linux/drivers/firewire/core-iso.c
<<
>>
Prefs
   1/*
   2 * Isochronous I/O functionality:
   3 *   - Isochronous DMA context management
   4 *   - Isochronous bus resource management (channels, bandwidth), client side
   5 *
   6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  21 */
  22
  23#include <linux/dma-mapping.h>
  24#include <linux/errno.h>
  25#include <linux/firewire.h>
  26#include <linux/firewire-constants.h>
  27#include <linux/kernel.h>
  28#include <linux/mm.h>
  29#include <linux/spinlock.h>
  30#include <linux/vmalloc.h>
  31
  32#include <asm/byteorder.h>
  33
  34#include "core.h"
  35
  36/*
  37 * Isochronous DMA context management
  38 */
  39
  40int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
  41                       int page_count, enum dma_data_direction direction)
  42{
  43        int i, j;
  44        dma_addr_t address;
  45
  46        buffer->page_count = page_count;
  47        buffer->direction = direction;
  48
  49        buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
  50                                GFP_KERNEL);
  51        if (buffer->pages == NULL)
  52                goto out;
  53
  54        for (i = 0; i < buffer->page_count; i++) {
  55                buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
  56                if (buffer->pages[i] == NULL)
  57                        goto out_pages;
  58
  59                address = dma_map_page(card->device, buffer->pages[i],
  60                                       0, PAGE_SIZE, direction);
  61                if (dma_mapping_error(card->device, address)) {
  62                        __free_page(buffer->pages[i]);
  63                        goto out_pages;
  64                }
  65                set_page_private(buffer->pages[i], address);
  66        }
  67
  68        return 0;
  69
  70 out_pages:
  71        for (j = 0; j < i; j++) {
  72                address = page_private(buffer->pages[j]);
  73                dma_unmap_page(card->device, address,
  74                               PAGE_SIZE, direction);
  75                __free_page(buffer->pages[j]);
  76        }
  77        kfree(buffer->pages);
  78 out:
  79        buffer->pages = NULL;
  80
  81        return -ENOMEM;
  82}
  83EXPORT_SYMBOL(fw_iso_buffer_init);
  84
  85int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
  86{
  87        unsigned long uaddr;
  88        int i, err;
  89
  90        uaddr = vma->vm_start;
  91        for (i = 0; i < buffer->page_count; i++) {
  92                err = vm_insert_page(vma, uaddr, buffer->pages[i]);
  93                if (err)
  94                        return err;
  95
  96                uaddr += PAGE_SIZE;
  97        }
  98
  99        return 0;
 100}
 101
 102void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
 103                           struct fw_card *card)
 104{
 105        int i;
 106        dma_addr_t address;
 107
 108        for (i = 0; i < buffer->page_count; i++) {
 109                address = page_private(buffer->pages[i]);
 110                dma_unmap_page(card->device, address,
 111                               PAGE_SIZE, buffer->direction);
 112                __free_page(buffer->pages[i]);
 113        }
 114
 115        kfree(buffer->pages);
 116        buffer->pages = NULL;
 117}
 118EXPORT_SYMBOL(fw_iso_buffer_destroy);
 119
 120struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
 121                int type, int channel, int speed, size_t header_size,
 122                fw_iso_callback_t callback, void *callback_data)
 123{
 124        struct fw_iso_context *ctx;
 125
 126        ctx = card->driver->allocate_iso_context(card,
 127                                                 type, channel, header_size);
 128        if (IS_ERR(ctx))
 129                return ctx;
 130
 131        ctx->card = card;
 132        ctx->type = type;
 133        ctx->channel = channel;
 134        ctx->speed = speed;
 135        ctx->header_size = header_size;
 136        ctx->callback = callback;
 137        ctx->callback_data = callback_data;
 138
 139        return ctx;
 140}
 141EXPORT_SYMBOL(fw_iso_context_create);
 142
 143void fw_iso_context_destroy(struct fw_iso_context *ctx)
 144{
 145        struct fw_card *card = ctx->card;
 146
 147        card->driver->free_iso_context(ctx);
 148}
 149EXPORT_SYMBOL(fw_iso_context_destroy);
 150
 151int fw_iso_context_start(struct fw_iso_context *ctx,
 152                         int cycle, int sync, int tags)
 153{
 154        return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
 155}
 156EXPORT_SYMBOL(fw_iso_context_start);
 157
 158int fw_iso_context_queue(struct fw_iso_context *ctx,
 159                         struct fw_iso_packet *packet,
 160                         struct fw_iso_buffer *buffer,
 161                         unsigned long payload)
 162{
 163        struct fw_card *card = ctx->card;
 164
 165        return card->driver->queue_iso(ctx, packet, buffer, payload);
 166}
 167EXPORT_SYMBOL(fw_iso_context_queue);
 168
 169int fw_iso_context_stop(struct fw_iso_context *ctx)
 170{
 171        return ctx->card->driver->stop_iso(ctx);
 172}
 173EXPORT_SYMBOL(fw_iso_context_stop);
 174
 175/*
 176 * Isochronous bus resource management (channels, bandwidth), client side
 177 */
 178
 179static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
 180                            int bandwidth, bool allocate, __be32 data[2])
 181{
 182        int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
 183
 184        /*
 185         * On a 1394a IRM with low contention, try < 1 is enough.
