAVESEL_UP,          /* free-run */
 286                        tcaddr + ATMEL_TC_REG(1, CMR));
 287        __raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));      /* no irqs */
 288        __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
 289
 290        /* chain channel 0 to channel 1, then reset all the timers */
 291        __raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
 292        __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
 293
 294        /* and away we go! */
 295        clocksource_register(&clksrc);
 296
 297        /* channel 2:  periodic and oneshot timer support */
 298        setup_clkevents(tc, clk32k_divisor_idx);
 299
 300        return 0;
 301}
 302arch_initcall(tcb_clksrc_init);
 303