 186         * On a 1394-1995 IRM, we need at least try < 2.
 187         * Let's just do try < 5.
 188         */
 189        for (try = 0; try < 5; try++) {
 190                new = allocate ? old - bandwidth : old + bandwidth;
 191                if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
 192                        break;
 193
 194                data[0] = cpu_to_be32(old);
 195                data[1] = cpu_to_be32(new);
 196                switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
 197                                irm_id, generation, SCODE_100,
 198                                CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
 199                                data, 8)) {
 200                case RCODE_GENERATION:
 201                        /* A generation change frees all bandwidth. */
 202                        return allocate ? -EAGAIN : bandwidth;
 203
 204                case RCODE_COMPLETE:
 205                        if (be32_to_cpup(data) == old)
 206                                return bandwidth;
 207
 208                        old = be32_to_cpup(data);
 209                        /* Fall through. */
 210                }
 211        }
 212
 213        return -EIO;
 214}
 215
 216static int manage_channel(struct fw_card *card, int irm_id, int generation,
 217                u32 channels_mask, u64 offset, bool allocate, __be32 data[2])
 218{
 219        __be32 c, all, old;
 220        int i, retry = 5;
 221
 222        old = all = allocate ? cpu_to_be32(~0) : 0;
 223
 224        for (i = 0; i < 32; i++) {
 225                if (!(channels_mask & 1 << i))
 226                        continue;
 227
 228                c = cpu_to_be32(1 << (31 - i));
 229                if ((old & c) != (all & c))
 230                        continue;
 231
 232                data[0] = old;
 233                data[1] = old ^ c;
 234                switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
 235                                           irm_id, generation, SCODE_100,
 236                                           offset, data, 8)) {
 237                case RCODE_GENERATION:
 238                        /* A generation change frees all channels. */
 239                        return allocate ? -EAGAIN : i;
 240
 241                case RCODE_COMPLETE:
 242                        if (data[0] == old)
 243                                return i;
 244
 245                        old = data[0];
 246
 247                        /* Is the IRM 1394a-2000 compliant? */
 248                        if ((data[0] & c) == (data[1] & c))
 249                                continue;
 250
 251                        /* 1394-1995 IRM, fall through to retry. */
 252                default:
 253                        if (retry--)
 254                                i--;
 255                }
 256        }
 257
 258        return -EIO;
 259}
 260
 261static void deallocate_channel(struct fw_card *card, int irm_id,
 262                               int generation, int channel, __be32 buffer[2])
 263{
 264        u32 mask;
 265        u64 offset;
 266
 267        mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
 268        offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
 269                                CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
 270
 271        manage_channel(card, irm_id, generation, mask, offset, false, buffer);
 272}
 273
 274/**
 275 * fw_iso_resource_manage - Allocate or deallocate a channel and/or bandwidth
 276 *
 277 * In parameters: card, generation, channels_mask, bandwidth, allocate
 278 * Out parameters: channel, bandwidth
 279 * This function blocks (sleeps) during communication with the IRM.
 280 *
 281 * Allocates or deallocates at most one channel out of channels_mask.
 282 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
 283 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
 284 * channel 0 and LSB for channel 63.)
 285 * Allocates or deallocates as many bandwidth allocation units as specified.
 286 *
 287 * Returns channel < 0 if no channel was allocated or deallocated.
 288 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
 289 *
 290 * If generation is stale, deallocations succeed but allocations fail with
 291 * channel = -EAGAIN.
 292 *
 293 * If channel allocation fails, no bandwidth will be allocated either.
 294 * If bandwidth allocation fails, no channel will be allocated either.
 295 * But deallocations of channel and bandwidth are tried independently
 296 * of each other's success.
 297 */
 298void fw_iso_resource_manage(struct fw_card *card, int generation,
 299                            u64 channels_mask, int *channel, int *bandwidth,
 300                            bool allocate, __be32 buffer[2])
 301{
 302        u32 channels_hi = channels_mask;        /* channels 31...0 */
 303        u32 channels_lo = channels_mask >> 32;  /* channels 63...32 */
 304        int irm_id, ret, c = -EINVAL;
 305
 306        spin_lock_irq(&card->lock);
 307        irm_id = card->irm_node->node_id;
 308        spin_unlock_irq(&card->lock);
 309
 310        if (channels_hi)
 311                c = manage_channel(card, irm_id, generation, channels_hi,
 312                                CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
 313                                allocate, buffer);
 314        if (channels_lo && c < 0) {
 315                c = manage_channel(card, irm_id, generation, channels_lo,
 316                                CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
 317                                allocate, buffer);
 318                if (c >= 0)
 319                        c += 32;
 320        }
 321        *channel = c;
 322
 323        if (allocate && channels_mask != 0 && c < 0)
 324                *bandwidth = 0;
 325
 326        if (*bandwidth == 0)
 327                return;
 328
 329        ret = manage_bandwidth(card, irm_id, generation, *bandwidth,
 330                               allocate, buffer);
 331        if (ret < 0)
 332                *bandwidth = 0;
 333
 334        if (allocate && ret < 0 && c >= 0) {
 335                deallocate_channel(card, irm_id, generation, c, buffer);
 336                *channel = ret;
 337        }
 338}
 339